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Abstract: This paper aims to investigate the following research questions: (1) what are the hourly
patterns of heat index and heat-related emergency medical service (EMS) incidents during summer-
time?; and (2) how do the lagged effects of heat intensity and hourly excess heat (HEH) vary by
heat-related symptoms? Using the hourly weather and heat-related EMS call data in Austin-Travis
County, Texas, this paper reveals the relationship between heat index patterns on an hourly basis
and heat-related health issues and evaluates the immediate health effects of extreme heat events by
utilizing a distributed lag non-linear model (DLNM). Delving into the heat index intensity and HEH,
our findings suggest that higher heat intensity has immediate, short-term lagged effects on all causes
of heat-related EMS incidents, including in cardiovascular, respiratory, neurological, and non-severe
cases, while its relative risk (RR) varies by time. HEH also shows a short-term cumulative lagged
effect within 5 h in all-cause, cardiovascular, and non-severe symptoms, while there are no statistically
significant RRs found for respiratory and neurological cases in the short term. Our findings could be
a reference for policymakers when devoting resources, developing extreme heat warning standards,
and optimizing local EMS services, providing data-driven evidence for the effective deployment
of ambulances.

Keywords: distributed lag non-linear model; heat index; intensity; hourly excess heat; extreme heat;
emergency medical service (EMS) incident

1. Introduction

In recent years, health challenges imposed by anthropogenic climate change have
garnered increased public attention and have become an emerging global public health
problem [1]. With an increasing concern for heat-induced illnesses due to climate change,
the literature provides evidence that there are both immediate and lagged effects of heat
on human health. Some studies have noted that extreme heat has an immediate effect
on all-cause and cardiovascular morbidity [2]. The results reported by Cui et al. [2] are
corroborated by other sources in the literature and support the notion that extreme heat is
associated with cumulative detrimental effects on cardiovascular morbidity [3,4].

Several studies have examined how extreme heat affects different health outcomes,
particularly focusing on cardiovascular and cardiorespiratory symptoms, investigating
severe health outcomes related to extreme heat or exploring the association between tem-
perature and cause-specific mortality using various approaches [5,6]. Additionally, other
studies have looked into the impact of heat on various health outcomes, including hospital-
izations, all-cause mortality, and neonatal outcomes [7–9]. These studies have observed a
slightly higher risk when exposed to higher temperatures in relatively short lag periods
with different associations depending on the outcome variable, thus lending support to the
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investigation of how the association between extreme heat and hospitalizations changes
across critical categories of adverse health outcomes.

Regarding hospitalizations, emergency medical services (EMS) are typically the first
responders to any health emergency and often the first point of contact with an individual
and the healthcare system during an unforeseen adverse health outcome. In the case
of heat-related incidents, EMS can typically provide care to immediately cool down an
individual and stabilize the patient until they can arrive at a hospital or medical center [10].
Given that, the EMS data can provide information about an individual’s health status
and treatment options before death [11]. The timeliness of EMS data makes them a vital
indicator for assessing downstream health impacts resulting from extreme heat [11]. These
factors highlight the need to predict demand during extreme heat events. Throughout the
literature, there is support for a positive association between temperature and demand
for ambulance services [12]. Research indicated that a 10 ◦C increase in temperature was
associated with nearly a 5% increase in ambulance calls [13]. Moreover, a nearly 9% increase
in emergency vehicle dispatching can be found for every one ◦C above a certain threshold
temperature [14]. Nevertheless, coupled with staffing shortages in emergency medical
services in cities, the increasing demand for services places a tremendous strain on EMS
resources during extreme heat events. In addition, existing studies have highlighted the
inadequacies of EMS systems in the United States compared to in other countries. This
disparity primarily arises from the fragmented nature of the U.S. EMS system, where
varying protocols, equipment standards, and training regimens are prevalent at the state or
municipal level [15,16]. For EMS, the United States relies on a combination of public and
private funding, while some countries have centralized systems subsidized by government-
funded healthcare. Thus, it is crucial to understand how the current EMS system in the U.S.
responds to heat-related patients during extreme heat events.

Our review of the literature revealed the existence of several gaps in the current
body of knowledge. First, although the influence of heat index patterns on health has
been recognized, the specific effects of heat index features such as frequency, intensity,
and duration on heat-related symptoms have not been thoroughly investigated. Second,
the potential of hourly weather forecasts in enhancing EMS response remains untapped,
with studies generally focusing on daily time series data, which may overlook short-term
effects of heat exposure. Finally, while geographic variations in heat exposure and health
relationships are acknowledged, there is a dearth of specific study in areas such as central
Texas where extreme heat is becoming an escalating concern. These gaps highlight the need
for comprehensive studies on the specific impacts of heat index and the value of hourly
weather data and region-specific investigations for improvement of our understanding and
mitigation strategies for heat-related health issues.

Thus, this study advances the inquiry into the temporal patterns of heat indices in the
summertime and the hourly lagged effect of heat indices on heat-related health illnesses.
This paper aims to address the gap in the literature by investigating the following research
questions: (1) what are the hourly patterns of the heat index and heat-related EMS incidents
during summertime? and (2) how do the lagged effects of heat intensity and hourly excess
heat vary by heat-related symptoms?

2. Materials and Methods

This study investigates Austin-Travis County, Texas, where the city of Austin is located,
as the area has seen tremendous economic and population growth in recent years. Given
that, the area has experienced challenges associated with rapid urban growth, including
urban sprawl and the increasing demand for public services.

The timeframe of this study is limited to the period from May to September in 2020
and 2021. This timeframe was selected as it has historically been the typical hot season for
Austin-Travis County, Texas. It thus is when extreme heat events are most likely to occur.
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2.1. Data on Hourly Emergency Medical Service Calls

Emergency medical services (EMS) incident data were obtained from Austin-Travis
County Emergency Medical Services (ATCEMS), the primary EMS provider for Travis
County. The incident dataset was preprocessed using Python. The dataset was filtered to
only include incidents between May and September, inclusive, in 2020 and 2021. Referring
to a historical monthly weather report spanning from 1981 to 2019, previous research
indicates that the hot season in Texas typically extends for around five months, from May to
September [17,18]. The heat-relevant health problems were coded with the following medi-
cal issues: ‘Abdominal Pain’, ‘Allergic Reaction’, ‘Altered Mentation’, ‘Attended Patient’,
‘Burn’, ‘Cardiac Arrest’, ‘Chest Pain’, ‘Diabetic’, ‘Environmental Exposure’, ‘Headache’,
‘Heart Problems’, ‘Respiratory’, ‘Seizure’, ‘Sick’, ‘Special Event Medical’, ‘Stroke’, ‘Syncopal
Episode’, ‘Unconscious’ (n = 49,514). These medical issues were selected based on the
literature as proxies for extreme heat exposure since extreme heat-related illnesses often
manifest as other illnesses and, consequently, are underreported [19]. The existing literature
presents evidence supporting both immediate and delayed effects of heat on human health.
Cui et al. (2020) [2] reported an immediate impact of extreme heat on overall morbidity and
cardiovascular health, and these findings are supported by corroborative evidence from
other studies emphasizing the harmful cumulative effects of extreme heat on cardiovascular
morbidity [3,4,20]. In addition, exposure to high temperatures for extended periods of time
is a causal factor for a variety of heat-related illnesses, including heat cramps, heat stress,
heat syncope, heat exhaustion, dehydration, heat stroke, and death [19,21–23]. Previous
research conducted on exertional heat stroke also has highlighted its severeness; it causes
central nervous system (CNS) dysfunction (e.g., altered level of consciousness, disorien-
tation, confusion, hysteria, irritability, aggressiveness, and seizure) [24–27]. Given that,
incidents were also subdivided into the following categories based on the International
Classification of Diseases, 11th revision (ICD 11): cardiovascular (n = 12,093), respiratory
(n = 7587), neurological (n = 4619), and non-severe (n = 20,019) cases [28]. All other inci-
dents (n = 5196) were included in the all-cause analysis as these incidents were non-specific
but may be related to extreme heat exposure.

2.2. Data on Meteorological Factors and Heat Index

Weather data were collected from the U.S. Climate Reference Network (USCRN) at
a sub-hourly interval (5 min) for the study’s timeframe. The weather data were collected
at a weather station located in the northwest of Travis County, Texas (latitude: 30.629,
longitude: −98.081). This station was selected as Travis County only has one weather sta-
tion for USCRN data, and this station was the closest in proximity. There were
31 observations with missing air temperature data (from seven days: 25 June 2020, 1
July 2020, 7 July 2021, 20 July 2021, 26 July 2021, 5 September 2021, and 23 September
2021). Linear interpolation between observations surrounding missing observations was
used to address this limitation. As an alternative temperature indicator, the heat index
was used to examine the effects of heat-related illness. Originally developed in 1978 and
later adapted by the U.S. National Weather Service (NWS), the heat index is utilized as
an indicator for climate conditions to analyze the combined effect of air temperature and
relative humidity on human wellbeing [29]. Since humidity significantly contributes to
the body’s ability to cool down through evaporation and perspiration, it is necessary to
consider the interaction between temperature and humidity, especially when extreme heat
events occur [30]. The heat index was calculated by utilizing the maximum air temperature
and relative humidity (Equation (1)) and the heat index formula developed by the U.S.
NWS and was implemented in the Python package “meteocalc” (ver. 1.10):

HI = −42.379 + (2.04901523 ∗ T) + (10.14333127 ∗ R) − (0.22475541 ∗ T ∗ R) −
(6.83783 ∗ 10−3 ∗ T2) − (5.481717 ∗ 10−2 ∗ R2) + (1.22874 ∗ 10−3 ∗ T2 ∗ R) +
(8.5282 ∗ 10−4 ∗ T ∗ R2) − (1.99 ∗ 10−6 ∗ T2 ∗ R2)

(1)
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where HI indicates the heat index, T is the maximum air temperature in Fahrenheit, and R
is relative humidity [31].

The sub-hourly dataset was transformed into an hourly dataset by utilizing two key
measures: intensity and hourly excess heat (HEH). Heat index intensity was calculated by
selecting the maximum heat index among the five-minute timescale values within an hour.
That is, for each hour, the highest heat index at the sub-hourly level was designated as the
intensity measure for that hour.

HEH was calculated at a five-minute interval by subtracting the threshold value of
100.0 ◦F (37.8 ◦C) from the heat index. This value is the threshold for issuing a heat advisory
based on the NWS’s general heat advisory guidance [32,33].

This study followed the methodology outlined by Tang et al. for calculating daily
excess hourly heat (DEHH), however, at an hourly timescale [1]. If the heat index was below
the threshold value, the excess heat value was recorded as 0.0. For each hour, the overall
cumulative excess hourly heat was calculated by adding together consecutive sub-hourly
excess heat values greater than 0. If there was a period in which the heat index was below
the threshold, the cumulative count was reset. The highest of the cumulative excess heat
values was designated as the overall cumulative hourly excess heat (Equation (2)).

HEH = ∑55
0 ∆hi

∆hi=

{
hi − ht, hi ≥ ht

0, hi < ht

(2)

where i refers to the min. time of observation (5-min basis); hi is the heat index at the
observation time; ht is the heat threshold, which is 100.0 ◦F (37.8 ◦C); and ∆hi is the
difference between hi and ht.

HEH was used to provide additional insights beyond the heat index. While the heat
index accounts for the combined effects of temperature and humidity, excess heat measures
capture how much heat over the threshold is accumulated over time. Despite its complexity,
the HEH allows us to capture the additional heat stress beyond a certain threshold and
its potential impact on heat-related incidents, providing a nuanced understanding of the
relationship between excessive heat exposure and heat-related incidents, particularly in the
context of public emergency preparedness.

In addition, several contextual data points were added to the hourly dataset. First, the
number of heat-related EMS incidents, as well as the number of incidents in each of the
subcategories (cardiovascular, respiratory, neurological, unspecified) within each hour, was
recorded. Secondly, information regarding the day of the week, public holidays, and year
was added to control for potential confounding values. Day-of-week values ranged from 0
to 6, with Monday being 0 and Sunday being 6. Public holidays in the United States were
indicated using a binary variable, with 1 indicating a public holiday such as Memorial Day
(25 May 2020 and 31 May 2021), Independence Day (4 July 2020 and 2021), and Labor Day
(7 September 2020 and 6 September 2021).

2.3. Statistical Analysis

This paper utilized a distributed lag non-linear model (DLNM) to examine the statisti-
cal relationship between hourly heat index patterns and heat-related EMS incidents, which
can describe exposure–response dependency throughout lag space as well as lag–response
dependence among heat index exposures [34]. Lagged associations between excess heat
and intensity were explored using the distributed lag non-linear model (DLNM) using the
‘dlnm’ package (ver. 2.4.7) developed by Gasparrini in R (ver. 4.2.1) [35].

Several models were tested with various configurations; the model with the lowest
quasi-Akaike’s Information Criterion (Q-AIC), indicating better model fit, was
selected [1,2,20]. The model that was selected controlled for the year, month, day of
the week, and public holidays. A natural spline for the year with one degree of freedom
and a natural spline for the month with three degrees of freedom were utilized, along with
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categorical variables for the day of the week and a binary variable for the public holidays.
The DLNM for this study was constructed as follows (Equations (3) and (4)):

Log[E(yt)] = α + β1CB(INTENSITYt,l) + β2NS(year, 1) + β3NS(month, 2) + β4DOW + β5PH (3)

Log[E(yt)] = α + β1 CB(HEHt,l) + β2NS(year, 1) + β3NS(month, 2) + β4DOW + β5PH (4)

where t indicates the calendar day of observation, E(y) is the predicted counts of heat-
related EMS incidents at hour t, α is the intercept of the model, β1–β5 are the coefficients
of the statistical regression model, INTENSITY and HEH are the cross-basis (CB) matrix
in DLNM, l represents the lag days, and NS means the natural cubic spline function in
the model. In this study, the calendar year and month were used as fixed time strata
and control periods comprising the day of the week (DOW) and public holidays (PH) as
categorical variables.

While weather conditions are independent of the day of the week, the day of the week
and public holidays were accounted for due to different behavioral patterns that depend on
the day of the week. During weekdays, many individuals in the working-age population
spend time in air-conditioned workplaces or schools whereas on the weekend they may
spend more time outdoors. Additionally, healthcare providers and facilities may have
limited capacity on weekends, resulting in delays in treating particular conditions which
may predispose individuals to utilize EMS during extreme heat events.

After structuring the model, the overall cumulative and single lag associations be-
tween heat index patterns and heat-related EMS incidents from all-cause, cardiovascular,
respiratory, neurological, and non-severe causes were plotted and estimated.

Model evaluation was performed regarding the low (5th percentile) and high (95th
percentile) values of both heat intensity and HEH, with reference to the 50th percentile
(median) and the interquartile range (IQR) values, respectively.

2.4. Data on Meteorological Factors and Heat Index

We ran a sensitivity analysis to adjust the year and month in the models. We changed
the degree of freedom (df) for the year (as we only had two years, 2020 and 2021, in our
study, the df for the year was automatically set to 1) and month (2, 3, 4, 5). Based on
the lowest quasi-Poisson Akaike information criteria (QAIC), the optimal df of 3 for a
month and the maximum lag of 72 h were chosen to capture the effect of heat index on
heat-related EMS incidents. All sensitivity analyses were carried out in R ver. 4.2.2 with the
“dlnm” package.

3. Results

Table 1 summarizes the hourly meteorological factors and heat-related EMS cases in
Austin, Texas, during 2020 and 2021. The hourly mean temperature, relative humidity, heat
index intensity, and HEH of the summer season were 78.38 ◦F (25.77 ◦C), 64.10%, 80.73 ◦F
(27.07 ◦C), and 53.78 ◦F (12.1 ◦C), respectively. The average hourly value of heat intensity
and interquartile range (IQR) of duration were 79 ◦F (26.11 ◦C) and 103.36 ◦F-minutes
(39.64 ◦C), respectively. The hourly minimum and maximum heat index intensities were
51 ◦F (10.56 ◦C) and 105.62 ◦F (40.9 ◦C), respectively, during the whole study period. The
range between the minimum and maximum HEH varied from 0 to 302.78 ◦F-minutes
(−17.78 to 150.43 ◦C-minutes).

There were 49,514 cases of all-cause EMS calls in the summertime from May to Septem-
ber. The hourly mean count of heat-related EMS calls was 6.74. The hourly average number
of non-serious EMS calls was 2.73, showing the highest number among the four specific
causes of heat-related EMS calls, and cardiovascular cases occurred at a rate of about
1.65 cases per an hour. The maximum count of heat-related EMS calls was 24 cases in
an hour.
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Table 1. Statistical summary of hourly meteorological factors and EMS calls in Austin, TX, during
2020 and 2021.

Variables Mean SD
Percentiles

Min. P25 P50 P75 Max.

Meteorological Factors

Temperature (◦F) 78.382 8.889 52.160 72.680 77.540 84.740 105.620
Relative Humidity (%) 64.098 22.048 7.000 47.000 66.000 84.000 97.000

Heat-Index Intensity (◦F) 80.728 9.836 51.185 74.247 79.291 88.387 105.146
Hourly Excess Heat (HEH)

(◦F-minutes) 53.779 71.543 0.000 0.000 3.511 103.362 302.779

Ambulance Calls (per hour)

All-Cause Cases (N = 49,514) 6.743 3.781 0 4 6 9 24
Cardiovascular Cases (N = 12,093) 1.647 1.427 0 1 1 2 10

Respiratory Cases (N = 7587) 1.033 1.121 0 0 1 2 8
Neurological Cases (N = 4619) 0.629 0.831 0 0 0 1 6
Non-Severe Cases (N = 20,019) 2.726 2.054 0 1 2 4 14

Figure 1 shows the hourly average of heat index intensity, HEH, and heat-related
EMS incidents for all causes during the summertime of 2020 and 2021 in Austin, Texas.
The average heat index intensity peaked at 1 to 4 PM in the five months for all groups,
exceeding 95 ◦F (35 ◦C) in August. Regarding the daily patterns in heat index duration
(see Figure 1b), daily heat was not accumulated until 7 AM, but the hottest heat index
duration peaked at 1 to 3 PM in the five months, showing the highest accumulation of heat
of approximately 200 ◦F-minutes (93.33 ◦C-minutes) at 2 PM in a day.
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In addition, the heat index’s intensity and duration followed the same monthly trends,
with August being the hottest month, followed by July, June, September, and May. Heat-
related EMS incidents (see Figure 1c) showed similar patterns to the heat index intensity
and HEH given that the average cases increased during the daytime. However, their
monthly trends were not consistent hourly, with the highest number of events occurring
during the day in August.

The contour graphs of the exposure–response relationship between heat index patterns
and five types of heat-related EMS incidents are presented in Figure 2. Overall, in both
heat intensity and HEH, there are positive associations between heat index patterns and
heat-related EMS incidents at relatively small lag periods, ranging between lag 0 and 10 h,
showing higher relative risks (RRs) for higher heat index intensity and duration. Generally,
slightly elevated risks of EMS incidents are observed primarily to increase as the intensity
exceeds 80 ◦F (26.67 ◦C) and HEH exceeds 150 ◦F-minutes (65.56 ◦C-minutes) in each case.
Regarding the lagged effects in both intensity and duration, these elevated risks seem to be
restricted to a lag of under 10 h.

Int. J. Environ. Res. Public Health 2023, 20, x    8  of  17 
 

 

Generally, slightly elevated risks of EMS incidents are observed primarily to increase as 

the intensity exceeds 80 °F (26.67 °C) and HEH exceeds 150 °F‐minutes (65.56 °C‐minutes) 

in each case. Regarding the lagged effects in both intensity and duration, these elevated 

risks seem to be restricted to a lag of under 10 h. 

 

Figure 2. The contour graphs of the exposure–response relationship between heat  index patterns 

(intensity and duration) and five types of heat‐related EMS incidents with references at 79 °F (26.11 

°C) and 103 °F (39.44 °C), respectively, in Austin, Texas. 

For all‐cause and cause‐specific EMS incidents, our results follow the general trend, 

with a slightly higher RR associated with under 10 h lag at higher intensities. The effect of 

heat  index  intensity at  lag 0 h shows a negative association with  low  intensity (< 79 °F 

(26.11  °C))  for  all‐cause heat‐related EMS  incidents  (see Figure 3). When  the  intensity 

reaches 101 °F (38.33 °C), there is an immediate risk of heat‐related illness at a very short‐

term exposure (< 5 h); then, the RR is not higher than 1.0 after that (see Figure 3). Higher 

heat index intensity can increase the risk of heat‐related illnesses, among which the impact 

of a higher heat  index appears  immediately  for every symptom,  including  in all‐cause 

cases, while there is a notable, later‐appearing risk with low intensity at a lag ranging from 

roughly 5 to 40 h for cardiovascular EMS incidents. 

Figure 2. The contour graphs of the exposure–response relationship between heat index patterns
(intensity and duration) and five types of heat-related EMS incidents with references at 79 ◦F (26.11 ◦C)
and 103 ◦F (39.44 ◦C), respectively, in Austin, Texas.

For all-cause and cause-specific EMS incidents, our results follow the general trend,
with a slightly higher RR associated with under 10 h lag at higher intensities. The effect
of heat index intensity at lag 0 h shows a negative association with low intensity (<79 ◦F
(26.11 ◦C)) for all-cause heat-related EMS incidents (see Figure 3). When the intensity
reaches 101 ◦F (38.33 ◦C), there is an immediate risk of heat-related illness at a very short-
term exposure (<5 h); then, the RR is not higher than 1.0 after that (see Figure 3). Higher
heat index intensity can increase the risk of heat-related illnesses, among which the impact
of a higher heat index appears immediately for every symptom, including in all-cause
cases, while there is a notable, later-appearing risk with low intensity at a lag ranging from
roughly 5 to 40 h for cardiovascular EMS incidents.
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Figure 3. Lag-specific and heat-index-intensity-specific relationship for all-cause EMS incidents in
Austin, Texas. Red lines stand for the estimated effects. Grey areas are 95% confidence intervals.

Given that heat index duration indicates a cumulative heat index generated by adding
excess heat within an hour, the trends shown in the result can be explained by the way
HEH is calculated. Similar to the result of intensity, high HEH correlates with higher RR at
very short lags but a relatively lower RR at much larger lags in 10 to 20 h. This finding is
replicated mainly in the respiratory and non-serious heat-related symptom categories.

Table 2 shows the cumulative effects of heat index intensity and duration at different
lag periods on hourly heat-related EMS incidents. Generally, higher heat intensity causes
immediate, short-term lagged effects on all causes of heat-related EMS incidents, whereas
lower heat intensity has protective effects in all case subgroups.

For all-cause heat-related symptoms, low intensity (5th percentile = 65 ◦F, 18.33 ◦C)
has protective effects during lag 0–48 h (RR was 0.82 (95% CI: 0.73, 0.94)). In addition,
all-cause, cardiovascular, respiratory, and non-severe cases show a higher RR during the
lag 0–10 h (RR: 1.34 (95% CI: 1.24, 1.45), 1.24 (95% CI: 1.07, 1.43), 1.24 (95% CI: 1.03, 1.50),
and 1.50 (95% CI: 1.33, 1.68), respectively), while neurological cases show more immediate
detrimental impacts within 5 h (RR: 1.47, 95% CI: 1.28, 1.69). In all cases and subgroups,
the highest RR for high heat intensity is shown at the lag 0–5 h.

As for HEH, the protective effects with lower risks (5th percentile = 0 ◦F, −17.78 ◦C) at
the lower HEH last during the lag 0–72 h for all-cause, respiratory, and non-severe cases
(RR was 0.70 (95% CI: 0.59, 0.82), 0.48 (95% CI: 0.32, 0.70), and 0.58 (95% CI: 0.45, 0.74),
respectively). Meanwhile, cardiovascular and neurological cases have a relatively shorter
period of significantly lower risks at the lag 0–10 h (RR was 0.79 (95% CI: 0.69, 0.91) and
0.71 (95% CI: 0.57, 0.88), respectively).
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Table 2. Cumulative effects of heat index intensity and duration at different lag periods on hourly
heat-related EMS calls by symptom in Austin, TX, during 2020 and 2021.

Heat Index Pattern Lag Hours
RR * (95% CI **)

All-Cause Cardiovascular Respiratory Neurological Non-Severe

Intensity
(5th percentile = 65)

0–1 0.67 (0.63, 0.71) 0.64 (0.57, 0.72) 0.95 (0.82, 1.09) 0.63 (0.52, 0.75) 0.70 (0.63, 0.76)
0–5 0.67 (0.63, 0.70) 0.66 (0.59, 0.73) 0.83 (0.73, 0.95) 0.61 (0.52, 0.72) 0.67 (0.61, 0.72)

0–10 0.75 (0.70, 0.81) 0.74 (0.65, 0.84) 0.85 (0.73, 1.00) 0.65 (0.53, 0.79) 0.77 (0.70, 0.86)
0–24 0.87 (0.79, 0.96) 0.89 (0.74, 1.08) 0.87 (0.68, 1.10) 0.72 (0.53, 0.97) 0.91 (0.78, 1.05)
0–48 0.82 (0.73, 0.94) 0.97 (0.77, 1.23) 0.83 (0.61, 1.13) 0.79 (0.54, 1.15) 0.80 (0.66, 0.97)
0–72 0.95 (0.82, 1.11) 1.07 (0.81, 1.42) 1.01 (0.70, 1.44) 1.01 (0.65, 1.56) 0.94 (0.75, 1.17)

Intensity
(95th percentile = 97)

0–1 1.43 (1.36, 1.50) 1.43 (1.30, 1.58) 1.17 (1.04, 1.33) 1.21 (1.04, 1.42) 1.48 (1.37, 1.59)
0–5 1.62 (1.55, 1.70) 1.53 (1.40, 1.67) 1.38 (1.23, 1.54) 1.47 (1.28, 1.69) 1.78 (1.66, 1.90)
0–10 1.34 (1.24, 1.45) 1.24 (1.07, 1.43) 1.24 (1.03, 1.50) 1.18 (0.93, 1.49) 1.50 (1.33, 1.68)
0–24 1.03 (0.91, 1.17) 0.99 (0.79, 1.25) 0.99 (0.74, 1.32) 0.98 (0.68, 1.41) 1.13 (0.94, 1.36)
0–48 1.17 (1.01, 1.35) 1.29 (0.98, 1.70) 0.92 (0.65, 1.31) 1.42 (0.92, 2.21) 1.15 (0.92, 1.43)
0–72 1.18 (1.01, 1.38) 1.24 (0.92, 1.66) 1.16 (0.79, 1.68) 1.15 (0.71, 1.86) 1.16 (0.92, 1.47)

Hourly excess heat
(5th percentile = 0)

0–1 0.68 (0.65, 0.70) 0.65 (0.61, 0.70) 0.80 (0.74, 0.87) 0.65 (0.59, 0.72) 0.69 (0.65, 0.72)
0–5 0.62 (0.60, 0.65) 0.68 (0.62, 0.74) 0.67 (0.60, 0.74) 0.61 (0.54, 0.70) 0.58 (0.55, 0.62)
0–10 0.69 (0.64, 0.74) 0.79 (0.69, 0.91) 0.65 (0.54, 0.77) 0.71 (0.57, 0.88) 0.62 (0.56, 0.69)
0–24 0.78 (0.69, 0.87) 0.95 (0.77, 1.18) 0.59 (0.46, 0.77) 1.00 (0.71, 1.40) 0.66 (0.56, 0.78)
0–48 0.71 (0.62, 0.82) 0.83 (0.64, 1.08) 0.51 (0.37, 0.71) 1.32 (0.88, 1.99) 0.60 (0.48, 0.74)
0–72 0.70 (0.59, 0.82) 0.86 (0.64, 1.17) 0.48 (0.32, 0.70) 1.39 (0.86, 2.25) 0.58 (0.45, 0.74)

Hourly excess heat
(95th percentile = 199)

0–1 1.11 (1.06, 1.17) 1.09 (1.00, 1.20) 1.03 (0.92, 1.17) 1.02 (0.88, 1.18) 1.11 (1.03, 1.19)
0–5 1.20 (1.12, 1.28) 1.24 (1.09, 1.41) 1.05 (0.89, 1.24) 1.18 (0.96, 1.45) 1.18 (1.07, 1.31)
0–10 1.04 (0.93, 1.16) 1.12 (0.91, 1.38) 0.92 (0.71, 1.19) 1.06 (0.76, 1.46) 0.99 (0.85, 1.17)
0–24 0.88 (0.74, 1.05) 1.02 (0.73, 1.41) 0.70 (0.47, 1.04) 1.13 (0.67, 1.90) 0.79 (0.61, 1.02)
0–48 0.98 (0.79, 1.21) 1.14 (0.77, 1.70) 0.61 (0.37, 1.01) 1.98 (1.05, 3.74) 0.85 (0.62, 1.16)
0–72 0.87 (0.69, 1.10) 1.02 (0.66, 1.58) 0.69 (0.40, 1.19) 1.50 (0.74, 3.02) 0.75 (0.53, 1.06)

* RR: relative risk; ** 95% CI: 95% confidence interval. Bold means statistically significant (p < 0.05).

At higher duration (95th percentile = 199 ◦F-minutes, 92.78 ◦C-minutes), there are
immediate adverse effects at lag 0–5 h in all-cause, cardiovascular, and non-severe cases,
with statistically significant high RRs of 1.20 (95% CI: 1.12, 1.28), 1.24 (95% CI: 1.09, 1.41),
and 1.18 (95% CI: 1.07, 1.31), respectively. Respiratory and neurological cases have no
statistically significant RR within 72 h, except at the lag 0–48 h.

4. Discussion

This study explored how heat index patterns, including intensity and duration, cause
lagged effects on heat-related symptoms based on local EMS data. A non-linear hourly asso-
ciation between heat index patterns and heat-related EMS incidents was found, controlling
for year, month, day of week, and public holiday effects. Our results also showed hourly
variations and a lagged relationship between higher heat index and heat-related EMS inci-
dents, consistent with previous studies that tested in different areas or timescales [1,2,6,20].
This is the first study to examine the hourly association between heat index patterns and
the main heat-related symptoms using EMS cases in the Southern United States.

A novel approach of measuring cumulative heat exposure using hourly excess heat
(HEH) builds upon prior methods of DEHH by measuring heat on a finer timescale. This
method accounts for cumulative heat exposure, which may contribute to chronic heat stress.
This method may become increasingly critical during heat waves that persist for much
longer periods of time. As such, this metric may inform EMS of potential unexpected high-
risk situations. For instance, it may occur when the current heat index may not be acutely
high, but EMS demand may be high due to temperatures not cooling down sufficiently,
preventing individuals from recovering to prior heat exposures. Likewise, this metric can
be used to design EMS responses during extreme heat waves to be prepared for short, acute
heat exposure over a day and long, persistent heat exposure over several days.

Furthermore, we have underscored the significance of applying the HEH method at
an hourly level to enhance services effectively. By providing hourly resolution, HEH offers
a more detailed temporal perspective, enabling us to gain deeper insights into heat-related
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phenomena with higher granularity. We emphasize how this enhanced temporal resolution
is a key asset in improving services across multiple domains. For instance, it facilitates
real-time decision-making for emergency responders, allows for more timely and targeted
public health interventions, and enhances our ability to allocate resources efficiently. In
essence, the hourly HEH methodology plays a pivotal role in addressing the dynamic
nature of heat-related incidents and significantly contributes to the overall enhancement of
services in the context of heat-related risks and impacts.

Our study found that higher heat index intensity and HEH are associated with ele-
vated relative risks (RR) for heat-related EMS incidents, showing positive correlations with
the lag time of heat-related EMS incidents at relatively shorter lag periods. Additionally,
there were several notable trends specific to particular call categories. Exposure to heat
may contribute to or exacerbate cardiovascular disorders by causing dehydration, elec-
trolyte loss, and increased surface blood circulation [36]. While corroborating the previous
findings, the slight increase found at lower intensities in categories such as cardiovascular
symptoms in our study might potentially be explained by physiological changes due to cold
temperature or other uncontrolled factors. Generally, colder temperatures are associated
with an increased risk of cardiovascular mortality due to changes in blood viscosity and
vasoconstriction [37]. The colder temperatures in our model are generally much warmer
than the temperatures associated with cold risk in other studies. However, this increased
risk could be due to the cold temperatures being outliers relative to the warm temperatures
typically found in the summertime in Austin, Texas. Moreover, due to the nature of our
dataset focusing on summertime, our result could be limited in estimating the effect of the
adverse effects of colder temperatures compared to the model’s performance in relation to
warmer temperatures.

In terms of the lagged effects, our findings suggest that as temperature increases
beyond a certain threshold, there is an associated risk of adverse health outcomes that
increases as the intensity continues to increase, consistent with the findings from previous
studies [1,2,6,20]. Similarly, with HEH, the elevated risk appears to begin after experiencing
a large amount of cumulative excess heat and rapidly increases as cumulative excess heat
increases. Many studies demonstrated that hot temperatures have short-term effects on
mortality and morbidity, whereas cold temperatures have delayed and long-lasting adverse
effects with high RR [38–40]. In addition, the low temperature in most previous studies
was considered extremely cold temperature (approx. 27 ◦F/−2.78 ◦C) during an entire
year, which increases RR more, showing “U-shaped” RR patterns [2,8]. Compared to
this, a couple of studies used summer only as a study period and had similar patterns to
our results that show a positive association between temperature and the occurrence of
heat-related diseases, especially in terms of short lag effects [40]. Nevertheless, the fact that
our study only focused on summertime temperatures could be a limitation, as we could not
estimate the impact of lower temperatures in wintertime. The lower temperatures observed
during the summer season fall within the normal temperature range and may differ from
the lower temperatures experienced during wintertime in other studies. Thus, it is crucial
to consider this difference when comparing our findings to research examining the effects
of low temperatures during the wintertime.

The results of the cumulative effects in higher HEH show that the lag range of the
higher RR varies by symptom categories. Notably, neurological incidents have relatively
higher RR in longer periods at the lag 0–48 h (RR = 1.98; 95% CI: 1.05, 3.74), while other
symptoms show an immediate adverse effect within 5 h. Not much research has investi-
gated temperature-induced neurological symptoms (seizures) or whether excessive heat
causes seizures to occur in people with epilepsy. However, we assume that heat causes
dehydration, which may raise the likelihood of a seizure. When bodily fluid loss (mainly
sweat) exceeds fluid intake, sodium and glucose levels decline [41]. It eventually leads to
low blood sugar levels (hypoglycemia), which may produce seizures in certain persons,
triggering neurological biotransformation later [41].
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Our findings suggest that during extreme heat events, EMS demand will increase in
a relatively short amount of time. The slightly increased association with EMS demand
across all disease categories indicates that extreme heat has the potential to place an
immense burden on EMS and healthcare systems in the short term [12,13]. There also
appears to be a certain threshold beyond which there is an increased risk both in terms
of intensity and duration [14]. As such, EMS departments and public health officials can
use these findings to anticipate surges in demand to better improve EMS responsiveness
and, ultimately, patient outcomes. Given that, our findings suggest that EMS providers
prepare for periods of high heat by ensuring adequate staffing (i.e., adjusting work shifts
or bringing in additional staff), equipment, and medical supplies to handle the surge in
demand. Moreover, collaborating with weather forecasting agencies can help EMS systems
to anticipate periods of increased demand and adjust their resource allocation accordingly.
In addition, it might be beneficial to revise the EMS protocols to ensure a fast and efficient
response during extreme heat events, developing a heat-related illness triage protocol
that can quickly identify and prioritize high-risk patients. Moreover, given that socially
vulnerable populations are at a higher risk of heat-related illnesses, efforts should be made
to ensure that these areas have adequate access to EMS. By evaluating EMS availability and
response times across different regions, additional resources (such as ambulances and staff)
could be allocated to areas with a higher proportion of vulnerable populations to improve
EMS response times.

Urban planners and policymakers should provide timely EMS for all. In regard
to emergency departments in hospitals or emergency stations, it is recommended that
the prioritization and allocation of medical resources and the advancement of medical
services should be established robustly. Given that, it is important to take into account
the temporal patterns of heat-related illnesses in consideration of year, seasonality, day
of the week, and holidays [42,43]. Additionally, geographic patterns of EMS incidents
should be considered for the equitable provision of medical services. Seong et al. (2022) [17]
found that social vulnerability factors, such as race (i.e., Hispanic and Black), social benefit
status, and living alone, are highly associated with heat-related EMS incidents, causing
geographical patterns of inequality in heat-related health Socially vulnerable populations
often reside in underserved living environments with no ventilation, cooling equipment, or
nutritional supplements with more vitamins and liquids. They are subjected to extreme
heat that necessitates immediate medical intervention to prevent the adverse effect of high
temperature and humidity [29]. Moreover, as discussed by [3], when the temperature
reaches a certain threshold, a “harvesting effect” is seen as heat might promote early
morbidity onset in vulnerable groups, resulting in RR < 1 following short-term exposure [3].
Given that heat-vulnerable areas are clustered by region [17], geographical disparities
in heat-related illnesses and EMS resources should be mitigated through future studies
that consider the regional stratification of vulnerable populations during extreme heat
events. One of the suggestions to improve immediate EMS response is to adapt data-
driven prediction for EMS demands using advanced datasets and data analytics. For
instance, using real-time, high-resolution weather forecasts, such as High-Resolution Rapid
Refresh (HRRR), developed by the National Oceanic and Atmospheric Administration
(NOAA), may allow researchers to predict extreme heat events in advance more accurately.
In addition, recent research employed a more advanced method, an enhanced two-step
floating catchment area (E2SFCA), to assess EMS accessibility while taking EMS station and
hospital service capacity into account [44]. Hence, future research should aim to employ
a comprehensive approach to measuring EMS accessibility to better prepare immediate
medical EMS response for climate resilience.

Limitations exist in this study. First, although Austin-Travis County is a metropolitan
area with a fairly large population of 964 K, the hourly number of ambulance cases was,
on average, six for all-cause incidents in our study period. Such a small sample size
might lead to sampling bias with higher variability; specifically, it could occur in specific-
case subgroups with smaller sample sizes. However, this was redeemed by conducting
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sensitivity analysis, iteration of the model selection process, and comparison of the results
with daily-level analysis [2]. Second, heat-related cases may not be fully captured by the
count of EMS incidents since patients who use private and public transportation cannot be
included in this study. In particular, given that EMS use varies by socioeconomic status due
to language barriers or financial constraints [17], future research should consider stratified
samples when using EMS cases as proxies of heat-related symptoms. Third, due to the
lack of detailed spatial information in the study, exposure misclassification may have
occurred by uncontrolled factors, such as wind direction, wind speed, barometric pressure,
or air pollutants [6]. Future studies should seek to use a rich dataset, including temporal
and spatial control factors, for better prediction. Finally, despite the careful selection of
heat-relevant health problems (Table A1), we recognize that our study is inherently limited
by the nature of heat-related illnesses and the lack of full diagnosis information. Multiple
factors can contribute to a healthy outcome, and it may not be clear whether every call
included in the study was directly due to extreme heat exposure. Thus, it should not
be used for direct clinical interpretation but rather as a guide to inform public health
interventions and preventive measures against heat-related illnesses.

5. Conclusions

This paper adds to the existing knowledge on the lagged effects of high tempera-
tures on heat-related illnesses. Delving into the heat index patterns in terms of intensity
and hourly excess heat, our findings suggest that higher heat intensity has immediate,
short-term lagged effects on all causes of heat-related EMS incidents, including cardiovas-
cular, respiratory, neurological, and non-severe symptoms, while its RR vary by time. In
addition, HEH also shows a short-term cumulative lagged effect within 5 h in all-cause,
cardiovascular, and non-severe symptoms, while the RR for respiratory and neurological
cases are not statistically significant, except at the lag 0–48 h for neurological cases. This
study corroborates previous studies on associations between temperature and heat-related
health outcomes and broadens the conversation to include EMS cases and hourly scale
lagged effect.

Our study is unique in that it first investigated the effects of hourly excess heat, accu-
mulated in 5 min intervals using the heat index, on heat-related illnesses. Such a detailed
analysis of the temporal changes in heat distinguishes this research from previous studies.
Second, our study’s novel contribution lies in its examination of these associations within
the context of EMS incidents. By explicitly focusing on EMS calls related to cardiovascular,
respiratory, neurological, and non-severe causes, we provide valuable insights into the
impact of temperature on emergency medical services by category. Third, our methodology
allowed us to analyze lagged effects and cumulative excess heat, providing a more com-
prehensive understanding of the relationship between temperature and heat-related EMS
incidents over time. This temporal perspective enhanced our ability to identify patterns
and potential thresholds at which the risk of adverse health outcomes increases.

Overall, our study adds to the existing literature by providing detailed insights into
the specific context of heat-related EMS incidents. The methodology employed allowed
for a nuanced analysis of temperature effects and contributes to a better understand-
ing of the implications for EMS and potential strategies for improvements in response
and preparedness.

The research findings have significant implications for improving the current EMS
system. By identifying the relationship between temperature and heat-related EMS inci-
dents, we can enhance preparedness by providing valuable insights into seasonal patterns
and increased risks during periods of high heat. This information can help EMS agencies
and healthcare providers better allocate resources and ensure they are adequately staffed
and equipped to handle potential surges in demand. Additionally, understanding the
specific health outcomes associated with heat exposure allows for targeted interventions,
including tailored protocols, improved triaging processes, and appropriate stockpiling of
equipment and medication. Furthermore, our findings also contribute to public education
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and awareness campaigns on heat safety, foster collaborative partnerships between EMS
agencies, healthcare providers, and community organizations, and support continuous
quality improvement efforts within EMS systems.

In sum, this study investigated the vital role of heat intensity and hourly excess
heat on heat-related health outcomes using EMS cases. Our findings can be a reference for
policymakers and practitioners when devoting resources, developing extreme heat warning
standards by symptoms, and optimizing local EMS by providing data-driven evidence
for the effective deployment of ambulances. Our findings from the hourly scale study
shed light on a better-designed EMS response during extreme heat events for long-term
community resilience and equitable public health services.
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Appendix A

Table A1. Selection of heat-relevant health problems.

Group Examples of Heat-Related Health
Problems Basis for Inclusion References

A
Chest Pain, Cardiac Arrest, Syncopal

Episode, Stroke, Heart Problems,
Respiratory, Abdominal Pain, Diabetic

Chronic diseases susceptible
to heat

National Center for Environmental
Health (NCEH) [45]; Agency for Toxic

Substances and Disease Registry
(ATSDR) [46]; Centers for Disease
Control and Prevention (CDC) [47]

B Unconscious, Altered Mentation,
Headache, Seizure

Potential symptoms of heat
stroke

National Institute for Occupational
Safety and Health [48]

C Environmental Exposure, Burn Potential symptoms of
sunburn

National Center for Environmental
Health (NCEH) [45], Agency for Toxic

Substances and Disease Registry
(ATSDR) [46]

D Allergic Reaction, Sick, Special Event
Medical, Attended Patient

Catch-all for other symptoms
related to heat stroke or

exhaustion

D’Amato et al., 2015 [49];
Kenney et al., 2014 [50]
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