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Abstract: The incidence of cancer has been constantly growing worldwide, placing pressure on health
systems and increasing the costs associated with the treatment of cancer. In particular, low- and
middle-income countries are expected to face serious challenges related to caring for the majority of
the world’s new cancer cases in the next 10 years. In this study, we propose a mathematical model
that allows for the simulation of different strategies focused on public policies by combining spending
and epidemiological indicators. In this way, strategies aimed at efficient spending management with
better epidemiological indicators can be determined. For validation and calibration of the model, we
use data from Colombia—which, according to the World Bank, is an upper-middle-income country.
The results of the simulations using the proposed model, calibrated and validated for Colombia,
indicate that the most effective strategy for reducing mortality and financial burden consists of a
combination of early detection and greater efficiency of treatment in the early stages of cancer. This
approach is found to present a 38% reduction in mortality rate and a 20% reduction in costs (% GDP)
when compared to the baseline scenario. Hence, Colombia should prioritize comprehensive care
models that focus on patient-centered care, prevention, and early detection.

Keywords: cancer care; discrete time; identifiability analysis; health system; mathematical modeling;
parameter estimation; public health; public policies; sensitivity analyses

1. Introduction

Both the costs associated with cancer healthcare and the incidence rate of cancer are
on the rise worldwide. It has been estimated that the global cancer cost, as a percentage
of GDP, reached 0.47% in the year 2018 [1]. Furthermore, without changes in current
health systems, the world could expect 76 million cancer deaths between 2020–2030, mainly
concentrated in lower- to middle-income populations (70%) [1]. However, Ward et al. [1]
have also suggested that the comprehensive scaling-up of treatment, imaging, and quality
of care could avert 5–12% of these deaths globally, producing USD (2018) 2.9 trillion in
lifetime economic benefits while costing an additional USD 232.9 billion between 2020
and 2030 (associated with a 6–9% increase in cancer treatment costs), yielding a return of
USD 12.43 per USD 1 invested. As such, countries should strive to develop health system
configurations with better health outcomes, such as lower mortality and incidence rates
and improved quality of life for patients, while also being financially sustainable in the
long term [2]. Thus, the implementation of strategies that improve health systems must
include a cost-effectiveness analysis [3,4].
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Mathematical modeling applied to cancer—from the gene to population level—has
drawn significant attention over the last two decades, due to its potential to help decision-
makers in discerning among different strategies to improve certain components of the
cancer healthcare system [5,6]. Mathematical models can capture more of the dynam-
ics of cancer disease by integrating the increasing volume of available data and simu-
lating the interactions between the actors involved in cancer healthcare [7]. However,
most of the research so far has mainly focused on cancer treatment, early detection, and
prevention [7–9]; which, in turn, has led to a lack of models treating the cancer healthcare
system as a whole, despite the implementation of precision public health being a central
issue in this field [10,11].

Due to the high complexity of both cancer dynamics and healthcare system dynamics,
a remarkable amount of discrete-time approaches for mathematical modeling have been
proposed in this area [7,12], especially regarding healthcare systems [13]. Another notice-
able technique used to propose models in these areas from a holistic point of view is the
system dynamics approach [14]. Both approaches can be applied at the same time, in order
to achieve a holistic and robust framework that takes into account the complexity of the
different components that constitute the whole system [12]. This is especially useful for
precision public health, as any public health policy must be both viable in terms of health
outcomes and financially sustainable, given that public resources are limited and access
to healthcare must be guaranteed for all [2,15]. Specifically for cancer, available strategies
are challenging on both fronts due to various factors including high mortality rate, costly
treatment with high uncertainty, and supply restrictions for specialized personnel, medical
equipment, and access to technologies, as well as difficulties related to early detection [7,9].

In this paper, inspired by the work of Catano-Lopez et al. [16], we propose a strategy
to model cancer healthcare systems. Most of the information available is included in a
discrete-time structure motivated by the natural history of the disease, and we also allow
for the assessment of public health policies by taking the Colombian health system as a case
study. As suggested by Davahli et al. [15], we focus our attention on the flow of patients
inside the healthcare system. As public policies for cancer treatment must balance health
outcomes and financial sustainability to make them viable in the long term [1], we adapt
the model to the actual state of the Colombian cancer healthcare system, which reveals
some interesting dynamics, following which we use the model to test several hypotheses
on cancer healthcare strategies. This allows us to to look for scenarios characterized by
moderate spending and improved long-term health outcomes of the system. In other words,
we assess a wide combination of scenarios and test their capacity to control the spending
curve while improving population health outcomes.

2. Materials and Methods
2.1. Modeling Approach

We follow the guidelines stated by Martcheva [17] to propose a discrete-time com-
partmental mathematical model. In this way, the developed model can be treated as a
graph, where the flow among nodes is described through probabilities or proportions [16].
The intuition behind compartmental mathematical models is to propose a partition of
the population under study according to some properties observed in that population;
then, each component of the partition becomes a compartment (also known as a state) [17].
The subpopulation within a compartment may vary over time, according to the flows
and interactions established between compartments; for instance, let {X1(t), · · · , Xm(t)},
t ∈ {0, 1, · · · , k} represent a partition of some population of interest as time evolves (in a
discrete manner) and Xi(t), i ∈ {1, · · · , m} be the subpopulation exhibiting some particular
conditions. Then, an equation describing the evolution of the subpopulation in this state
would be as follows:

Xi(t + 1) = Ii(X1(t), · · · , Xm(t), t) + Xi(t)Oi(X1(t), · · · , Xm(t), t),
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where Ii(·) is a function of the amount of the population in state i (linked to Xi(t)), as
well as the time, acting as the inflow of population to the ith state for the next time step.
Similarly, Oi(·) is a function of the amount of population and the time that determines
the proportion of the population in Xi(t) that will not flow out in the next time step. In
their simpler forms, Oi(·) could be a constant while Ii(·) would be a linear combination
of outflows alongside a constant. For example, after setting Oi(·) = Ki, we obtain the
following representation:

Xi(t + 1) = K0 +
m

∑
j=1

KjXj(t). (1)

Furthermore, for the modeling approach, we chose every parameter involved in the
structure of the model to have a natural, useful, and intuitive meaning, while keeping the
model free of dimensional issues. In this way, we can ensure that all of the parameters we
inferred or estimated for the model can be easily contrasted with real data, even if they are
unavailable at present, as they can be obtained in the future in simple studies.

2.2. Data Sources

To propose the model and conduct subsequent calibration of the values for some of
its parameters, we used information available for Colombia in recent years from three
major databases: the first one was Cuenta de Alto Costo (CAC), which is a government-
independent organization belonging to the general social security system of the country,
whose purpose is to stabilize the health system with regard to high-cost diseases, such
as cancer [18]; the second one was SISPRO [19], a governmental database in which raw
information about procedures in the Colombian health system is deposited; and the third
one was Cancer Today, which is a web page that enables comprehensive assessment of the
cancer burden worldwide in 2020, based on the Global Cancer Observatory (GLOBOCAN)
estimates of incidence, mortality, and prevalence for year 2020 in 185 countries or territories
for 36 cancer types by sex and age group [20]. Additionally, we used information from the
National Administrative Department of Statistics DANE (its acronym in Spanish) regarding
the population in the country and its decomposition into age groups from recent years up
to the year 2070 [21].

Unlike the case of CAC and Cancer Today, the data stored in SISPRO are not publicly
available, and prior access authorization is required. Additionally, it was necessary to
download and curate the data from this source due to the presence of noticeable outliers.
Considering the size of the SISPRO database, we only downloaded multivariate data for
procedures related to 15 different types of cancer prioritized by the Colombian govern-
ment. The dataset included the following variables: purpose of the procedure, procedure
classification, type of health administrator for the patient, age group of the patient, mu-
nicipality of residence of the patient, year in which the procedure was performed, cost of
the procedure, and number of patients. It is important to note that most of the variables
were categorical. For data downloaded from SISPRO, we utilized the software R along
with the olapR package. The data curation process was performed using MATLAB. For
further information about the authorization required, the data curation process, and the
types of prioritized cancer, please refer to Appendix A.

2.3. Cancer Care in the Colombian Healthcare System

According to recent reports, the healthcare system in Colombia is a complex network
that comprises financing, governance and organization, resource management, health
service delivery, and evaluation and monitoring processes [22,23]. Private and public
stakeholders participate in each component of the system. The Ministry of Health and
Social Protection assumes most of the stewardship responsibility at the macro level, fol-
lowed by local governments, which focus on providing care to specific populations. The
Administrator of the Resources of the General Social Security Health System (ADRES)
manages resources and performs the corresponding controls. Health insurance agencies
(EPS) and providers are responsible for utilizing resources and delivering health services at
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the meso level. As pointed out in [23], Colombia operates within a managed competition
model, in which individuals choose an EPS and access an IPS within their EPS network.
At the meso and micro levels, entities can be found that perform specific functions in
the system, such as the National Institute for Drug and Food Surveillance (Invima), the
National Health Institute, the Agency of Health Technology Assessment (IETS), and the
National Health Superintendence. The National Health Superintendence monitors health
actors and imposes sanctions on those who do not comply with the regulations.

The healthcare system is financed through worker and employer contributions, gen-
eral tax resources, private health expenditures, and donations [22]. It operates with a
negative list, meaning that it finances most treatments, with exceptions mainly related to
aesthetic issues and certain technologies not included in the basic health plan (PBS) [24].
According to [25], Colombia has one of the systems that best protects the population’s
individual wealth.

Within this system, together with other actors that fulfill specific functions related to
cancer (e.g., the National Cancer Institute, high-cost account, National Cancer Observatory,
among others), entities define the ecosystem for the management of this disease. This works
mainly under the rules established in the law Sandra Ceballos (Law 1384 of 2010), which
establishes actions for the comprehensive care of cancer in Colombia, and its modification
in Law 2194 of 2022. A timeline of key cancer policies can be found in [26].

In the above framework, a recent study on Colombia [27] provided new data regarding
real access to high-quality diagnostic, curative, and palliative care for prioritized cancers
in the national policy. The study reported a poor prognosis compared to high-income
countries. Specifically, despite having achieved almost universal health coverage, Colombia
still faces significant challenges in access to preventive, diagnostic, and treatment services
for cancer patients. People living in poverty have lower access to all types of care, and
other challenges due to a lack of health literacy, beliefs, and knowledge can be observed.

2.4. Natural History of the Disease

According to the Clínic Barcelona of the Universitat de Barcelona, the natural history
of cancer has seven phases [28]. In Colombia, the Ministry of Health and Social Protection
has proposed a similar disease history for breast cancer [29]. This starts with the preclinical
period; here, secondary prevention through screening is effective in reducing incidence and
mortality during this silent development phase. In the symptomatic phase, early detection
is critical for timely diagnosis and treatment. An early diagnosis can lead to increased
survival with adjuvant therapies and surgery, or improved survival and quality of life
through advanced therapies. Following diagnosis, patients enter the control phase, where
complications may occur, reducing their chances of survival. Ultimately, the patient may
have two outcomes: long-term survival or palliative care.

In Colombia, CAC prioritizes 11 types of cancer, based on the tumor, lymph node,
and metastasis (TNM) classification system (based on the relevance of disease burden
and financial sustainability of the healthcare system, Resolution 3974 of 21 October 2009
prioritizes the following: breast cancer, cervical cancer, prostate cancer, colorectal cancer,
stomach cancer, lung cancer, melanoma, Hodgkin’s lymphoma, non-Hodgkin’s lymphoma,
acute lymphoid leukemia, and acute myeloid leukemia). The TNM system places cancer
stages into five categories: stage 0 (in situ); stages I, II, and III (which indicate the presence
of cancer); and stage IV (which indicates metastasis). In a characterization of the disease in
the adult population made by CAC with data up to 2021, the authors showed a growing
prevalence of cancer (at an annual rate of 14.7%) in recent years (393.6 in 2016 to 783.2
in 2021 per 100 thousand inhabitants), while the mortality rate increased at a rate of 4%
per year in the same period [18]. Additionally, in the cases that were reported, a large
proportion (48%) was identified in the advanced stages of the disease (i.e., III and IV), in
which the highest mortality was concentrated [18], as well as the highest treatment costs.
In fact, a study of the direct costs of breast cancer in Colombia found that moving from
stage II to III increased the cost by 16%, while moving to stage IV did so by 125% [30].
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In the same CAC study [18], a distinction between the different types of cancer revealed
that, in 2021, 4.65% (1839) of new cancer cases in adults were in situ, while 95.35% (37,706)
were invasive. Among the invasive cases, 90% were tumors and 5% were lymphomas.
Approximately 65% of these cases were staged, with 8.7% being in situ, 18.7% stage I, 24.7%
stage II, 23.6% stage III, and 24.1% stage IV. In terms of treatment, surgery was the most
common initial management for those who received treatment (37.3% of the 39,323 new
cases), with 98% receiving it as the initial treatment. Systemic therapy was administered as
the initial curative treatment without surgery for 27.66% of cases, and as adjuvant therapy
for 27.34% of cases. Radiotherapy was primarily used as adjuvant therapy (38.26% of cases),
accounting for 15.13% of total treatments. At the cutoff date, 32.16% of new cases (12,716)
had not received any treatment.

2.5. Fitting and Validation

We obtained short time-series for mortality, incidence, prevalence, and spending on
cancer from the aforementioned sources; however, the nature of the data alongside the high
number of parameters that we identified as necessary for the model led us to propose a
model whose components could be separated from the whole structure, in order to deal
with them under controlled scenarios and ensure the identifiability of the parameters. In
this way, we performed parameter estimation routines for each component alone, then
proceeded to assemble the calibrated components into the macro-structure. We also took
mortality and spending as control variables, which means that we assessed the performance
of the model by contrasting its outputs for these variables with the real data, instead of
performing any fitting procedure for them.

To propose the final model as an assembling of components we chose the same
approach of [16] to implement diffusion processes through defining some diffusion matrices.
We implemented the model in MATLAB using the GSUA_CSB Toolbox, freely available at
MathWorks file exchange [31], following the guide for user-defined models. The GSUA_CSB
toolbox also allowed us to perform parameter estimation by minimizing the mean-squared error
loss function via the MATLAB interior-point algorithm implemented in fmincon, and practical
identifiability analysis following the guidelines stated by Lizarralde-Bejarano et al. [32]. Thus,
we validated the model by checking out its goodness of fit regarding the control variables
and assuring the estimated parameters to be locally identifiable. Briefly, a parameter is said
to be locally identifiable when its output (Y), that depends on the time (t), all the current
states of the system (X(t)), and a set of parameters (θ), given in the form

Y(t) = g(t, X(t), θ), x(0) = x0, (2)

satisfies the following definition (taken from [33]):

Definition 1. A system structure (2) is said to be locally identifiable if, for any θ within an open
neighborhood of some point θ∗ in the parameter space, g(x(t), θ1) = g(x(t), θ2) holds if and only if
θ1 = θ2.

However, checking Definition 1 in practice has been found to be very challenging [34].
Therefore, we tested whether the estimated parameters of our model held in the practical
identifiability approach proposed by Lizarralde-Bejarano et al. [32]. For this approach, it
suffices to focus on the dispersion of the estimations, as it is possible to suspect a parameter
to be practically identifiable regarding the extent to which its dispersion tends to a single
point. The higher the dispersion for a given parameter, the lower its identifiability. It is
fundamental to check whether a parameter is identifiable, as they are the only values that
can be reliably estimated.

To achieve intervals for estimates of the parameters, we decided to filter the estimates
to keep only those which best fit the data; that is, the top 10–20% with the lowest loss
values. To the ensure that the parameters are identifiable, it follows that those parameter
values with best fit should also belong the same global minimum of the optimized loss
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function. Then, it was possible to set the region bounded by the minimum and maximum
values observed for the parameter as the interval.

2.6. Uncertainty and Sensitivity Analyses

Uncertainty analysis (UA) and sensitivity analysis (SA) were conducted to assess
and quantify the uncertainty spread from the unknown parameters to the model output,
taking into account the effects of the interactions among those factors [35,36]. In this work,
we treated UA as a graphical assessment of uncertainty propagation based on Monte
Carlo (MC) simulation with parameter values sampled from previously defined ranges
using a Latin hypercube design; we refer the reader to [37] for further information about
this technique. We facilitated interpretation of the UA results by using the MC filtering
approach described by Saltelli et al. [38]. In general, the MC filtering procedure can be
outlined as follows:

1. Split the MC simulated outputs into two groups, according to some property. In our
specific case, we initially selected a single model output (Yi(t, θ), t ∈ 0, 1, · · · , k) and
used the estimated set of parameters representing the current configuration of the
Colombian cancer healthcare system (θ̂), as determined following the methodology
described in Section 2.5, in order to define the following membership function:

ξ(θ) =

{
1 if ∑k

j=1 Yi(t, θ) ≥ ∑k
j=1 Yi(t, θ̂)

0 otherwise.
(3)

2. The membership function allows us to split the set of parameter values (Θ) into two
sets: A set of higher values θ1 := {θ ∈ Θ : ξ(θ) = 1} and a set of lower values
θ0 := {θ ∈ Θ : ξ(θ) = 0}. These sets, in turn, induce a marginal splitting of the values
for each parameter (θi) into two groups θ1

i and θ0
i . This last marginal splitting can be

used to analyze the influence of each parameter on the behavior of the model output
according to the property we chose in the first step.

3. Contrast the shape of the empirical cumulative distribution function (eCDF) for
marginal higher values (θ1

i ), marginal lower values (θ0
i ), and marginal values (θi),

plotting them together in a single graph for each parameter individually. The eCDF of
θi serves as a prior. The relevance of a parameter for the model output becomes more
significant when there is a greater disparity between the behavior of the empirical
cumulative distribution function (eCDF) for θ1

i and θ0
i with respect to θi. Additionally,

it is possible to identify parameter values with a high likelihood of causing the model
output to exhibit any of the properties specified in the first step.

We also performed SA to quantify the relevance of each parameter with regard to
the behavior of the model output. We chose a global approach for SA instead of a local
one, as the former attempts to quantify the contributions of the model parameters in their
entire distribution range, while the latter is only informative for a single set of values [38].
Furthermore, we chose the variance-based multivariate method proposed by Xiao et al. [39]
to compute sensitivity indices, due to both the acceptance of such methods by the scientific
community [38] and the multivariate approach of this technique.

2.7. Economic Tools

For the economic analysis of the model outputs, the initial step involves examining
the patterns in cancer expenditures and mortality. The former is assessed by considering
its relationship with the Gross Domestic Product of the country (CE) and population (per
capita), whereas the latter is evaluated both in aggregate and per 100,000 inhabitants (MR,
mortality rate). These assessments were performed for two timeframes: the 8-year period
from 2022 to 2030, and the 10-year span from 2031 to 2040. The comparison between
different scenarios (si) and a baseline (bl) was made using the growth rate (gr) of MR and
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CE, as shown in Equation (4) below, where esi/bl refers to the elasticity of scenario i with
respect to the baseline.

esi/bl =
grMRsi /grMRbl

grCEsi /grCEbl
. (4)

In the discussion, a financial analysis is presented by discounting the expenditure
flows for the two horizons to present value. For scenarios entailing a permanent increase
in spending, the annual ratio of financing (FR) is calculated relative to the baseline. To
calculate the net present value, the expenditure flows are discounted using a social discount
rate (δ) of 9%, as recommended by the National Planning Department [40] for the socioe-
conomic evaluation of projects in Colombia. The percentage difference between the net
present values of each scenario (NPVsi ) and the baseline (NPVbl) is then estimated using
Equation (5):

FRsi =
NPVsi − NPVbl

NPVbl
=

∑n
t=0

CEsi
(1+δ)t −∑n

t=0
CEbl
(1+δ)t

∑n
t=0

CEbl
(1+δ)t

. (5)

For scenarios where the changes are considered a long-term investment (i.e., lower
expenditure with respect to the baseline), the financial analysis includes an estimate of the
internal rate of return (IRR) for each of the time horizons, as returns are expected with
respect to the baseline expenditure. To estimate the IRR, the difference in expenditure is
calculated for each period (∆CEt), and the flows of gains or cancer expenditure losses are
identified (∆CEt) using Equation (6):

∆CEt = CEbl,t − CEsi ,t. (6)

Subsequently, the IRR is computed as the discount rate, which equates the present
value of inflows (PVIsi ) to the present value of outflows (PVOsi ). In other words, it is the
rate that renders the net present value (NPVsi ) of the income and expenditure flows above
the baseline equal to zero, as illustrated in Equation (7):

NPVsi = PVIsi − PVOsi =
n

∑
t=0

∆CEsi ,t

(1 + IRRsi )
t = 0. (7)

Utilizing these indicators enables assessment of the long-term impact of any strategy
that seeks to modify the prevailing conditions in the treatment of cancer, with regard to the
rate of change observed (compared to baseline).

3. Results
3.1. Schematized System

Figure 1 summarizes the natural history of the disease alongside the characteristics
of the Colombian health system. We identified several processes that can be treated as
subsystems, such as the population dynamics, the generation of new cancer cases, the
evolution of the disease, the identification and treatment of those new cases by the health
system, and the components in the health system acting as a manager of the limited public
resources. We also identified four major outputs that help to assess the performance of the
health system as a whole when dealing with cancer: incidence, survival rate, mortality rate,
and spending.

We found ourselves unable to model some of the components of the summarized
system in Figure 1 due to a lack of available information. For instance, we were aware of
the active role of the mediation between the EPS and the IPS to give the patients a good
treatment while trying to balance a system with limited resources (see payment model in
Figure 1); nevertheless, to schematize such a process, developing appropriate equations
and parameters for modeling would require in-depth knowledge about the functioning of
the EPS and the IPS, which is mostly private information. Consequently, we directed our
focus toward the components that we could feasibly model, thus ensuring the reliability
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of their inferred parameters. This applied to the process of generating new disease cases,
the evolution of the disease for patients in relation to the four stages we identified, and the
process of identification and treatment. In modeling these aspects, we took into account
the relevance of age groups for this particular disease.

Figure 1. Scheme of the cancer cycle before and after patients enter the Colombian cancer healthcare
system. Bold letters indicate those components of the system for which sufficient data were found to
model them with reliable parameters. Dotted lines represent indirect interactions.

We started by looking for a model of the population dynamics of the country that
ranges from some years in the past to the future of our current situation. Years in the
past give us sufficient time to reach a stationary close state for the rest of the components
in the model, whose variation only depends on the changes in the population structure
(and, maybe, some new health-related policies). In this way, we were able to bypass
estimation of all of the initial conditions for our model. We finally chose the time-series
data freely provided by DANE for the past and future population of Colombia, as well
as their decomposition into age groups, from the year 2005 up to the year 2070. We refer
the reader to [21] for further information about these time-series. As DANE estimates
population annually instead of monthly, we decided to keep the total population of the
model fixed annually.

3.2. Mathematical Model

From the schematized system in Figure 1, focusing on the information available and
the natural history of the disease, we managed to propose the mathematical model depicted
in Figure 2. This model retains the components we were able to parameterize, calibrate,
and validate after setting up Assumptions 1–10:

Assumption 1. The number of people with the disease is irrelevant to the population dynamics (i.e.,
there is no feedback between the disease-related components and the population dynamics model).

Assumption 2. Cancer can be modeled as a single disease, despite it being a cluster of diseases
with remarkable differences among them (nevertheless, it is possible to set up the same mathematical
structure proposed here to model each particular cancer as an isolated disease or a set of diseases).

Assumption 3. People with the disease only die after reaching stage IV (i.e., the stages in the model
are at the same time related to the classification of the disease and its severity).
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Assumption 4. The evolution of the disease is independent of age and gender for both patients
with and without treatment.

Assumption 5. The cost of the procedures and medicines involved in the treatment is independent
of the age and the gender of the patient.

Assumption 6. There are different qualities of treatment (i.e., the patients are treated unequally).

Assumption 7. The quality of the treatment for a patient does not change over time, or because of
the number of patients being treated.

Assumption 8. The health system has infinite capacity for cancer care.

Assumption 9. The quality of the treatment is positively correlated with the cost of the treatment.

Assumption 10. All undiagnosed people that enter stage IV become diagnosed at the next time step.

Diagnosed

Undiagnosed

N1 N2 N3 N4

DT1
1 DT1

2 DT1
3 DT1

4

DT2
1 DT2

2 DT2
3 DT2

4

DT3
1 DT3

2 DT3
3 DT3

4

R X

G

Illness
generation

Population
dynamicPrevention

Figure 2. Diagram of the mathematical model inferred from schema in Figure 1 with three different
treatment quality levels (T1–T3). The colored boxes at the top of the figure represent model compo-
nents that we do not model through states. Most of the states can be grouped, as they have or have not
received attention from the cancer healthcare system (diagnosed and undiagnosed ones, respectively).
The natural model outputs are the patients who die at every time step, X(t), the patients who recover
from the disease at every time step, R(t), and the total spending on cancer healthcare at every time
step, G(t). The dotted line for G indicates that there is no inflow of individuals into G; instead, G
receives an inflow in currency, induced by the number of individuals in the diagnosed states.

Considering the natural history of the disease in the Colombian context, we found all
of our assumptions—except for Assumptions 4 and 8—to be reasonably valid. However, we
lack the necessary information to address these assumptions. Overcoming Assumption 4
would require reliable data on disease progression, specific procedures performed, medica-
tions administered, and detailed costs categorized by age group and gender. It is important
to note that, despite Assumption 5 being justified by the observed minimal influence of
age and gender on procedure costs [41], Assumptions 4 and 5 collectively result in overall
treatment costs being independent of the age and gender of the patients. On the other hand,
overcoming Assumptions 8 and 7 would necessitate knowledge about the capacity of the
healthcare system and its behavior as it reaches saturation. However, these Assumptions
are not relevant for the identification and modeling of the current configuration of the
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Colombian cancer healthcare system. Nonetheless, they may gain relevance if the parame-
ters are modified to simulate hypothetical scenarios wherein the real system could become
overloaded. Finally, we chose months as our simulation time unit, as this gives time enough
for a patient to be diagnosed or treated, and also gives sufficient time for the disease to
progress (i.e., it is unnecessary to consider time delays in the mathematical structure, as
they will be naturally included).

3.2.1. The State of Undiagnosed Patients

The proposed model starts every time step by considering the population structure of
the country. Then, according the age-related incidence rates of cancer from GLOBOCAN,
some individuals develop the disease. Each individual with the disease starts their cycle in
the compartment for undiagnosed patients at stage I (N1). From now on, we represent the
stage of the disease for the compartments (where it is relevant) with a subindex. In the next
time-step, the undiagnosed patients may be detected (i.e., they become diagnosed patients)
or not, according to a probability of detection depending on the stage of the patient. The
patients that remain undiagnosed can, in turn, remain in the same stage or progress to the
next one, according to a stage-related probability. To meet Assumption 10, an undiagnosed
patient in stage 4 (N4) can only become diagnosed in the next time step. Denoting detection
probabilities using the Greek letter δ and progress probabilities using the Greek letter α, we
use the following representations for all undiagnosed states:

N1(t + 1) = (1− δ0)I(t) + (1− δ1)(1− α1)N1(t),
... (8)

N4(t + 1) = (1− δ3)α3N3(t).

Note that the input of state N1 (I(t)) in the system of Equation (8) is modified by the
parameter δ0. The purpose of this parameter is to model very early detection (i.e., patients
that are detected almost immediately after developing the disease). As the reader can see
in the next section, the remaining input of N1 is focused on the diagnosed states; see the
system of Equation (9).

3.2.2. The State of Diagnosed Patients

According to the data available from CAC regarding the degree of fulfillment of
government-recommended good practices for cancer treatment, there exists heterogeneity
in the quality of attention each patient receives, seemingly due to variations in equipment,
capacity, and the availability of qualified personnel in different regions [18]. We incorpo-
rated this heterogeneity into the overall quality of attention by defining three treatment
levels, categorized based on their effectiveness: T1 for the lowest quality level, T2 for an
intermediate level, and T3 for the highest quality level. Therefore, when a patient is diag-
nosed, they begin receiving treatment at one of these defined quality levels, which remains
consistent throughout their journey within the cancer healthcare system. It is important to
note that the quality of treatment in Colombia is more dependent on geographical factors,
rather than being a random variable. However, due to the current state of development of
the model, we were unable to incorporate such a spatial dependence. Similar to the case of
stages, we denote the type of treatment a patient receives by adding a superscript to the

state; for example, D
Tj
i (t) represents the number of diagnosed patients in stage i receiving

treatment j at time step t.
When a patient is diagnosed, they retain the same stage they have at the current

time-step. Additionally, due to Assumption 7, the treatment of the patient does not change
over time and, so, their only options are to recover or progress to the next stage (up to stage
IV). Once a patient reaches stage IV, they may also die because of the disease. Setting λi

j as

the probability of receiving treatment i after being detected in stage j, γi
i as the recovery

probability, and αi
i as the progression probability (with α4 being the probability of death),
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we obtain the following representation for all diagnosed states associated with treatment
quality i:

DTi
1 (t + 1) = δ0λi

1 I(t) + δ1λi
1N1(t) + (1− γi

1)(1− αi
1)DTi

1 (t)
... (9)

DTi
4 (t + 1) = λi

4N4(t) + (1− γi
3)α

i
3DTi

3 (t) + (1− γi
4)(1− αi

4)DTi
4 (t).

3.2.3. The Model for Age Groups

As we incorporate the influence of age groups into the dynamics of the disease, we
arrive at a more precise model representation, as shown in Figure 3. In this final model, we
divided each stage into age groups with a one-year difference, ranging from 0 years old
to 100+ years old, based on the available data from DANE [21]. However, the age-related
incidence data from GLOBOCAN utilizes age groups with a span of 10 years (e.g., 0 to
9, 10 to 19, and so on). Therefore, we opted to adopt the cancer incidence values from
GLOBOCAN for each age group within that range (i.e., the same incidence from 0 to 9 and
so on). Alternatively, we could have used interpolation techniques to assign incidences to
our age groups; however, this would have required making additional assumptions about
the incidence behavior.

DT1
1

DT1
2

DT1
3

DT1
4

DT2
1

DT2
2

DT2
3

DT2
4

DT3
1

DT3
2

DT3
3

DT3
4

Age groups

N1
N2

N3
N4

R
X

G

DT1
1

DT1
2

DT1
3

DT1
4

DT2
1

DT2
2

DT2
3

DT2
4

DT3
1

DT3
2

DT3
3

DT3
4

DT1
1

DT1
2

DT1
3

DT1
4

DT2
1

DT2
2

DT2
3

DT2
4

DT3
1

DT3
2

DT3
3

DT3
4

DT1
1

DT1
2

DT1
3

DT1
4

DT2
1

DT2
2

DT2
3

DT2
4

DT3
1

DT3
2

DT3
3

DT3
4

Illness
generation

Population
dynamicPrevention

Figure 3. Representation of the proposed mathematical model from the perspective of meta-
population modeling to take age groups into account. Every model inside a panel is a copy of
the model depicted in Figure 2.

It should be noted that every panel of the age groups shown in Figure 3 almost
contains the whole model shown in Figure 2. This is because modeling age groups for
this case is the same as proposing the modeling of meta-populations sharing the same
underlying model [17]. As states for individuals that become recovered (R(t)), individuals
who died (X(t)), and spending (G(t)) can be described as a linear combination of diagnosed
states, we can conclude that our whole model is linear at its current state of development.
However, defining a single transition matrix to simulate the model as a Markov process is
a time-demanding and unnecessary process that may hinder the suitability of the model
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for the simulation of public policies. Instead, we decided to define a clear order for
the processes involved in the evolution of the system and defined simpler intermediate
transition matrices, as described in the following.

First, it is useful to note that a simple linear equation, such as the first one in the
system of Equation (8), can be simplified even further after performing the consecutive
change of variables N∗1 (t) = (1− δ1)N1(t) and N+

1 (t) = (1− α1)N∗1 (t), as we obtain that
N1(t + 1) = (1− δ0)I(t) + N+

1 (t). Such substitutions can be perceived as meaningless, but
they are not. As stated in the Methodology section, the modeling approach we followed
requires of the definition of an order or hierarchy of flows outside any state. Hence, we
chose the natural hierarchy of recovery > detection > stage progress/death. In this order
of ideas, note that N∗1 (t) represent the number of people undiagnosed in time step t, while
N+

1 (t) represent the number of people that neither progress to the next stage nor become
diagnosed ones; that is, the number of people in N1(t) remaining in that very state. Then,
from an algorithmic point of view, the following assignments are correct and lead to the
same result as the original equation:

N1(t)←− (1− δ1)N1(t)

N1(t)←− (1− α1)N1(t)

N1(t + 1)←− (1− δ0)I(t) + N1(t).

Following the same idea, in order to simulate the whole model, it suffices to create
two matrices: one to contain all the states related to diagnosed patients and another to
create the same for the undiagnosed ones Then, it only remains to build up appropriate
matrices to model the three major actions stated above. As a result, we reached an intuitive
and simple model implementation, which the reader can consult in the online GitHub
repository https://github.com/drojasd/MDPICancerPolicies (accessed on 27 February
2023). We selected the number of individuals that recovered at time t (R(t)), the number
of individuals that die because of the disease at time t (X(t)), and the total spending on
cancer diagnosis and treatment at time t (G(t)) to be the main model outputs. Furthermore,
we also proposed the number of undiagnosed and diagnosed patients as model outputs,
both with respect to stage and age group.

3.3. Parameter Identification

To calibrate the model, we considered it necessary to estimate some parameters that
could not be obtained or inferred directly from the literature. In the following sections
related to estimation, we detail the strategies that we followed to reliably identify these
parameters. On the other hand, the last subsection is related to the process of identification
for those parameters that did not require estimation (i.e., identification without optimizing
a mathematical model).

3.3.1. Estimation of Detection Probabilities and Stage Progression for
Undiagnosed Compartments

To model the states of undiagnosed patients, we needed to estimate parameters for
inflows and outflows at every state. As indicated in Section 3.2.1, except for the early
diagnosed patients, all cancer patients start their path in the state N1. Undiagnosed
patients can be detected (diagnosed) or, if not, they could progress to the next stage as their
health status worsens. Hence, we need to identify seven parameters for this model: four
probabilities of detection (δ) and three probabilities of disease progression (α). Figure 4
displays the structure for undiagnosed patients as an independent model.

https://github.com/drojasd/MDPICancerPolicies


Int. J. Environ. Res. Public Health 2023, 20, 6740 13 of 36

I(t) N1 N2 N3 N4
1− δ0

δ0 δ1

1-α1

α1

1-α2

δ2

α2

δ3

1-α3

α3

1

Figure 4. Auxiliary model for estimating parameters related to the undiagnosed states. This model
represents the undiagnosed patient component in Figure 2 by explicitly including the parameters
that determine the flows. Due to the prioritization of detection (δ) over progression (α), the flow from
state N1 to N2 takes the form (1− δ1)α1, while the loop from N1 to itself has the form (1− δ1)(1− α1);
the flow from state N2 to N3 has the form (1− δ2)α2, and the loop from N2 to itself has the form
(1− δ1)(1− α1); and so on. We simplify the representation of the model by omitting this level of
detail to enhance the interpretability of the figure. For a more comprehensive understanding, please
refer to Section 3.2.1.

Data from CAC for the year 2021 [18] revealed that 8.74% of cancer cases are detected
at their very start, 18.76% are detected at stage I, 24.69% at stage II, 23.65% at stage III, and
24.14% at stage IV. However, such values are not necessarily equivalent to the required
values of δ0–δ3. From Figure 4, note that the volume of patients detected at a certain time
step t, D(t), is given by:

D(t) = I(t)δ0 +
3

∑
j=i

Nj(t)δj + N4(t).

Then, we can state that I(t)δ0
D(t) = 0.0874, N1(t)δ1

D(t) = 0.1876, and so on. Furthermore,
assuming that the cancer healthcare system is close enough to a stationary state (i.e., all of
the external factors that influence the incidence, diagnosis, and treatment of cancer change
slowly with the time), we can set the net inflow to the undiagnosed state equal to its outflow
I(t) = D(t) = D. In that case, it would be immediate that δ0 = 0.0874, but the other six
parameters remain unknown and the resultant equations generate a system of nonlinear
equations. To solve such a problem, we implemented the model in Figure 4 using the
GSUA_CSB toolbox, as described in Section 2.5. This model served as an auxiliary model
for parameter estimation.

To estimate the parameters in Table 1, we first identified a time horizon sufficient to
assure that the auxiliary model reached the stationary state through MC simulation with
the estimation ranges of the parameters. We found that t > 90 holds for the condition
above. Then, we chose an arbitrary positive constant for the input function I(t) = 1e5,
set the model outputs in the form [I(t)δ0, · · · , Ni(t)/D(t), · · · , N4(t)/D(t)], and fit those
outputs to horizontal lines fixed at the values provided by CAC. We repeated the fitting
procedure 1000 times, starting the optimization algorithm from different random points
inside the estimation ranges. Then, as suggested in the methodology, we selected the 10% of
the estimates with the best fit to the data and set the estimated intervals for the parameters
using the minimum and maximum values of those filtered estimates. We selected the
estimate with the best fit to the data as a nominal estimate (see Table 1). A more detailed
validation of the estimations is provided in Appendix B.



Int. J. Environ. Res. Public Health 2023, 20, 6740 14 of 36

Table 1. Parameters estimated using the fitting auxiliary model in Figure 4 to real data following the
proposed methodology. We decided to make the stage to which each parameter is related explicit
using the [·] notation. As all of the parameters are probabilities; the estimation range was their whole
natural domain.

Parameter Meaning Estimation Range Estimated Interval Nominal Value

δ[s0] Early detection prob. [0, 1] [0.0875, 0.0875] 0.0875
δ[s1] Stage I detection prob. [0, 1] [0.1315, 0.1538] 0.1422
δ[s2] Stage II detection prob. [0, 1] [0.2169, 0.2587] 0.2525
δ[s3] Stage III detection prob. [0, 1] [0.3175, 0.3852] 0.3489
α[s1] Stage I progress prob. [0, 1] [0.5849, 0.7017] 0.6398
α[s2] Stage II progress prob. [0, 1] [0.5357, 0.6749] 0.6532
α[s3] Stage III progress prob. [0, 1] [0.4756, 0.6405] 0.5479

3.3.2. Estimation of Stage Transitions and Recovery for Detected Compartments

Similarly to the case of parameters involved in the transitions and outflows of the
undiagnosed compartments, we found ourselves unable to use the information about
cancer survival and mortality to infer the values of the parameters in the model in a
straightforward way. As noted in Section 3.2.2, all of the parameters related to recover from
the disease (γ) and disease progression (α) are related to the current stage of the patient
and the treatment quality level.

The first challenge we met was the fact that each type of cancer has its own five-year
survival percentage, but we overcame this by computing a weighted mean of the available
marginal survivals (see Table 2). We assumed that the variation in the five-year survival
percentage for each of the three treatment quality levels proposed in Section 3.2.2 was the
same as that evidenced for the largest cluster of countries found in the GLOBOCAN data
(i.e., Australia, Canada, Denmark, Ireland, Norway, and the UK). In this way, we were able
to determine the three different five-year survival percentages needed for our model.

Table 2. Summary of information available about five-year survival for cancer in Colombia. Data
in each Stage column represent the percentage of individuals who surpassed the five-year survival
threshold from a starting population given by the number of patients in the Cases column. Using
the number of cases as weights, we estimated the general expected cancer five-year survival in
the Weighted mean row. Additionally, from such information and the variation in survival in the
GLOBOCAN database, we estimated extreme scenarios for general survival.

Type Stage 1 Stage 2 Stage 3 Stage 4 Cases

Breast 0.902 0.885 0.789 0.676 24,460
Prostate 0.828 0.783 0.725 0.618 13,190

Colon & rectal 0.672 0.665 0.563 0.443 9330
Stomach 0.458 0.44 0.36 0.214 4218

Lung 0.35 0.249 0.231 0.088 2027

Weighted mean 0.787 0.762 0.678 0.562
Extreme scenarios [0.707, 0.867] [0.662, 0.861] [0.576, 0.780] [0.376, 0.747]

The next step was to propose the auxiliary model, presented in Figure 5, which is
used to estimate recovery and disease progression probabilities. The structure of this
auxiliary model was designed to allow us to identify the percentage of patients that do
recover or die from the disease after some time, with regard to the extent they are detected
at one of the different stages. Both the four recovery parameters (γ1–γ4) and the four
progression parameters (α1–α4) appear several times in the structure of the auxiliary model
(see Figure 5), thus increasing their identifiability.
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Figure 5. Auxiliary model for estimating parameters related to the diagnosis state (see Section 3.3.2).
This model represents the component of diagnosed patients in Figure 2 for a single level of treatment
quality, while tracing the flow of patients according to the stage of the disease at the time of diagnosis.
The superindices for each state indicate the stage at the time of diagnosis. X represents the individuals
who pass away at each time step. Similar to the diagram in Figure 4, the recovery process (γ) takes
precedence over the transition process (α). Thus, the flow from state D1

1 to D1
2 takes the form

(1− γ1)α1, and the loop from state D1
1 to itself has the form (1− γ1)(1− α1). However, we omit this

level of detail to enhance interpretability. The unlabeled arrows at the beginning of each chain of
states with the same superindex represent the initial condition of diagnosed patients.

Finally, it was necessary to assume that, after a certain duration of treatment, the
majority of patients either recover or pass away. We selected this duration as one year,
meaning that most patients in our model recover or pass away within one year of treatment.
While this assumption may be considered strong, it is grounded in the fundamental idea
that a significant portion of the healthcare expenses associated with cancer treatment occurs
during the initial year. The estimation process for each level of treatment quality required a
separate analysis. For each estimate, we assigned an arbitrary (but fixed) positive number
of patients as the initial condition for the states D1

1 , D2
2 , D3

3 , and D4
4 , representing cohorts of

patients diagnosed at each stage. Subsequently, we allowed the model to run for 12 time
steps (equivalent to one year) and fitted its outputs (R1–R4) to linear trends representing the
expected number of survivors based on the five-year survival percentage for the respective
treatment quality level. To account for the possibility of some individuals continuing their
treatment beyond the first year, we fitted the model to linear trends that extended from 99%
to 100% of the expected number over a one-year period. This approach allowed for a total
treatment duration of two years, accommodating patients who may require ongoing care
after the initial year.

In Table 3, we summarize the estimated parameters related to disease recovery and
progression for each treatment quality level. We conducted almost exactly the same
estimation procedure described in Section 3.3.1 to obtain Table 1. The only difference is that
we performed 500 estimations instead of 1000 estimations per each identification procedure.
Note that we set nominal undiagnosed progressions of Table 1 as superior limits for the
estimation intervals of diagnosed progressions in Table 3. We support this decision, as
one can expect the health status of patients without treatment to become worse faster than
that of those under treatment. The reader can refer to Appendix C for details regarding
validation of the estimated parameters.
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Table 3. Parameters estimated from fitting auxiliary model in Figure 5 to real data following the
proposed methodology. We decided to make the stage and the treatment level to which each parameter
is related explicit using the [·] notation. As all the parameters are probabilities, the estimation range
for most of them was their whole natural domain. For the case of stage progression, we set the
nominal values for progression in Table 1 as superior bounds for their estimation range.

Parameter Meaning Estimation Range Estimated Interval Nominal Value

γ[s1T1] Recovery stage I, treatment 1 prob. [0, 1] [0.088, 0.088] 0.088
γ[s1T2] Recovery stage I, treatment 2 prob. [0, 1] [0.07, 0.07] 0.07
γ[s1T3] Recovery stage I, treatment 3 prob. [0, 1] [0.031, 0.031] 0.031
γ[s2T1] Recovery stage II, treatment 1 prob. [0, 1] [0.141, 0.141] 0.141
γ[s2T2] Recovery stage II, treatment 2 prob. [0, 1] [0.186, 0.186] 0.186
γ[s2T3] Recovery stage II, treatment 3 prob. [0, 1] [0.273, 0.273] 0.273
γ[s3T1] Recovery stage III, treatment 1 prob. [0, 1] [0.204, 0.204] 0.204
γ[s3T2] Recovery stage III, treatment 2 prob. [0, 1] [0.164, 0.164] 0.164
γ[s3T3] Recovery stage III, treatment 3 prob. [0, 1] [0.076, 0.076] 0.076
γ[s4T1] Recovery stage IV, treatment 1 prob. [0, 1] [0.122, 0.122] 0.122
γ[s4T2] Recovery stage IV, treatment 2 prob. [0, 1] [0.181, 0.181] 0.181
γ[s4T3] Recovery stage IV, treatment 3 prob. [0, 1] [0.250, 0.250] 0.25

α[s1T1]
Progression from stage I to stage II,

treatment 1. [0, 0.640] [0.640, 0.640] 0.64

α[s1T2]
Progression from stage I to stage II,

treatment 2. [0, 0.640] [0.640, 0.640] 0.64

α[s1T3]
Progression from stage I to stage II,

treatment 3. [0, 0.640] [0.640, 0.640] 0.64

α[s2T1]
Progression from stage II to stage III,

treatment 1. [0, 0.653] [0.653, 0.653] 0.653

α[s2T2]
Progression from stage II to stage III,

treatment 2. [0, 0.653] [0.653, 0.653] 0.653

α[s2T3]
Progression from stage II to stage III,

treatment 3. [0, 0.653] [0.653, 0.653] 0.653

α[s3T1]
Progression from stage III to stage IV,

treatment 1. [0, 0.548] [0.548, 0.548] 0.548

α[s3T2]
Progression from stage III to stage IV,

treatment 2. [0, 0.548] [0.548, 0.548] 0.548

α[s3T3]
Progression from stage III to stage IV,

treatment 3. [0, 0.548] [0.548, 0.548] 0.548

α[s4T1] Death stage IV, treatment 1 prob. [0, 1] [0.230, 0.230] 0.23
α[s4T2] Death stage IV, treatment 2 prob. [0, 1] [0.172, 0.172] 0.172
α[s4T3] Death stage IV, treatment 3 prob. [0, 1] [0.114, 0.114] 0.114

It is worth noting that the recovery probabilities estimated for stages I and III exhibited
an unexpected behavior: they increased as the treatment quality worsened, as indicated by
the values for γ[s1·] and γ[s3·] in Table 3. Another intriguing observation pertains to the
progression probabilities for all stages except death, as they were constrained to their upper
bounds during estimation, as evident from the values for α in Table 3. In both of these
cases, it is important to consider that the estimation algorithm was allowed to produce
such results as no constraints were imposed during optimization other than ensuring that
the values remained within the designated estimation ranges in Table 3. Consequently,
the parameter values obtained represent the best fit for explaining the behavior of the
system regarding patient mortality and five-year survival. For example, the similarity
between progression probabilities before and after diagnosis, combined with low recovery
probabilities at early stages, suggests the presence of delays in initiating treatment following
diagnosis, as elaborated upon later in the Discussion.

3.3.3. Estimation of Probabilities for Treatment Quality and Treatment Cost

To identify the probability of a patient receiving a certain treatment quality level, we
used data available from CAC related to the characterization of the patients according to
the degree of fulfillment of government-recommended good practices [18]. From such
data, we determined that approximately 19.6% of the patients received deficient attention,
20.9% received intermediate attention, and 59.6% received good attention. Furthermore, we
found information suggesting the quality of the treatment to be more linked to geographical
conditions than the stage of disease of the patient [18]. Thus, we decided probabilities
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related to treatment quality levels (λ) should be independent of the stage of the disease.
Additionally, as all the patients received one and only one level of quality in the treatment,
there were only two degrees of freedom and it is possible to remove one of the parameters.
Finally, to avoid issues in simulation, it is necessary to define a hierarchy for treatment
quality assignment, such as the one detailed in Example 1. Furthermore, according to
information from CAC, the values for the parameters are as follows: λ[s∗T1] = 0.196 and
λ[s∗T2] = 0.260.

Example 1. Input flow to diagnosed stage I states after setting up the hierarchy λT1 > λT2 > λT3

for treatment quality assignment.

DT1
1 (t + 1) = δ0λ1

1 I(t) + · · ·

DT2
1 (t + 1) = δ0(1− λ1

1)λ
2
1 I(t) + · · ·

DT3
1 (t + 1) = δ0(1− λ1

1 − (1− λ1
1)λ

2
1)I(t) + · · · .

On the other hand, we used the work of Gamboa et al. [30], who estimated the cost of
breast cancer treatment for the year 2012 in the Colombian case, given the stage at which
the patient is diagnosed, in order to obtain the expected monthly costs of cancer treatment
at any date in the chosen simulation period (2005–2070). We took into account the effects
of inflation and the expected growth of the GDP for the country to make available some
interesting economical outputs for the model. Table 4 provides the monthly costs inferred
from the work of Gamboa et al. [30]. Furthermore, considering Assumption 9, we assigned
a lower bound for the estimation of costs in [30] to lower-quality treatment (T1), and so on.

Table 4. Costs estimated from real data for the three different levels of breast cancer treatment for the
year 2012 (in Colombian currency). To extrapolate those costs for all types of cancer in every year, we
considered the inflation rate for Colombia reported in [42] and applied the correction factor given in
Equation (10) to each value.

Parameter Description Nominal

C[s1T1] Monthly average cost of patient at stage I under treatment 1 747,500.000
C[s1T2] Monthly average cost of patient at stage I under treatment 2 782,500.000
C[s1T3] Monthly average cost of patient at stage I under treatment 3 1,008,333.333
C[s2T1] Monthly average cost of patient at stage II under treatment 1 3,966,666.667
C[s2T2] Monthly average cost of patient at stage II under treatment 2 4,325,000.000
C[s2T3] Monthly average cost of patient at stage II under treatment 3 6,783,333.333
C[s3T1] Monthly average cost of patient at stage III under treatment 1 4,666,666.667
C[s3T2] Monthly average cost of patient at stage III under treatment 2 5,325,000.000
C[s3T3] Monthly average cost of patient at stage III under treatment 3 8,666,666.667
C[s4T1] Monthly average cost of patient at stage IV under treatment 1 9,083,333.333
C[s4T2] Monthly average cost of patient at stage IV under treatment 2 12,000,000.000
C[s4T3] Monthly average cost of patient at stage IV under treatment 3 12,416,666.667
C[δ] Average costs of diagnosis per diagnosed patient 916,000.000

In addition to the parameters linked to the cost of treatment, we included a parameter
for the cost of diagnosing a patient, Cδ, and took its value to be the mean cost of cancer
diagnostic-related procedures reported in the SISPRO database. In this way, we covered all
cancer treatment costs. However, there is an issue that arises when using data from breast
cancer alone to identify the average cost of treatment for all cancer types as a single entity,
due to the high heterogeneity in cancer treatment costs according to the type of disease.
To overcome this issue, we used the data available in the SISPRO database for Colombian
prioritized cancer types (see Figure A1 in Appendix A) related to both the participation of
each cancer type in the total spending and the number of patients per cancer type, in order
to estimate a correction factor ε. This correction factor determines the error obtained when
assigning the average cost for breast cancer to all cancers.
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The correction factor ε can be computed as follows. Let Cb be the average spending
per breast cancer patient, CT be the average spending per patient for any of other type of
cancer, C be the average spending per patient for any cancer, and B be the proportion of
breast cancer patients. It is immediately obvious that C = CbB + CT(1− B). Then, there
exists a constant ε such that CbB + CT(1− B) = εCb. It follows that

ε =
CbB + CT(1− B)

Cb
=

C
Cb

. (10)

Replacing the variables in this last equation with the information from SISPRO (sum-
marized in Figure A1), we obtained ε ≈ 0.642. Note that applying ε to any of the costs
in Table 4 is equivalent to computing εCb = C

Cb
Cb = C, which successfully corrects for

the bias.

3.4. Model Validation

After estimating all of the parameters above, we were ready to implement and simulate
the model in Figure 3. Note that this model was never fitted to real data. Even when
the components of the model were tuned using information from several sources, the
information about cancer mortality rate and total spending in cancer were not used until
this point because, as exposed in Section 2.5, we selected them as control output variables
to assess the suitability of the estimated parameters.

We obtained information regarding the total spending on cancer for the years 2015–2018
from the work of Restrepo-Zea et al. [43], who used information from two government-related
entities—ADRES (Resources of the General System of Social Security in Health Administrator)
and SISMED (System of Information of Prices in medicines), by their respective Spanish
acronyms—to estimate costs, as well as data from CAC to obtain the prevalence of the disease
for the same period. Furthermore, Restrepo-Zea et al. [43] reported a strong linear correlation
between the prevalence of and total spending on cancer. Thus, we decided to take advantage
of this correlation to prolong the spending time-series up to the year 2021, as CAC provides
prevalence data for the remaining dates.

As shown in Figure 6, we assessed the reliability of the model by comparing its
outputs for mortality and spending against the available real-world data. The strong
resemblance between the model outputs and the real data suggests that the methodology
we employed to estimate and infer the model parameters was suitable for this case. In other
words, we successfully identified a model that accurately represents the cycle of cancer
treatment within the Colombian health system. Notably, the high degree of similarity in
the spending graph is a significant result, as it supports our assumption regarding the
maximum treatment time (which will be discussed later). Furthermore, the sharp increase
in mortality data observed after 2019, as well as its notable deviation from the baseline
model mortality, will also be addressed in subsequent discussions.

3.4.1. Modeling of Prevention and Policy Implementation

First, we wanted to simulate the speed of the transition when implementing or chang-
ing public policies in the health model. Thus, we included a switch inside the model
that triggers a change in certain parameter values when the simulation time surpasses a
threshold value. Let τ > 1 be the number of time steps elapsed after the simulation time
reaches the threshold. We define the transition function β(τ) as

β(τ) = β
1/(β2τ)
1 ,

where β1 ∈ [0, 1] and β2 > 0 are dimensionless transition parameters controlling the
transition. Note that, for β1 and β2 close enough to 0, it is possible to obtain β(1) as close
to 0 as desired. On the other hand, we have that limτ−→∞ β(τ) = 1. Further, note that the
value for β1 controls how close β(τ) is to 1 for the lowest values of τ, while β2 controls the
speed of convergence. In terms of public policies, β1 models the abruptness of the change
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while β2 models the time horizon to complete the change. Example 2 illustrates how we
used β(τ) to model the change in the parameters of the system. We performed almost the
same thing, but defined time-dependent transition matrices instead of functions.

Figure 6. Validation of the baseline behavior of the proposed estimated model. (Left) Mortality rate
per 100,000 population (shown in blue) compared to the non-fitted real data (shown in red). The blue
line represents the model output with nominal parameter values from Tables 1, 3 and 4, which serves
as the baseline for further comparisons with scenarios involving different parameter values. (Right)
Expenditure in Colombian currency for cancer care (shown in blue) compared to the non-fitted real
data (shown in red). The blue line represents the model output with nominal parameter values from
Tables 1, 3 and 4, which serves as the baseline for further comparisons with scenarios involving
different parameter values.

3.5. Modeling of Disease

After we successfully identified a model for the treatment of cancer patients in the
Colombian health system, we moved forward by integrating mathematical components into
the model structure aiming to simulate the implementation of relevant public policies. We
also explored the effects of the parameters on the behavior of the model through sensitivity
analysis and MC filtering, in order to identify key parameters. Such key parameters provide
relevant information about the components of the health system that can be focused on to
improve outcomes.

Example 2. After setting up a break-point time (t∗) where the change in public policies starts,
all the parameters in the model become time-dependent. For instance, suppose we have the time-
dependent parameter δ(t) whose value before the change in policies is δ. The objective of the new
policies is to shift the value of δ(t) from δ to δ∗, according to some strategy modeled by β(τ). Then,
δ(t) must be described as

δ(t) =

{
δ if t ≤ t∗

δ + (δ∗ − δ)β(t− t∗) if t > t∗.
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As suggested by Figures 1–3, prevention plays a major role in the treatment of cancer.
Moreover, the WHO [44] estimated that between 30–50% of all cancer cases are preventable.
To model prevention, we used the fact that the input function of new cancer cases has the
form I(t) = ∑w

i=1 gi(t)φi, where w is the number of age groups, gi(t) is the number of people
in the ith age group, and φi is the proportion of individuals getting cancer in the ith age group
at the current time step. Then, we propose I(t) = ∑w

i=1 gi(t)φi(t), where

φi(t) =

{
φi if t ≤ t∗

φ
1+ηβ(t−t∗)
i if t > t∗,

in which η ≥ 0 is the (dimensionless) prevention parameter. We chose this structure to
model prevention as cancer is an age-related disease that becomes more likely as the age of
the individual increases. Thus, it should be more easy to prevent cancer development in
younger individuals than in older ones, which is exactly the behavior modeled by φi(t).

Taking into account the three parameters that were added to model preventive efforts
and the implementation of public policies, we obtained a total of 55 parameters. We decided
to explore the effects of these parameters except the ones related to costs (12 of them) on
the behavior of the model for cancer spending and deaths. To achieve such a goal, we first
proposed an appropriate output to be used as target for sensitivity and uncertainty analyses.
Hence, we took the output of total spending in cancer at time t (G(t)) and the output for
the number of deaths at time t (X(t)), both divided by the total size of the population at
the same time (P(t)), and multiplied them to obtain the target output (T(t) = G(t)

P(t)
X(t)
P(t) ).

Dimensional analysis shows the units of T to be

[T] =
[G]

[P]
[X]

[P]
=

[G][X]

[P]
1
[P]

,

where [G] are the units of the cancer spending (Colombian currency, COP), [P] the units
of total individuals, and [X] the units of individuals who died. Clearly, as [G]/[P] is the
cancer cost per capita (i.e., the cancer cost assumed by each citizen), [G]

[P] [X] would be the
cancer cost assumed by people who died. However, people who died cannot assume
any cost, causing such cost to be redistributed over the remaining population. Assuming
that P(t)/(P(t)− X(t)) ≈ 1, it follows that T(t) is approximately equal to the extra cost
assumed by each individual due to cancer-caused deaths.

We believe this target to be appropriate for two main reasons. The first is that, re-
garding some base scenario, lower values for T should be linked to a better efficiency in
the system while higher values should be linked to scenarios with lower efficiency than
the base one. The second is the magnitudes of both of the outputs multiplied in T to be
inversely the same; that is, G(t)/P(t) ≈ P(t)/X(t). This behavior causes a reduction in
cancer spending to be as relevant as the reduction in the mortality rate. The target output
has two extreme ideal scenarios: when no one dies from cancer and when there is no money
allocated to cancer healthcare. To avoid the first extreme scenario, we shrunk the ranges for
most of the parameters from their estimation ranges to 50% of their nominal value, as the
reader can see in Table 5. Furthermore, to avoid the second extreme scenario (as well as
spurious interactions among transitions, disease recovery, and costs), we decided to keep
the parameters associated with treatment costs fixed at their nominal values (see Table 4).

Table 5 summarizes the SA results, performed as stated in Section 2.6. We chose the
range for the prevention parameter ([η, η]) in such a way that the total area under the curve
of φ(t) was reduced by 30% (the lower bound for the % of preventable cancer, according to
the WHO) at the maximum effort of prevention (i.e., 0.7 ∑w

i=1 φi = ∑w
i=1 φ

1+η
i ). The minimum

effort of prevention corresponded to an scenario without effort of prevention (η = 0). As
expected, the results in Table 5 demonstrated that the most relevant factor for the behavior of
the model was η, followed by some parameters related to the quality of treatment.
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Table 5. Summary of total-order sensitivity indices for a variation of 50% in the nominal values of
the parameters.

Parameter Description Range Nominal %SSTi

η Prevention parameter [0.00, 0.050] 0.00 19.07%
γ[s4T3] Recover [stage IV, treatment 3] prob. [0.125, 0.380] 0.25 18.52%
α[s4T3] Death [stage IV, treatment 3] prob. [0.057, 0.170] 0.11 4.69%
γ[s4T2] Recover [stage IV, treatment 2] prob. [0.091, 0.270] 0.18 4.64%
γ[s2T3] Recover [stage II, treatment 3] prob. [0.137, 0.410] 0.27 4.27%

β2 Transition speed parameter [0.100, 0.300] 0.20 3.83%
γ[s4T1] Recover [stage IV, treatment 1] prob. [0.061, 0.183] 0.12 3.44%
α[s2T3] Progression [stage II, treatment 3] prob. [0.327, 0.980] 0.65 3.23%
α[s3T3] Progression [stage III, treatment 3] prob. [0.274, 0.822] 0.55 3.03%
α[s4T2] Death [stage IV, treatment 2] prob. [0.086, 0.259] 0.17 2.66%

β1 Abruptness of transition parameter [0.100, 0.300] 0.20 2.37%
γ[s3T3] Recover [stage III, treatment 3] prob. [0.038, 0.114] 0.08 2.33%
α[s4T1] Death [stage IV, treatment 1] prob. [0.115, 0.344] 0.23 2.23%
α[s3T1] Progression [stage IV, treatment 3] prob. [0.274, 0.822] 0.55 2.02%
γ[s3T1] Recover [stage III, treatment 1] prob. [0.102, 0.306] 0.20 1.85%

α[s1] Undiagnosed progression at stage I prob. [0.320, 0.960] 0.64 1.58%
δ[s1] Stage I detection prob. [0.071, 0.213] 0.14 1.56%
δ[s2] Stage II detection prob. [0.126, 0.379] 0.25 1.46%

γ[s3T2] Recover [stage III, treatment 2] prob. [0.082, 0.246] 0.16 1.43%
α[s1T3] Progression [stage I, treatment 3] prob. [0.320, 0.960] 0.64 1.35%

α[s2] Undiagnosed progression at stage II prob. [0.327, 0.980] 0.65 1.21%
C[δ] Average costs of diagnosis per patient [458,000, 1,374,000] 916,000.00 1.09%

α[s3T2] Progression [stage III, treatment 2] prob. [0.274, 0.822] 0.55 0.93%
λ[s2T2] Prob. of treatment 2 at stage II [0.130, 0.390] 0.26 0.90%

δ[s3] Stage III detection prob. [0.174, 0.523] 0.35 0.84%
λ[s1T1] Prob. of treatment 1 at stage 1 [0.098, 0.294] 0.20 0.84%
γ[s2T2] Recover [stage II, treatment 2] prob. [0.093, 0.279] 0.19 0.84%
α[s2T1] Progression [stage II, treatment 1] prob. [0.327, 0.980] 0.65 0.84%
λ[s1T2] Prob. of treatment 2 at stage I [0.130, 0.390] 0.26 0.81%
λ[s3T2] Prob. of treatment 2 at stage III [0.130, 0.390] 0.26 0.79%
λ[s2T1] Prob. of treatment 1 at stage II [0.098, 0.294] 0.20 0.70%
λ[s4T1] Prob. of treatment 1 at stage IV [0.098, 0.294] 0.20 0.67%

α[s3] Undiagnosed progression at stage III prob. [0.274, 0.822] 0.55 0.64%
δ[s0] Early detection prob. [0.044, 0.131] 0.09 0.63%

γ[s2T1] Recover [stage II, treatment 1] prob. [0.071, 0.212] 0.14 0.57%
λ[s4T2] Prob. of treatment 2 at stage IV [0.130, 0.390] 0.26 0.52%
α[s2T2] Progression [stage II, treatment 2] prob. [0.327, 0.980] 0.65 0.47%
λ[s3T1] Prob. of treatment 1 at stage III [0.098, 0.294] 0.20 0.42%
α[s1T1] Progression [stage I, treatment 1] prob. [0.320, 0.960] 0.64 0.24%
γ[s1T3] Recover [stage I, treatment 3] prob. [0.016, 0.047] 0.03 0.20%
γ[s1T2] Recover [stage I, treatment 2] prob. [0.035, 0.105] 0.07 0.11%
γ[s1T1] Recover [stage I, treatment 1] prob. [0.044, 0.132] 0.09 0.11%
α[s1T2] Progression [stage I, treatment 2] prob. [0.320, 0.960] 0.64 0.07%

From the SA results, we selected those parameters whose total-order sensitivity index
(SSTi) explained more than 1% of the output variance and proceeded to perform the UA
analysis (see Figure 7) and the MC filtering for the UA (see Figure 8). As expected, the
parameters with the higher %SSTi were the parameters with higher differences for the eCDF
of their lower (θ0

i ) and higher (θ1
i ) values in the MC filtering. The UA in Figure 7 exposed

the base scenario—namely, the scenario with the identified parameters for Colombia—to be
more closer to the extreme inefficient scenarios (higher curves) than to the extreme efficient
ones (lower curves), suggesting that there is room for improvement of the current cancer
healthcare system. On the other hand, the MC filtering results in Figure 8 suggest that
achieving efficient scenarios is more challenging than inefficient ones when focusing on
one parameter at a time. This is evident from the eCDF plots, where the eCDFs for lower
parameter values closely resemble the prior distribution. In other words, lower scenarios
appear to be independent of the specific values of individual parameters, instead emerging
as a result of interactions among multiple parameters.
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Figure 7. Uncertainty analysis for target model output T using intervals in Table 5 for those parame-
ters with %SSTi greater than 1%. The remaining parameters were kept fixed at their nominal values.

Figure 8. Results of the MC filtering applied to UA in Figure 7. The difference between eCDF for
lower (θ0

i ) and higher (θ1
i ) values was greater for those parameters with large %SSTi values (see

Table 5). The exception to this rule was the parameter α[s1].

3.5.1. Simulation of Scenarios

The findings reported in the previous section motivated us to test several scenarios
resulting from modifications in the values of certain parameters that are closely associated
with strategies in the field of public policy. Our objective was to identify sustainable
strategies that can yield improved outcomes in cancer healthcare; however, it is important
to note that the current state of development of the proposed model does not allow for the
simulation of public policies. This limitation arises from the recognition that public policies
are complex and exert an impact on the healthcare system by modifying the functioning
of specific components, reallocating resources within the system, or directly providing
funding to enhance certain processes. Nonetheless, all the parameters in the model have
clear meanings that can help to guide the strategies required to achieve their modification.
The scenarios we simulated were based on the following straightforward hypotheses that
have the potential to shape strategies and policies in the field of cancer healthcare:
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Hypothesis 1. An increase in early detection will result in a decrease of the total deaths and costs.

Hypothesis 2. Providing a better treatment to patients detected at early stages will result in a
decrease in the total deaths and costs.

Hypothesis 3. Improving the effectiveness and expediency of better treatments will make their cost
more affordable.

We set β1 = 0.2 and β2 = 1 to simulate a rapid transition from old to new parameter
values associated with a new policy or strategy. Initially, we proposed several distinct
scenarios based on the previous hypotheses to test them individually and in combination.
However, we discovered that the most significant findings could be summarized into three
scenarios: starting with the first hypothesis alone, then incorporating the second one, and
finally including all of them simultaneously. These scenarios are presented in the following.

• Scenario 1 . We directly tested Hypothesis 1 in this scenario by increasing the early
detection rate δ0 −→ 1. However, we noticed this hypothesis to be false. Even when
we assumed the health system capacity to be limitless (Assumption 8), detecting a
patient at an early stage exerts pressure over the costs to avoid the patient from dying,
causing the spending to be unaffordable. Without Assumption 8, this scenario will
cause a collapse of the health system as early treatments are not good enough.

• Scenario 2. Considering what we found from Scenario 1, we decided to test a com-
bination of Hypotheses 1 and 2 in Scenario 2. In particular, we made δ0 −→ 1,
λ[s1T1] −→ 0.1, and λ[s1T2] −→ 0.2. This combination of parameters causes the
system to assign better treatment to its patients in addition to high early detection.
However, we noticed Hypothesis 2 to be false also, as it caused the costs to rise even
more than for Scenario 1, even though it further reduced the number of deaths.

• Scenario 3. Considering what we found from Scenario 2, we decided to test a com-
bination of Hypotheses 1, 2, and 3 in Scenario 3. In addition to modification of
parameters made in Scenario 2, we set γ[s1T3] −→ 0.6 and α[s1T3] −→ 0.3. For this
scenario, we finally achieved a long-term reduction of costs and the lowest mortality
among the tested scenarios. This is an interesting result (which is further discussed
later), as it suggests that Hypothesis 3 is more pronounced when the conditions of
Hypotheses 1 and 2 are also met, highlighting the potential for their combined effects.

Figure 9 displays the results for the three different scenarios, compared to the baseline
induced by current public policies. While all strategies led to decreases in mortality, it
is important to note that most of them also resulted in increased costs, which may be
unsustainable for many countries. Even the base scenario demonstrated an unsustainable
growth in costs. These findings are in alignment with those presented in Section 3.4.1,
and it became evident that the only long-term efficient scenario (Scenario 3) requires a
combination of simultaneous changes in several parameters to lower both mortality and
costs. It is crucial to recognize that the results in this section provide valuable insight
into different strategies for public policy, based on the tested hypotheses. However, it is
essential to acknowledge that the feasibility of achieving such radical changes in parameter
values for the baseline scenario may pose significant challenges. These scenarios primarily
serve to offer insights into potential directions for public policies, and should be interpreted
in light of the practical feasibility of implementing such drastic parameter modifications.
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Figure 9. Simulation of the three different scenarios induced by Hypotheses 1–3. Scenario 3 is the
only one that leads to a long-term reduction in cancer spending.

3.5.2. Economic Analysis

Despite the fact that the scenarios we simulated may not be realistic, it is still notewor-
thy that even strategies that can lead to highly desirable efficiency in the system may require
an initial investment period with a higher demand for resources. For instance, higher early
detection and universal high-quality treatment are goals pursued by almost every cancer
healthcare program. However, solely prioritizing an increase in early detection may lead
to an influx of patients that overwhelms the system, potentially causing saturation. Our
model, based on Assumption 8, represents this overflow as an unsustainable escalation in
costs, as demonstrated in Figure A4 in the Appendix D. Therefore, achieving the goals of
higher early detection and universal high quality would also require investments aimed at
improving the available treatments and expanding the capacity of the current system. In
light of these considerations, we decided to conduct a detailed analysis, from an economic
perspective, of the results obtained from the simulation of Scenarios 1–3.

To evaluate the impact of each of the scenarios, the cost of cancer (% GDP) was used
as an indicator of financial outcomes, while mortality was used as an indicator of health
outcomes (per 100,000 population). The results are summarized in Table 6. The baseline
scenario shows that, over a 20-year horizon, the cost of cancer will increase from 0.56% in
2022 to 0.87% in 2040 (equivalent to an annual growth of 3.04%), while the mortality rate
will increase from 68.4 to 92.4 (an annual growth of 1.95%).

A progressive increase in early detection (Scenario 1) succeeds in reducing the mor-
tality ratio to 62 in 2040, a 9.3% decrease from 68.4 in 2022. However, implementing this
strategy without changing current treatment conditions will increase the cancer cost to
1.01% of GDP in 2040 (i.e., 0.14% above the baseline scenario). This implies that a 1% in-
crease in cancer cost reduces the mortality rate by 2.15% over the baseline scenario, holding
all else constant.

In Scenario 2, where the type of treatment is also improved, the mortality rate is further
reduced to 56.7 (−17% reduction) and the cancer cost is increased slightly more than in the
previous scenario, reaching 1.11% (an increase of 0.24% concerning the baseline). Thus, a
1% increase in cancer cost over the baseline leads to a reduction in the mortality rate of 1.4%.
This means that an improvement in treatment helps the mortality reduction to occur more
rapidly, compared to scenario 1, but the additional cost of its implementation could result
in lower effectiveness per each unit of expenditure (i.e., there is a reduction in elasticity).
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Table 6. Impact of policy scenarios on health and economic outcomes.

Scenario Result Indicator
Anual % Change to 2020

2022 2030 2040 2030 2040

Baseline
Cancer cost % GDP real 0.37% 0.46% 0.57% 24.4% 54.9%

Per capita (USD 2015) USD 24.3 USD 36.0 USD 57.4 48% 137%

Mortality Total 35,291 43,462 55,026 23% 56%
Per 100,000 inhabitants 68.4 78.1 92.4 14% 35%

Scenario 1
Cancer cost % GDP real 0.37% 0.53% 0.66% 45.2% 78.2%

Per capita (USD 2015) USD 24.3 USD 42.1 USD 66.1 73% 172%

Mortality Total 35,291 30,928 36,950 −12% 5%
Per 100,000 inhabitants 68.4 55.5 62.0 −19% −9%

Scenario 2
Cancer cost % GDP real 0.37% 0.58% 0.72% 57.8% 96.9%

Per capita (USD 2015) USD 24.3 USD 45.7 USD 73.0 88% 201%

Mortality Total 35,291 28,890 33,767 −18% −4%
Per 100,000 inhabitants 68.4 51.9 56.7 −24% −17%

Scenario 3
Cancer cost % GDP real 0.37% 0.43% 0.50% 18% 35%

Per capita (USD 2015) USD 24.3 USD 34.2 USD 50.0 41% 106%

Mortality Total 35,291 23,571 25,134 −33% −29%
Per 100,000 inhabitants 68.4 42.3 42.2 −38% −38%

In the final Scenario 3, an improvement was added to the previous strategies to increase
the effectiveness regarding stage I. This adjustment implies that the mortality rate in 2040
reaches 42.2, equivalent to a reduction of −38.3%, while the cost only increases by 0.2%
to 0.76%. In terms of effectiveness, this implies that each 1% reduction in cost concerning
the baseline generates a 4.1% reduction in mortality. Therefore, this strategy changes the
relationship between expenditure and mortality, as expenditure can be reduced while
mortality is also reduced at a high rate. In other words, efficiency improves substantially in
both health and financial results.

On the other hand, a financial analysis was performed. The analysis concerning the
baseline revealed that, while Scenarios 1 and 2 result in increased spending, Scenario 3 can be
considered a long-term investment (Table 7). In Scenario 1, additional annual funding of 14%
to 2030 and 15% to 2040 is required. In Scenario 2, these percentages increase to 20% and 23%,
respectively. Meanwhile, in Scenario 3, an increase in spending is observed in the first years,
but then there is a significant reduction in spending. This means that, by 2027, the internal
rate of return (IRR) of the higher expenditure to the baseline is negative (−18.2%), indicating
an investment stage. Then, the returns of the higher spending in the first years of this scenario
increase, reflecting lower cancer spending and an IRR of 18.7% to 2040.

Table 7. Financial analysis of scenarios.

Scenario Indicator Value

No. 1

Annual funding (%BL) to 2030 13.8%
Annual funding (%BL) to 2040 14.7%

Annual average funding (%GDP) to 2030 −0.07%
Annual average funding (%GDP) to 2040 −0.07%

No. 2

Annual funding % to BL—2030 19.5%
Annual funding % to BL—2040 23.0%

Annual average funding (%GDP) to 2030 −0.09%
Annual average funding (%GDP) to 2040 −0.12%

No. 3

Internal Rate of Return (IRR) to 2030 −18.2%
Internal Rate of Return (IRR) to 2040 18.7%

Annual average funding (%GDP), 2023–2027 −0.03%
Average annual return to GDP (%GDP), 2028–2040 0.04%
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4. Discussion

In this work, we proposed and validated a mathematical model that can represent the
actual dynamics within the cancer healthcare system in a reliable way, which is schematized
in Figure 1. The developed model follows the guidelines proposed in [17] for discrete-time
structures and, due to the compartmental nature of the agents and processes involved in
cancer healthcare (see Figure 1), it can be separated into several autonomous components
that can act as isolated models (see Figures 2, 4, and 5). We exploited this last feature to treat
the flows of undiagnosed and diagnosed cancer patients as independent systems, whose
parameters could be reliably estimated simply by making some natural assumptions, such
as an almost steady state for the health system, which slowly changes due to population
dynamics, and suggesting the fate of the patients to be almost decided over the first year of
treatment (see Tables 1 and 3). Finally, we used the models for age groups (see Figure 3) with
calibrated parameters to test several hypotheses related to strategies and public policies
with the potential to improve principal epidemiological indicators while reducing the
long-term costs in the health system associated with cancer (see Figures 7 and 9).

Due to limitations inherent to the available data, we were only able to model some of
the processes of the cancer healthcare system related to the diagnosis, treatment, evolution,
and prevention of the disease, ignoring its real complexity in terms of certain components of
the health system. Such limitations led to the proposal of stronger assumptions; for instance,
it is known that cancer is a highly heterogeneous disease [7], even at cellular level [45,46],
which clearly runs against our Assumption 3. Although Assumption 7—related to infinite
capacity of the health system—is more common in the literature (see, e.g., [47]), several
works have remarked on the need to overcome it [2,48,49]. Finally, Assumption 6—related
to independence of gender and age—seems to be wrong in light of the findings in [50,51],
despite the fact that such a link remains unclear [52]. However, the availability of new data
and models regarding the behavior of such factors will help to overcome these assumptions,
possibly leading the proposed structure to become nonlinear. On the other hand, most
of the parameters we identified regarding the costs, detection, progression, and recovery
of the disease may remain useful for future work, due to the way in which we proposed
the model (i.e., through the integration of components based on the natural history of
the disease).

We chose Colombia as a case study as we believe it to be a strategic location for the
development of long-term public policies aimed at improving the cancer healthcare process.
Notably, Colombia currently has a relatively low proportion of the population over 65 years
of age (8.5%, 63rd percentile worldwide), compared to countries with advanced aging (14%
or more, 75th percentile). This is reflected in its relatively low expenditure on cancer as a
proportion of GDP (0.37%), below the OECD average of 0.43% in 2009 [41]. However, it is
higher than that of Denmark (0.25%) and similar to that of the United Kingdom (0.33%),
countries with a population over 65 years of age between 18–20%. It is important to note
that no health system in the world is entirely identical, as the idiosyncratic elements of each
country strongly shape its health management structure.

Comparing the Colombian health system with characteristics reviewed in the case of
Colombia for a group of countries from different continents and income levels (20 in total)
by the Commonwealth Fund [53], the following observations can be made. In terms of
universal coverage, Colombia shares this characteristic with most of the countries reviewed,
except for India, China, and the United States. Regarding financing, the Colombian model
is similar to that in countries such as England, Germany, India, Japan, and the United
States. The Colombian health system relies on mandatory contributions from employers,
employees, and the government. In terms of the benefits package, the Colombian health
system includes a benefits package with a list of exclusions, similar to countries such as
Australia, Brazil, Germany, and Singapore. Regarding access to private insurance, Colombia
is comparable to most countries, as it provides access to private insurance, although the
extent of access may vary among different countries. In terms of hospital supply, like
many of the countries reviewed, Colombia has a mixed supply of hospitals. By examining
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these characteristics, we can gain insights into how the conclusions of this work on the
Colombian health system can be extrapolated to other countries.

We think that the strategy followed in this paper to estimate model parameters was
novel and successful as, unlike most of previous works we found in the field (e.g., [54–56]),
we maintained a direct and natural meaning for the parameters while proposing structures
whose outputs correspond—as much as possible—with variables typically measured by
the health system, such as five-year survival percentages and the percentage of patients
detected at each stage of the disease (see Table 2). The exception to this strategy was the total
spending on cancer healthcare per level of treatment, as we inferred relevant values from
the work of Gamboa et al. [30] and data available from the Colombian database SISPRO,
assuming the first year of cancer treatment to be determinant for the patient survival, as
detailed in Section 3.3.3. This last process, as well as the one for assigning different five-year
survivals to each of the three levels for quality treatment identified, constitute the most
ambitious and risky parts of this work.

We claimed the three different levels of quality treatment for Colombia to behave in
a similar way in terms of the difference in survival indicators for some countries whose
information was available at GLOBOCAN. In this way, we assumed that the worst-quality
level in the Colombian health system has the same potential to improve as the worst-
observed performance in the cluster of countries stated in Section 3.3.2 regarding the
best-observed performance; that is, the Colombian health system has a variability in
its quality similar to the variability in the performance of the cluster of countries. For
further information, we refer the reader to GLOBOCAN [20]. Nevertheless, such strong
assumptions regarding different treatment qualities and the relevance of the first year of
treatment—which also leads to the highest spending in this year—seem to be appropriate,
considering the validation results shown in Figure 6. It is necessary to point out that we
did not perform any model fitting to the outputs chosen for validation, which means that
the model would only adjust these curves in the case that it is a good representative of the
cancer healthcare system, despite the assumptions that we made.

According to data stored in the IHME database [57], the monthly mortality rate per
100,000 population in Colombia presents an increasing trend, with a minimum value of
6.8 between the years 2015 and 2019. This estimated mortality rate significantly exceeds
the official data reported by CAC [18], indicating a maximum value of 3.4 for the same
time period, as shown in Figure 6 (left). However, the data from the CAC reveal a sudden
increase from 2019 to 2021, surpassing a monthly mortality rate per 100,000 population of
5.5, which agrees with the model output for that period (see Figure 6 left). We hypothesize
that this change in behavior, leading to a closer approximation of the IHME data by
the official Colombian data, is related to a shift in the nature of data collection methods
employed by the Colombian government. Hence, it is likely that the official data for the
period 2015–2019 underestimated the actual mortality rate. Our model estimate represents
an intermediate scenario between the official mortality rate and the one reported by the
IHME for that period, demonstrating a good result by accounting for the discrepancy and
uncertainty in the data from both sources.

A comparison of our results with those of Ward et al. [1] for Colombia also revealed sig-
nificant disparities. While their baseline scenario estimated a total of 364,903 deaths over an
11-year period (2020–2030), our calculations (2022–2032) revealed a total of 441,861 deaths,
for a 20% increase. However, one key difference is that, while they calibrated their indicator
using GLOBOCAN data, we calibrated our indicator using a combination of data sources,
including GLOBOCAN, Cancer Today, and national data.As a result, our data may be
more accurate, as we accounted for the potential underestimation when using a single data
source. On the other hand, we found the case of the costs projected in Figure 6 (left) to be
similar to those projected by Mariotto et al. [3] over a 10-year horizon for both cases: 31%
in our case versus 33% growth in spending relative to GDP.

It is worth noting that the scenarios analyzed in this study are not directly comparable
to those of Ward et al. [1], as the variations and calibrations differ. While they tested various
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scenarios including improvements in imaging, treatment, quality, and combinations of
these, with the scaling-up of conditions estimated by reaching the mean value of high-
income countries, our study followed a different method (as described in Section 3.5.1).
Additionally, they did not consider early detection in their scenario of improved imaging,
which is the key element in our first scenario. However, when comparing our results for
Scenarios 1 and 3 with their baseline projection, we found that while they reduced the
number of deaths by 8%, our early detection scenario (which includes improvements in
imaging) resulted in a 20% reduction. In their comprehensive treatment scenario, they
obtained a 12% reduction, whereas our comprehensive scenario (No. 3) resulted in a 31%
reduction in mortality. This highlights the importance of moving towards a comprehensive
approach to treatments in order to achieve better health outcomes.

The SA results obtained for the model output T(t)—which represents the redistribu-
tion of costs due to the patients who died—allowed us to identify those key components
in the structure of the cancer healthcare system. Table 5 summarizes the relevance of the
parameters to the behavior of the model when we explored different combinations of their
values. We chose to vary the value of each parameter by 50% with respect to their nominal
value. In this way, we explored scenarios where the cancer healthcare system improved
or deteriorated the performance of their components up to 50%. We excluded parameters
related to treatment cost for the SA, as we already modeled inflation and GDP growth
as components of the system. Further, a prevention parameter, η, was tested within an
interval ranging from no reduction up to 30% of reduction in the cancer incidence. The
transition speed parameter (β1) and the abruptness of transition parameter (β2) were tested
with a nominal value of 0.3 for each, which was arbitrarily determined; however, this value
can well represent a scenario of health policy reform followed by a transition period.

As expected, the prevention parameter η was the most relevant parameter in the
model, although it was closely followed by the recovery probability under treatment 3 at
stage IV (γ[s4T3]). It was observed that the detection parameters (δ) appeared below 2%
of sensitivity contribution, which suggests that improving cancer screening may have a
minor impact in the balance of efficiency in the cancer healthcare system (i.e., early cancer
detection causes an increase in the number of patients in the system at early stages, but also
leads to an increase in treatment spending). Indeed, we proved such behavior to be right
under the assumptions of the model through testing Hypothesis 1 (see Figure 9) and by
MC filtering (see Figure 8). Another result that drew our attention from the SA in Table 5
was the fact that parameters related to treatment quality for patients (λ) were below the 1%
of sensitivity contribution, suggesting the existence of a very linear relationship between
spending and survival, causing the model output (T(t)) to stay equal under variations in λ.

On the other hand, the behavior of the yellow lines regarding the behavior of red
lines in the MC filtering results for sensitive model parameters (see Figure 8) indicated the
complexity of trying to improve the current configuration of the cancer healthcare system.
The red lines in the MC filtering results allowed us to identify the values of the parameters
that led to improved efficiency (output T(t) below the red line in Figure 7), while the
yellow lines are related to those values that decreased efficiency (output T(t) above the
red line in Figure 7). Thus, we can see that a low prevention rate and lesser effectiveness
of cancer treatment (γ, α) are directly linked to worse scenarios. However, there was no
single parameter that was strongly linked to better scenarios, as the red lines displayed the
same behavior as the blue lines in Figure 8. That is a relevant result, as it suggests that only
improving several components in the current cancer healthcare system as a whole entity
can lead to a better scenario. Furthermore, we tested this idea when defining Scenario 3 (see
Figure 9) as the simultaneous combination of Hypotheses 1–3, which did not achieve good
results individually (see Scenarios 1 and 2 in Figure 9). Although we did not model the
delay between diagnosis and start of treatment, we hypothesize that it was included in the
values for progression parameters α, which could explain, to some extent, the high values
estimated for those parameters, including the fact that the progression speed was the same
for diagnosed and undiagnosed patients. We encourage readers to refer to Appendix D for
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a more in-depth explanation regarding the impact of the high values for the progression
parameters on the behavior of the model.

From the results of Scenarios 1–3, we infer that there exist two key strategies for
improving cancer treatment conditions: early detection and higher efficiency in the early
stages. Moreover, we found that moving to better treatments is a good way to improve
health outcomes, even though the mortality reduction is smaller relative to the growth in
costs. The different strategies evaluated achieved long-term reductions in the mortality rate;
however, the best-performing strategy was derived under the comprehensive interventions
(i.e., combining early detection with improvements in treatment efficiency). In this case,
mortality went from a 9% reduction (with only improvements in early detection) to a 40%
reduction over an 18-year horizon when changes in treatment efficiency were included. As
for the financial sustainability of these changes, the results were not desirable when only
early detection and/or treatment with high health improvement results were implemented,
increasing the cost between 78% and 98% over the same horizon (i.e., additional annual
funding requirements between 14% and 23% in each scenario, respectively). Meanwhile, in
the best-case scenario, rates of return of 18.7% to 2040 were found to be achievable.

5. Conclusions

The results of this study provide important insights for the development of public
health policy in Colombia. In alignment with the global focus on comprehensive can-
cer treatment, it is crucial for Colombia to prioritize a patient-centered approach in its
cancer treatment efforts. Furthermore, it has been highlighted that prevention measures
are essential in reducing the incidence of cancer and that cancer prevention policies in
Colombia are currently inadequate, at least according to a review of the available databases
and the operation of the health system. To address this problem, it is recommended that
a prevention policy be integrated into the care policy and that clear responsibilities for
actors in the health system be established. Additionally, it should be noted that coordi-
nation and stakeholder involvement is crucial, and that current payment mechanisms in
Colombia do not align with the recommended approach. Therefore, it is suggested that
more flexible regulatory frameworks be created to allow for contract models that promote
comprehensiveness in cancer treatment and spending on cancer prevention.

Despite the limitations of our study, the results obtained are crucial for informing
the debate on increasing cancer spending in healthcare systems, particularly in the con-
text of Colombia. The literature in this field has emphasized various strategies for the
improvement of cancer healthcare models, such as prevention. For instance, Vos et al. [58]
systematically evaluated the effectiveness of 123 preventive interventions and 27 treatment
interventions across a range of health issues in Australia, including 10 specifically related
to cancer. Among these, they found that six were cost-effective while four were not. Addi-
tionally, many interventions with high cost-effectiveness, such as tobacco and alcohol taxes,
also have a significant impact on the development of oncological diseases. Furthermore,
interventions that promote early detection have been shown to have positive results. For
example, Laudicella et al. [4] have reported significant savings due to earlier detection in a
patient-level study conducted in England.

It is essential to focus interventions on innovations or treatments that have demon-
strated significant health outcomes, rather than including new technologies with little
evidence and high costs into healthcare plans. The Lancet Oncology Commission [59] has
compiled evidence and outlined key measures in this regard, including the promotion of
low-cost innovations, the increased use of off-patent products, more research on comor-
bidities, and reducing the number of technologies that only provide marginal benefits.
Additionally, reducing bureaucracy for cancer issues and promoting more comprehensive
research to improve evidence-based policies are important measures. Better practices
among oncology physicians are crucial for implementing changes and reducing costs
through their practice. For instance, Smith and Hillner [60] have provided recommenda-
tions for improving the behavior of these physicians.
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Comprehensiveness of treatment is a key measure to reduce mortality and costs, as
it increases coordination between actors and ensures timeliness. The results of this study
support the implementation of such measures. Furthermore, the implementation of these
measures necessitates the development of appropriate regulatory frameworks that facilitate
the adoption of contracts that incentivize actors to achieve improved health and financial
outcomes. The literature in this field has identified various forms of contracting—such as
bundled or packaged payment models [61,62], pay-for-performance [63,64], and Account-
able Care Organizations [61,65]—that can provide positive incentives for actors to achieve
better health and financial results.

Finally, considering the availability of data on the functioning of cancer healthcare
systems in most countries and the common underlying dynamics of the cancer cycle (as
depicted in Figure 1), we believe that the proposed methodology can be employed and
adapted for numerous other case studies with only minor modifications. Furthermore, we
recognize that necessary adjustments would be required for components of the systems
that we were unable to model in this study. Thus, we contend that the present work
and its findings hold a general perspective that is applicable to most cancer healthcare
systems, while acknowledging that specific parameter combinations must be estimated
for each unique case. We consider this work as a foundational framework for proposing
and validating more realistic and accurate models, aimed at simulating the effects of public
policies and their impacts on the various components of the cancer healthcare system.
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Appendix A. Data from SISPRO Database

Data on attentions and procedures for cancer patients at SISPRO [19] are stored inside
an OLAP data cube that must be accessed through MDX query. We decided to use the
software R and the package olapR to download the data on the cost of the procedures and
the number of attentions according to 7 variables: Purpose of the procedure (7 different pur-
poses), type of health administrator of the patient (5 different kinds of EPS; see Section 2.4),
age group of the patient (10 different age groups), municipality of residence of the patient
(38 possible localities), year of the attention (7 values for years 2015–2021), classification of
the procedure (121 different types according to the Colombian classification system), and
type of cancer (the 15 with the highest incidence and mortality).

Figure A1. Distribution of the spending and number of cases for prioritized cancer types in Colombia
according to cleaned data from SISPRO for the years 2015–2021.

The data in SISPRO can only be accessed by authorized personnel, such as the members
of ANIF. Furthermore, such data should be cleaned before use, due to the presence of
outliers in the costs for the procedures. To clean the data, we split the data for each category
inside the categorical variables that we downloaded and performed outlier identification
according to the criterion for the mean (i.e., those data away from the mean by more than
three standard deviations were considered as outliers). In this way, we obtained seven
labels that told us whether each datum was considered as outlier or not for each categorical
variable. Then, we used this information to weigh the costs by multiplying each cost by
the percentage of labels that identified it as outlier and sorted the weighted costs from the
highest to the lowest value. Finally, we consulted with experts on the costs of the system
to establish a threshold for unfeasible values and proceeded to remove those unfeasible
procedures for the dataset.
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Appendix B. Identifiability for Estimation Using Auxiliary Model 1

Following the methodology proposed in Section 3.3.1, we performed parameter esti-
mation with auxiliary model in Figure 4. Figure A2 shows the boxplots for the parameter
estimations. All validations can be reviewed by the reader at the GitHub repository
https://github.com/drojasd/MDPICancerPolicies (accessed on 27 February 2023).

Figure A2. Normalized identifiability boxplots using auxiliary Model 1 (Figure 4). he boxplots
display normalized estimations of parameters obtained through auxiliary model 1, with each boxplot
corresponding to a different parameter. Outliers, depicted as red crosses, have been identified using
the interquartile range and are shown to emphasize extreme values. Note that all the estimations are
presented as narrow intervals for the parameters, which suggests their identifiability.

Appendix C. Identifiability for Estimation Using Auxiliary Model 2

Following the methodology proposed in Section 3.3.2, we performed parameter es-
timation with the auxiliary model in Figure 5. Figure A3 shows the boxplots for the
parameter estimations in each scenario defined by the cluster of countries. All validations
can be reviewed by the reader at the GitHub repository https://github.com/drojasd/
MDPICancerPolicies (accessed on 27 February 2023).

https://github.com/drojasd/MDPICancerPolicies
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(a) Worst case (b) Intermediate case

(c) Best case
Figure A3. Normalized identifiability boxplots using auxiliary Model 2 (Figure 5). The boxplots
display normalized estimations of parameters obtained through auxiliary model 2, with each boxplot
corresponding to a different scenario. Outliers, represented by red crosses, have been identified
using the interquartile range and are shown to highlight extreme values. Additionally, note that the
median values for all parameters were anchored to an end of the boxplot, indicating that most of the
estimations were concentrated at the same value in each case.

Appendix D. Dynamics of Diagnosed and Undiagnosed Patients

One of the advantages of the proposed model is that it provides numerous outputs
encompassing all possible combinations of patient stage, treatment type, age group, and
monthly costs. For instance, Figure A4 illustrates the dynamics of diagnosed patients,
undiagnosed patients, and treatment costs for diagnosed patients over the same time
period, as shown in the scenarios in Figure 9, broken down according to the disease stage.
Notably, there is a significant increase in the number of patients diagnosed in stage IV, as
evidenced by its steeper slope compared to other stages. This behavior contributes to the
rapid exponential growth in the associated costs for these patients.

The positive slopes observed for advanced disease stages among diagnosed patients
directly result from the low detection rate at early stages and the rapid progression of the
disease, even with treatment. This highlights that the unsustainable overall cost growth
in the baseline scenario is a consequence of delays in initiating treatment, possibly due to
limitations in the current physical resources of the healthcare system. In such circumstances,
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increasing early detection alone would lead to a significant influx of diagnosed patients
rapidly progressing to stage IV, overwhelming the capacity of the system. This explains the
findings in Figure 9, which demonstrate the false nature of Hypothesis 1 and the initial cost
increase observed across all scenarios.

Figure A4. Model outputs for diagnosed and undiagnosed patients, as well as costs for each stage
of the disease, using the baseline estimated parameters. Note that the majority of cost growth is
attributed to the accumulation of diagnosed patients at stage IV. Additionally, there is a substantial
number of undiagnosed patients at each stage.
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