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Abstract: Due to the rapid artificial intelligence technology progress and innovation in various fields,
this research aims to use science mapping tools to comprehensively and objectively analyze recent
advances, hot-spots, and challenges in artificial intelligence-based microplastic-imaging field from
the Web of Science (2019-2022). By text mining and visualization in the scientific literature we empha-
sized some opportunities to bring forward further explication and analysis by (i) exploring efficient
and low-cost automatic quantification methods in the appearance properties of microplastics, such as
shape, size, volume, and topology, (ii) investigating microplastics water-soluble synthetic polymers
and interaction with other soil and water ecology environments via artificial intelligence technologies,
(iii) advancing efficient artificial intelligence algorithms and models, even including intelligent robot
technology, (iv) seeking to create and share robust data sets, such as spectral libraries and toxicity
database and co-operation mechanism, (v) optimizing the existing deep learning models based
on the readily available data set to balance the related algorithm performance and interpretability,
(vi) facilitating Unmanned Aerial Vehicle technology coupled with artificial intelligence technologies
and data sets in the mass quantities of microplastics. Our major findings were that the research of
artificial intelligence methods to revolutionize environmental science was progressing toward multi-
ple cross-cutting areas, dramatically increasing aspects of the ecology of plastisphere, microplastics
toxicity, rapid identification, and volume assessment of microplastics. The above findings can not
only determine the characteristics and track of scientific development, but also help to find suitable
research opportunities to carry out more in-depth research with many problems remaining.

Keywords: microplastics; imaging technology; artificial intelligence; science mapping; hot-spots analysis

1. Introduction

Plastic pollution is one of the most common problems which already threatens marine
health, marine food, human health, marine tourism, and its associated climate change.
There were 4.8 million to 12.7 million tons of plastic which entered the ocean in 2017 [1].
MPs (abbreviation for microplastics) is defined as “any synthetic or polymer solid particle
with regular shape or irregular, size between 1 pm and 5 mm, and insoluble in water” [2]
(p- 146). MPs are firstly and importantly derived from industrial production in specific
application fields, such as cosmetics, pharmacology, textile industry, and medical diagnosis.
A secondary source is the decomposition of larger plastic fragments into trillions of smaller
fragments (MPs) [3,4]. The discovery of MPs in the marine food chain has raised more
concerns about seafood consumption [5]. Such achievements have rapidly promoted the

Int. ]. Environ. Res. Public Health 2023, 20, 1150. https:/ /doi.org/10.3390/ijerph20021150

https:/ /www.mdpi.com/journal/ijerph


https://doi.org/10.3390/ijerph20021150
https://doi.org/10.3390/ijerph20021150
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph20021150
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20021150?type=check_update&version=1

Int. |. Environ. Res. Public Health 2023, 20, 1150 2 of 30

development of microplastic pollution research over the past few decades [6]. The different
methods to quantify and identify microplastics were introduced in environmental matrices,
including air [7], water [8], biota [9], and sediments [10].

Al-based (abbreviation for artificial intelligence-based) microplastic-imaging technolo-
gies are boosted by emerging cutting-edge technologies. They are series of new Al-based
algorithms, new technologies, new applications that have a vital role in the related mi-
croplastics fields. They have grabbed very wide attention due to the following benefits:
improving operational efficiency, reducing time-consumption effectively, subverting the
existing imaging technologies, facilitating quantification methods, and providing new
cognitive thinking. The key technologies of Al-based microplastic-imaging technologies in-
clude smart Unmanned Aerial Vehicle (UAV) [11-13], artificial intelligence technology, and
intelligent robot technology [14]. Driven by these new Al technologies, the traditional way
of the microplastics debris imaging technology research has been completely transformed.

Furthermore, compared with large-size plastics, the image classification, identification,
and quantitative research of microplastics is a complicated scientific field due to their small
size and huge volume, so scholars have performed many studies involving theories and
applications on Al-based microplastic-imaging technologies. Accordingly, the application
of Al-based microplastic-imaging technologies has been involved in many areas, such as
deep learning model [15,16], environment monitoring [17,18], microbial communities [19,
20], microplastics quantification—identification technology, classification technology, and
automatic quantification [21-26].

In order to explore the disciplinary boundaries and research paradigms of microplastic
imaging technologies, the current research circumstances and development hot-spots were
investigated based on the current published literature in the field of artificial intelligence-
based microplastic-imaging technologies. A total of 97.07% of all the published literature
was published after 2019 (based on Web of Science (WoS)). This explosion of growth and
benefits on related microplastic-imaging research activities have driven us to perform
a thorough and objective analysis, including the current challenges and opportunities
which the field of Al-based microplastic-imaging technologies obtained. It is very crucial
for scholars interested in Al-based imaging field to carry out better and more in-depth
research. Moreover, the characteristics and track path of technology development can be
revealed from the perspective of visualization through science mapping analysis [27,28].
Additionally, this paper examined hot research themes and recent advances, discussed the
challenges, and predicted the future trends with many problems remaining.

Science mapping analysis, from a statistical and quantitative analysis perspective, con-
ducts visualization analysis via science mapping visualization tools, for instance CiteSpace
and VOSviewer and Scimago Graphica [29-31], therefore facilitating the understandability
of analysis results. Text mining and visualization in the scientific literature has been deeply
engaged in different research fields, such as Blockchain Research [32], Decision Ambi-
guity [33], Advanced Deep Learning Research [34], Humanities and Social Sciences [35],
Business and Economics Research [36], journals of Operational Research [37], Information
Technology and Sciences [38], and the Environment field [39]. The three science map-
ping tools, which are CiteSpace and VOSviewer and Scimago Graphica, can facilitate
the science mapping analysis in discovering intellective bases and research frontiers of
Al-based microplastic-imaging technology from a different point of view. For instance,
the co-occurrence network analysis of keywords determines the main research topics; the
co-operation network, such as co-countries, co-authors, and co-institutes, can reveal the
top influencing objects; the timeline view and overlay journals analysis can show some
variation over a certain period of time based on research keywords or themes. Such
a methodology is named science mapping [31,40].

In this research, according to core articles and proceeding papers from 2018 to 2022
in the past five years, science mapping was introduced to assess the current state of re-
search on Al-based microplastics imaging. As of now, there is no comprehensive summary
on this research in the recent published literature. This review will help to fill in this
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gap and cover the related published key research results and highlight related technical
issues and future research prospects. The contributions of this research can be summa-
rized in the following points: (1) lllustrate the fundamental characteristics of Al-based
microplastic-imaging documents, including the types of publications, temporal distribution
of publications, popular research areas, top occurrences keyword and keyword density
mapping; (2) Explore productive or active countries/regions, institutions, and authors from
a macro- to micro perspective, and plot the cooperation relationship networks to point
out the relatively active authors, institutions; (3) Additionally, determine the citation and
co-citation structure networks on authors and references and also clearly show the research
hot-spots and knowledge flow of all Al-based microplastic-imaging publications based
on overlay analysis, temporal evolution, and cluster view; (4) With the current research
context, the challenges and problems should be taken into consideration which Al-based
microplastic imaging faced; and (5) Suggesting the future prospects in this field. Hope-
fully, this research result will provide a useful reference for related scholars and further
applications of Al-based microplastic imaging or the other fields.

2. Methods
2.1. Data Acquisition and Whole Process

The research data were acquired from the Web of Science (WoS) Core Collection
of American Institute of Scientific Information (ISI). The WoS is regarded as the most
comprehensive, containing the most authoritative literature in its dataset. On 31 May 2022,
all the literature related to Al-based microplastic-imaging technology was searched and
further investigated in this study.

As mentioned in the introduction, science mapping is used to reveal and visualize
the development trends and movements in a particular research field [41]. This paper
introduced related text mining and visualization methods to evaluate the development
problems and research hot-spots of Al-based microplastic-imaging documents. CiteSpace
and VOSviewer and Scimago Graphica, as three popular science mapping tools, effectively
expose the interrelationship of the literature and visualize interaction from different views,
such as clustering and dynamic timeline [29,30,42]. Through several science mapping tools
and visual mining, containing co-occurrence network analysis, timeline view analysis,
overlay journals analysis, and citation literature analysis, this research reviewed the co-
occurrence author keywords, citations analysis, co-operation network structure analysis,
hot-spots, and emerging problems on Al-based microplastic-imaging research.

The whole framework of science mapping in the Al-based microplastic-imaging field
can be illustrated in Figure 1. The following knowledge mapping analysis of Al-based
microplastic-imaging technology consists of five steps as shown in Figure 1: the first is to
obtain the data from the WoS dataset with the assumptions and conditions; the second step
is data collection to acquire and save the key literature into MySQL and txt format file; the
third step is that three science mapping tools are engaged to assist; the fourth step is data
visualization with indicators and methods, and the last step is mining and analysis to obtain
recent advances, hot-spots and problems of Al-based microplastic-imaging technology.

2.2. Assumptions and Conditions

Three parameters, search terms, country names, and database time-range, were pre-set
for further searching, given as follows:

2.2.1. Search Terms

The below search terms in Table 1 were combined then inputted into the search engine
in the Web of Science website, which found out the publications involving these searched
items to appear in the related publications.
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Figure 1. Whole framework of science mapping analysis.
Table 1. Search terms.
Prefix Synonyms Approaches Processing
Micro- Microplasti * Artificial intelligence ~ automa *
. . nvolutional neural
Micro-plastic * convoiu io € calculat *
network
Nano- Nanoplastics deep learning count *
Nanometer-plasti * machine learning classif *
MPs neutral network * detect *
digit *
identif *
imag *
quanti *
recogni *
sort *
statist *
visualiz*

*: a keyword search wildcard.

2.2.2. Country Names

The geographic location information of the article is determined by the address of
the author’s research institution. Among these publications, the literature marked from
England, Scotland, Northern Ireland, and Wales was defined as the United Kingdom (UK),
at the same, literature from Mainland China, Hong Kong, Macao. and Taiwan was regarded
as China, individually in Table 2.

Table 2. Country names.

Geographical Distribution Country Name
Mainland China China

Taiwan China

Macao China
Hongkong China

North Ireland UK

Scotland UK

Wales UK

England UK
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2.2.3. Database Time-Range

The review data were acquired from the Web of Science (WoS) Core Collection of
American Institute of Scientific Information. In addition, there are 5 categories, Science
Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Con-
ference Proceedings Citation Index—Science (CPCI-S), Conference Proceedings Citation
Index—Social Science and Humanities (CPCI-SSH), and Emerging Sources Citation Index
(ESCI) as our research data. The related database time span is as below in Table 3.

Table 3. Database time-range.

Database Range

Science Citation Index Expanded (SCI-EXPANDED) 1900—as of now
Social Sciences Citation Index (SSCI) 1900—as of now
Conference Proceedings Citation Index-Science (CPCI-S) 1900—as of now
Conference Proceedings Citation Index-Social Science & Humanities (CPCI-SSH) 1900—as of now
Emerging Sources Citation Index (ESCI) 2017—as of now

2.3. Science Mapping Analysis Tools

The map of scientific knowledge is a graph which can visualize the relationship and
interaction between the movements and interaction of scientific knowledge. The research of
scientific knowledge map is based on scientific knowledge, which belongs to the category
of scientometrics and involves the cross fields of science, such as applied mathematics,
information science, graph theory, and information metrology. A multiple-perspective
visualization analysis method facilitates analytic and sense making tasks to analyze recent
advances and hot-spots.

VOSviewer is a science mapping tool to help construct and visualize bibliometric
network relationship. These network relationships can be visualized to reveal co-occurrence
networks, citation network relationships, and density mapping relationships of important
terms retrieved from the searched literature.

Scimago Graphica is a good visualization tool about the geographic location informa-
tion of the literature marked by the author’s address to identify the cooperation among
countries/regions distribution.

CiteSpace software used in this paper is proposed to explore the key path of the
evolution of the field of knowledge by integrating network visualization, spectral clus-
tering, automatic cluster labeling, timeline view, and dual over-lay journeys based on
citation analysis.

3. Fundamental Characteristics of AI-Based Microplastics Imaging Publications

This section presents the fundamental characteristics of the Al-based microplastic-
imaging literature, containing the types of publications, temporal distribution of publica-
tions, popular research areas, and keyword density mapping, which will help to know
more about the latest situation in the area.

3.1. Analysis of Literature Types

For the 69 searched publications in Al-based microplastic-imaging field, the first
document was written by Lorenzo-Navarro, ] and Castrillon-Santana, Modesto (2018),
that is, Automatic Counting and Classification of microplastics Particles, a proceedings
paper. The types of the 69 documents about Al-based microplastic-imaging technologies
are presented in Figure 2.

From Figure 2, the main type of literature is articles, with 54, which account for about
78%. The second is the type of proceedings papers, accounting for about 16%; three review
articles, accounting for 4.35%; one (1.45%) is early access.
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Figure 2. Types of all 69 documents.

3.2. Number and Proportion of Published Papers per Year

The number and proportion of published papers per year since 2012 are depicted in
Figure 3. From 2012 to 2017, the annual growth records remained zero. From the graph, the
number of publications grew gradually since 2018. Especially for 2021, the publications
increased dramatically, and there are 31 publications, accounting for about 45%, which are
more than the total of the past three years from 2018 to 2020. This fully explained why the
research on Al-based microplastic imaging is becoming an increasing hot-spot recently and
the crossing fields may obtain more findings and achievements.

35 50.00%
45.00%
30
40.00%
25 35.00%
20 30.00%
25.00%
e 20.00%
10 15.00%
10.00%
5
5.00%
0 0 0 0 0 0
0 O.Cv oLV UV UL AT UL A0 UL U Ao 0.00%

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Figure 3. The number and proportion of published papers per year since 2012.

3.3. Top 10 Research Areas

The top ten research themes of the documents are shown in Tree map Figure 4. En-
vironmental Sciences Ecology are the most active research area. The total number of
documents for Environmental Sciences Ecology is 37, accounting for 53.62%. The second is
Engineering area with 14, which is about 20.29%. The third is Computer Science with 10,
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accounting for 14.49%. Furthermore, research is widespread in Optics (10), Chemistry (8),
and Water resources (4). Al-based microplastic imaging involves various areas and drives
tremendous development in many research fields.

37 14 8 4

Environmental Sciences Ecology Engineering Chemistry Science

Technolo
Other
Topics

10

Computer Science

3

Water Resources | Marine
Freshwater
Biology

Figure 4. Top 10 hot research areas (generated using Web of Science on data).

3.4. High Frequency Keywords and Density Mapping

Based on the statistics about the keywords from 2018 to 2022 among 69 publications,
there were 357 keywords, where 6 keywords with more than 10 times in Figure 5. Mi-
croplastics (42), machine learning (29), deep learning (17), identification (13), pollution (13),
and classification (12) are the top sic keywords in the research high frequency themes in
Figure 5, which means artificial intelligence technologies have already been engaged in the
research direction of microplastic-imaging technologies to a very deep level.

.
- -
B marine-environment _ 7
W environment
u digital holography =

mabundance
12

= classification

lidentification

% deep learning

® microplastics

Figure 5. Top 10 high frequency keywords.
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Keyword heat density map helps to visually infer the concentration of keyword
research by density, overlap, etc. In order to more easily identify the current spatial
distribution of research areas, it can visually gain insight into density data (i.e., color
depth) to detect topic heat, distribution status, and help turn curiosity about this area
into insight. Visualized from VOSviewer, the themes of the 69 documents are revealed in
Figure 6. In addition to microplastics, there are some keywords, such as machine learning,
deep learning, classification, abundance, identification, and artificial intelligence, with
higher frequency, which are all colored in red. The map of Figure 6 provides another
evidence about the research directions from density mapping perspective and also helps to
understand more where the focus and research directions are in the Al-based microplastic-
imaging technologies.

microplastics cla:

plastic
plastics

nitrate

urban microspectro:

environmental microp

Figure 6. Themes of all 69 documents (visualized with VOSviewer).

4. State of AI Applications in Microplastics Imaging Research
4.1. Most Active Object Analysis and Collaborative Network Analysis

The sub-section shows the most active and contributing countries, research institutes,
and authors from macro to micro perspective. Mastering the partnership among them
helps pinpoint the most active or contributing or effort institutions and authors and also
will help to know more about who or which scientific research institution is relatively active
in the research hot-spots.

4.1.1. The Collaboration Network of Countries/Regions

As mentioned in Figure 7, China is the most active country, accounting for 20 from
2017, followed by Italy with 9. Then, the third to USA (six), then Australia (five), Spain
(five), Canada (four), Germany (four), Brazil (three), and UK (three). China and USA have
the same total link strength with other countries (eight). Followed by Germany, Czech
and Malaysia with five. Then, the third to Switzerland and Philippines (four), then Spain
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Poland

Mew Zealand

Sweden

Russia

MNetherlands

Australia

Italy

Canada

Spain

Philippines

Switzerland

ralaysia

Czech

Germany

usa

China

and Canada (three). There are a total of 31 countries/regions, which are presented via
the closest cooperation network in Figure 8. To quickly identify the most cooperation
distribution of different countries, density map is used to visualize national cooperation
distribution density. The greater the node weight of national cooperation, the greater the
surrounding density.

| |
0]

20

Total link strength # Documents

Figure 7. The most active countries/regions.

The countries/regions mentioned in Figure 8 are separated into 16 groups, and various
colors stand for specified countries/regions. The circle-nodes represent different coun-
tries/regions, and the sizes of the circle-nodes reflect the total number of publications
individually. The connections between two circle-nodes show that there are collaborative
relationships among them. The thicker the connection line, the closer they work together.
In each group the most collaborative countries/regions are Malaysia, USA, Germany, China
and Czech and their total link strength is over 5. However, another 10 countries (such as
Japan, India, and South Korea) did not have the collaboration between any 2 countries
and their total link strength is zero. At the same time, the United States and Germany
have a thicker line connection, marking a closer cooperation between them; similarly,
China and Australia have a thicker line connection, representing a close cooperation be-
tween the two of them in research. Other than that, the nodes between each country are
slim, which means that cooperation between them is sparse. Further, the geographical
distribution shows that the regions where more research is conducted are concentrated
in developed countries and regions or larger developing countries, and relatively less in
South America and Africa. In addition, China and USA and European countries, three of
these countries/areas should promote cooperation urgently to strive for more scientific
breakthroughs. In addition, in Africa and south of America a few countries carry out re-
lated Al-based microplastic-imaging research and better collaborate with other developed
countries or areas.
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Figure 8. Collaboration network of countries/regions (visualized with Scimago Graphica).

4.1.2. The Most Contributing Affiliations

Figure 9 presents the most contributing research institutes. According to Figure 9,
the consiglio nazionale delle ricerche cnr has the largest total number of publications with
seven publications. The istituto di scienze applicate e sistemi intelligenti (six), university
of hong kong (five), universidad de las palmas de gran canaria (three), and university of
naples federico II (three) follow.

| —
INSTITUTE OF URBAN ENVIRONMENT CAS 2_
| 13

2

INDIAN COUNCIL OF AGRICULTURAL RESEARCH
ICAR

46

ICAR CENTRAL INLAND FISHERIES RESEARCH 13 46
INSTITUTE -

[ ] |
[

2
=
CHINESE ACADEMY OF SCIENCES -2—

IS
=

UNIVERSITY OF TORONTO

UNIVERSITY OF NAPLES FEDERICO I

UNIVERSIDAD DE LAS PALMAS DE GRAN 24
CANARIA

29

21
UNIVERSITY OF HONG KONG 30

4]

ISTITUTO DI SCIENZE APPLICATE E SISTEMI 36
INTELLIGENTI 41
EDUARDO CAIANIELLO ISASI CNR 6

36
CONSIGLIO NAZIONALE DELLE RICERCHE CNR 41

T

0 5 10 15 20 25 30 35 40 45 50
s AC aTC =TP

Figure 9. The most contributing affiliations.
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From the perspective of total citations, the university of toronto occupies the most
contributing institution with 47, and the second through fifth highest contributing research
institutions are the icar central inland fisheries research institute (46), indian council of agri-
cultural research icar (46), consiglio nazionale delle ricerche cnr (41), and istituto di scienze
applicate e sistemi intelligenti eduardo caianiello isasi cnr (41). The situation motivates us
to further examine the collaborative relationship among these more contributing research
institutes and help understand more which institute is popular in the related Al-based
microplastic-imaging research area.

4.1.3. The Cooperation Networks of All Institutions

There are 133 institutions in the field of Al-based microplastics imaging. Figure 10
denotes the collaborative relationship network structure for 133 institutes, among of which
there are the tightest collaborative network with 13 institutes. From Figure 10 the node
size represents the total number of published documents by the related co-operation
institutions. The gray nodes present no partnership between the institutions that published
any document. There is no single organization or individual can stand alone in the face of
new microplastic pollutants and must seek cooperation to face the environmental crisis.
In order to improve the poor relationship situation, collaboration dramatically has to be
strengthened for these isolated institutions so as to contribute more and remove “data
island” in further research area.

chineswad sci deeptrace technol srl

gdansk univ technol natl res g@uincil italy yotouniv  china ug@v geosci

hnankai univ italian natl res council irsa

purency gmb aarhus univ

hellen ctr.marine re . A
*haverford coll  univ las palmas gran canaria univ hong kong

northumbria univ

univ gothenburg japan sci & technol agcy

natl res council cnr italy city univihong kong
cnr

univ‘pnto univ sydney ohio state univ

zhejiang univ
natl res council isasi cnr

cnrisasi

univ estadual campinagmituniv

khulna univ engn & technol kue

ifremer hohaiuniv
rise Itd tsinghua univ egger res & consulting
artha kaust
sakarya univ - ) . .
kazan fed univ cent inland fisheries res inst
brno univ te@nol vut brno  Johann-strauss-str 8 ctr dev adv comp
flanders marine inst vliz guangxi acad sci

charles &furt univ W

Figure 10. Collaboration networks of all 133 institutes (visualized with VOSviewer).

4.1.4. The Most Active Authors

Using Sankey diagrams, it is very helpful to show the correlation between active au-
thors (number of pieces of literature), authors’ countries, and authors’ scientific institutions.
To a certain extent, it can reflect the level of author activity. Based on the results of this
statistics from Figure 11 between 2018 and 2022, 356 authors were involved in research area
over the past five years. The most active authors were involved in the research area from
Figure 11. According to the statistics, Bianco V is the most active author from Consiglio
Nazionale delle Ricerche (CNR) in Italy who published six articles with H-index (3). In
addition, from Figure 11, we can see further that Ferraro P., Memmolo P., Carcagni P. and
Distante C. from the same institute called Consiglio Nazionale delle Ricerche (CNR) which
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is the same one with Bianco V’s and also there are still three authors, Lam E.Y., Yeung C.H.,
and Zhu Y.M,, from the same institute called University of Hong Kong. This phenomenon
revealed that the researchers from the same institute are easier to carry out research and
cooperation internally in the relevant fields.

4.1.5. The Closest Cooperation Network of Authors

As shown from Figure 12, we can see that there are some hot-spot areas which there
are several authors with a close working relationship. In addition, there are too many
gray nodes which indicate that the authors did not have any cooperation or link with
other institutions. According to the above visualization analysis, different colored clusters
almost have their own close cooperation and the related authors from the same institu-
tion just only worked together and performed the research internally, but for different
institutions, the authors missed the cooperation in the network where there is no link or
connection between different colored groups which called “Data Island”. It can shed some
lights from this phenomenon that the idea of collaboration deserves to be promoted and
strengthened in different institutions among different countries attributed to facing new
environmental problems.

Bianca V (6)
Ferrara P (6)

Memmolo P (5) Consiglio Nazionale delle Ricerche(CNR)

Merola F  (5)) taly

Carcagni P (5)

Distante C (5)

Lam EY (5)

University of Hong Kong
Veyng CH (4)

China

Zhu V M (4]

I Universidad de Las Palmas de Gran Canaria

Castrillon santana M (3)

I Spain

Figure 11. The most active authors from 2018 to 2022.

4.1.6. Co-Occurrence Author Keywords

Keyword analysis is very helpful in identifying trends and trajectories in any field [43].
Keywords are very convenient to show on a topic of a specific field of research and help
highlight the active themes in the document [44].
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Figure 12. Closest collaborative relationship of authors (visualized with VOSviewer) by setting the
threshold to 1.

Figure 13 reflects the co-occurrence network from author keywords’ perspective in
the research area. The keyword co-occurrence network diagram can give a correlational
association that exists between several keywords, and this association can be expressed in
terms of the frequency of co-occurrence. It is generally believed that the more the number
of occurrences of a word pair in the same document, the stronger the relationship between
the two topics. A total of 357 author keywords were retrieved by setting the least parameter
to 2 and joining deep learning, machine learning, classification, and artificial intelligence
into microplastic-imaging field.

From Figure 13 the node signifies the keywords of authors, and the node-size repre-
sents the occurrences. Each connection has a strength, which is the Links attribute and the
Total link strength attribute. The larger the value, the stronger the connection strength. In
the visualization of a network map, nodes with higher weights will be displayed larger than
nodes with lower weights in a cluster. Nodes, which stand for different author keywords,
may be put into various groups. A cluster consists of related nodes around a theme in
a map. Specifically, the link of “microplastics” is 73 and the second is machine learning
with 62, queued by deep learning with 49, classification with 38, artificial intelligence with
22. Therefore, it roughly and vividly characterizes the topic keywords mapping network
around the Al-based microplastic-imaging technology from the perspective of keyword
co-occurrence network.
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Figure 13. Keyword co-occurrence network structure (visualized with VOSviewer on data).

4.2. Citation and Co-Citation Structure Analysis

In order to analyze the activity of the citation authors and references deeply, this sub-
chapter carries out cited analysis and co-cited analysis from the perspective of authors and
references. Thus, scholars interested in Al-based microplastic-imaging technology field can
pinpoint the relatively well-referenced literature and academics exactly. Citation analysis
uses various statistical methods, mathematics and other tools to reveal the status quo, inter-
nal correlation of the existing knowledge base in the Al-based microplastic-imaging field.

4.2.1. Citation Network Structure Analysis of Authors

According to VOSviewer, the citation network is presented in Figure 14. From the
citation network structure, 43 of 365 citation authors construct the closest relationship
network. In addition, these 43 authors are grouped into five clusters. Nodes and their sizes
represent authors and their citation level, individually. The larger the node, the more the
authors are cited. Lam Edmund y, Zhu Yanmin, Bianco Vittorio, and Ferraro Pietro in the
citation network have the larger sizes of nodes.
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Figure 14. Cited author network structure (Threshold = 2) (visualized with VOSviewer).

For detailed information, there are the most cited authors based on some important
indicators, containing Total Publications, Total Cited, Links, and Total Link Strength by
setting the threshold of 2 in Figure 15. Based on the results of Figure 15, in these involved
authors Ferraro, Pietro, Bianco, and Vittorio are the most active through 6 publications
and 41 citations from the same institute called Consiglio Nazionale delle Ricerche (CNR).
Ferraro, Pietro and Bianco, Vittorio focused on researching the microplastics including
microplastics identification, classifying and automatic detection via holographic imaging
and machine Learning [45-47].
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Figure 15. The most active citation authors.
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4.2.2. Co-Citation Network Structure Analysis of Authors

In Figure 16, 162 of the 2158 co-cited authors construct the tightest co-citation relation-
ship which are separated into five clusters with different colors (red, blue, purple, amber,
and green). The link between two co-cited authors denotes both appeared in the same
document at the same time. The stronger the line, the more often two authors are co-cited.
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Figure 16. Co-cited network of authors (Threshold = 4) (visualized with VOSviewer).

Figure 17 details the most co-citation authors according to related indicators, such as
number of citations, links, and the total link strength.
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Figure 17. The most co-citation authors.
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Additionally, Primpke S. is the most co-citation author from the co-citation network
with citation of 40, which 278 authors cited. Primpke S. specializes microplastics classifica-
tion and imaging, critical assessment, and identification [48,49].

Furthermore, a citation burst can help point out a burst object within a time period
which is associated with a surge of citations. In Figure 18, from 2018 to 2022, Simonyan K is
the best citation burst author between 2020 and 2022 from bibliometrics perspective.

Rank Cited Authors Strength Begin End 2012-2022
1 Van Cauwenberghel 1.9 2018 2020 ———
2 Galgani F 1.84 2018 2019 —
3 Simonyan K 1.71 2020 2022 —
4  BarbozaLGA 1.4 2019 2020 —
5 Browne MA 1.18 2018 2020 p——

Figure 18. The most co-cited authors with citation bursts (Visualized with CiteSpace. The red bar:
the year of the citation burst, and the light blue color: no citation burst.).

4.2.3. Citation Network Structure Analysis of References

From Figure 19 combined with Figure 20, it clearly shows that 34 of 69 documents
constitute the cited network of references. The most active cited references are Martin (2018)
with 69, which is marked the most size of node with different colors (blue, red, amber,
purple and green) for different cited reference networks in Figure 19. The second is Fallati
(2019) with 51, followed by Cowger (2020) with 47, Ng (2020) with 34, and Guo (2020)
with 34.
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Figure 19. Cited reference network structure (visualized with VOSviewer) (Threshold = 4).
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Figure 20. The most cited references.

4.2.4. Co-Citation Network Structure Analysis of References

The co-cited references around Al-based microplastic-imaging technologies were
studied in a mapping. Based on VOSviewer by setting threshold to five, 61 of 2655 cited
references network with three main groups (red, blue, and green) is visualized in Figure 21.
Coupled with Figure 22, one reference has the strongest citation with 20, i.e., plastic waste
inputs from land into the ocean. It provided an estimation about the mass of land-based
plastic waste entering the ocean [50], and was published on Science in 2015, followed
by Hidalgo-ruz et al. [49] and Primpke et al. [48] with citation 18 and 14. As shown in
Figure 22, the most active co-cited references can be reflected that all of them constitute the
intellective base to understand and investigate further in the microplastics field.
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Figure 21. Co-cited reference network (visualized with VOSviewer).
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Figure 22. The most co-citation references from 2018 to 2022.

5. Research Hot-Spots and Development Trends

The use of Al methods to revolutionize environmental science was progressing toward
multiple cross-cutting areas, dramatically increasing aspects of the ecology of plastisphere,
microplastics toxicity, rapid identification, and volume assessment of microplastics, which
help to master the research hot-spots, knowledge flow and development temporal evolution
on Al-based microplastic-imaging technologies in this section.

5.1. Knowledge Flow Analysis Based on Overlay Journals

The overlay journal view is engaged in our knowledge flow analysis, which helps
reveal which knowledge domains currently construct the knowledge base for the current
research or research front. From the perspective of the areas in which the existing literature
is located from Web of Science database, which existing knowledge base has a large impact
on the current research frontier, and which has less impact, or even no impact. Thus,
research areas for further collaboration or strengthening can be derived from the journal
overlay view.

In order to describe the knowledge flow of the publications more visually, the overlay
journal analysis was discussed [39]. The mapping reveals quite a few things clearly, for
example, which journals are most popular in terms of how frequently they publish papers
on the topic. The overlay journal graph consists of two parts, such as citing side in the left
side, and cited side in the left side. The curved lines signify the relationship between the
citing side and cited side.

From the perspective of citation, journals published on the left side and journals
cited on the right side are relatively concentrated. To make it easier to understand, the
red arrow with knowledge workflow direction in Figure 23 indicates that the current
literature knowledge comes from the knowledge domain of the cited journal on the right
side. On the left about citing journal map, the research themes mainly fall into group 1 with
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mathematics, systems, mathematical, group 3 with ecology, earth, marine, group 5 with
physics, materials, chemistry, and group 7 with veterinary, animal, science. Accordingly, for
these research themes the total number of authors is enormous. On the right side about the
cited journal map, the research literature covers a lot of areas, such as system, computing,
computer in group 1, environment, toxicology, nutrition in group 2, chemistry, materials,
and physics in group 4.
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Figure 23. Overlay journals analysis of all 69 publications (generated using CiteSpace on data).

From the perspective of knowledge exchange, the knowledge flow mainly flows
from journals such as chemistry, materials, physics, environment, toxicology, nutrition,
system, computing, and computers to the citing journals such as mathematics, systems,
mathematical, ecology, earth, marine, physics, materials, chemistry, veterinary, animals,
and science.

By contrast, the research themes in Al-based microplastic-imaging technology fields
have played an important role in various areas, and continue to expand its influence in
future days. However, for now, it can also be seen that the current Al-based microplastic
imaging technology is relatively concentrated, and most areas are not yet covered in depth,
indicating that the current research is not extensive enough.

5.2. Keywords Network and Their Temporal Evolution

A color temporal bar is located at the bottom of the graph in the visualization in
Figure 24. The color temporal bar expresses how occurrences are mapped to colors based on
related keywords from May 2019 to May 2021. In this temporal evolution graph, keywords
dyed in cool tones signify a relatively early year of research activities, conversely, keywords
dyed in warm tones indicate a relatively late year of research activities. The whole figure
reflects the temporal evolution of keywords over time in the Al-based microplastic image
technology field over the past five years.
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Figure 24. Keywords temporal evolution (visualized with VOSviewer).

Based on the text box color, the overall time period is divided into two time periods,
roughly. The former period is the microparticles and classification from May 2019 to May
2020, and the main focus is on microplastics particles, microplastics pollution and image
classification using some optical instruments and devices, UAV, etc. Based on artificial
intelligence technologies, the second half was from May 2020 to as of now, scholars devote
themselves to the quantitative effects of microplastics, automation, identification in different
environment, such as marine, surface waters and climate change via machine learning,
deep learning, and neutral network algorithm. To a certain extent, artificial intelligence
technology promotes the related microplastic-imaging technologies rapidly and in future it
should still play an important role in microplastic-imaging direction.

5.3. Research Hot-Spots Analysis of Cluster View

The cluster view in the CiteSpace system can reflect the distribution of research fields
from different perspectives. Under the cluster visualization graph of Al-based microplastic-
imaging technologies in Figure 25, 7 clusters are separated and marked with #0—#6 with
different colors (red, green, amber, dark blue, cyan blue, orange, and purple), which mainly
occurs from 2018 to 2022.

By reviewing the development history of artificial intelligence in microplastic imaging
all over the world, it can be found that with the rapid development of artificial intelli-
gence technology, machine learning, especially deep learning, is widely introduced into
various research areas, such as imaging, recognition, classification, and quantification of
microplastics imaging. Due to its powerful ability to generalize features from data rather
than manually identify them based on domain-specific knowledge, deep learning has
rapidly become a mainstream artificial intelligence technique in the past few years and
has significantly improved the performance of microplastic-imaging applications. From
the cluster view, there are seven clusters (#0 deep learning, #1 environmental monitor-
ing, #2 microbial communities, #3 classification technique, #4 automatic quantification, #5
identification technologies and #6 other research trends) which would be analyzed further.
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Figure 25. Research hot-spots from cluster view (generated using CiteSpace on data).

The #0 cluster deals with deep learning research in anthropology marine debris and
microplastics, with research subjects mainly about deep learning algorithm, artificial neu-
tral network, transfer learning, microparticles, and k-nearest neighbor (KNN) mode. From
2018, scholars paid attention to the critical keyword of deep learning in environmental mi-
croplastics fields and up to now too many scholars treat deep learning model and algorithm
combined with microplastics fields as a hot-spot research direction and also in this research
direction there are too many scholars and fruitful achievements. With development of deep
learning algorithm and computer vision and artificial intelligence, scholars introduced
deep learning algorithms to improve to monitor or detect or classify micro-plastics. Mani-
fold Embedded Distribution Alignment (MEDA) transfer learning algorithm as modelling
method in combination with the ultra-portable Near-infrared (NIR) sensor was a promising
solution for low-cost and efficient field detection of plastic contaminated level in soil [51].
A deep-learning method was demonstrated for the removal of instrumental noise and
unwanted spectral artifacts in Fourier transform infrared (FTIR) or Raman spectra, espe-
cially in automated applications in which a large number of spectra have to be acquired
within limited time [52]. A robust classifier based on k-nearest neighbor (KNN) model was
innovatively proposed to differentiate the chemical types of environmental MPs samples to
classify the environmental MPs and effectively eliminate the interference of spectral distor-
tions and diversity [53]. A machine learning model combined image analysis of fluorescent
particles with classification models was proposed to detect and identify particles spiked in
marine environmental matrices in a straightforward, cost- and time-effective yet reliable
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way [54]. A machine learning algorithm, based on k-nearest neighbors (KNN) classification
was used to efficiently identify FTIR spectra of classical polymers such as poly(ethylene) in
a fast and reliable automated way [46].

The #1 cluster concentrates on the environmental monitoring on marine debris pol-
lution. From 2018 marine microplastics pollution has already attracted more and more
attention so that scholars have increased the monitoring of marine microplastics particles,
which is attributed to the large scale of microplastics. In the past 5 years, microplastics envi-
ronmental monitoring is always another hot-spot research direction. Garbage classification
by aerial images manual and automatic processing through machine learning are reliable
and results justify the implementation [11,55]. The state-of-the-art deep-learning-based
autonomic supervisory control system containing optimally smart robots works well for
monitoring underwater ecosystems and marine debris to acquire underwater sea life and
debris floating on the ocean surface [56]. With an unmanned aerial vehicle (UAV) and deep
learning computational methods, monitoring a wide area at a low cost in a standardized
was introduced to estimate the abundance and area of marine debris coverage and also
related hotspots where marine debris accumulates [57].

The cluster #2 reveals microbial communities to explore and study the environmen-
tal impact of a range of microplastics and microplastics water-soluble polymers. From
cluster #2 timeline view, especially in the development of artificial intelligence technology,
the impact of microplastics and polymers on the environment has increasingly become
a research hotspot. It includes research subjects of recognition, bioaccumulation, base line
correction, plastisphere community, algae, aggregation, and food quality. Biomarkers of
the plastisphere were studied using random-forest machine learning about the impact for
the microbial ecology of the new anthropogenic ecosystem—plastisphere and explored
environmental drivers of the plastisphere community variation in the freshwater and sea-
water ecosystems [58]. To better understand the hazardous effect of micro-plastics, in vivo
and in vitro toxicity database and deep learning artificial neural network models combined
approach is appropriate to provide insight into the toxicity mechanism of the broad range
of environmental chemicals, such as plastic additives [59]. Machine learning algorithm
revealed a close association between microplastics content in fishes and surface water,
indicating risk associated with floating microplastics to the aquatic biota for occurrence,
fate and removal of microplastics as heavy metal vector in natural wastewater treatment
wetland system [60]. A multi-feature superposition analysis boosting (MFAB) machine
learning (ML) approach identified and predicted the importance, interaction networks and
superposition effects of multiple features about microplastics pollutants on realistic environ-
ments in complicated climatic and geographic scenarios, overcoming the bias from general
studies [61]. Based on machine-learning prediction MP size is the most critical factor that
should be considered in future laboratory tests and eco-toxicological risk assessments for
microalgae [55].

The #3 cluster offers a series of classification technique and exploratory research. It
includes research subjects of transfer learning, image processing, classification tree, ana-
lytical model, machine learning, and automatic identification. Machine learning models
have always been treated as a research hotspot especially for microplastics classification
technique recently. In the past five years, scholars have already explored and studied
different microplastics classifier methods and models in combination with specific sce-
narios to detect and classify microplastics. The holographic coherent imaging approach
based on machine learning (ML) is able to identify microplastics independently from their
morphology, size, and different types of plastic materials, thus boosting the classification
performance and reaching accuracy higher than 99% in classifying thousands of items [45].
A new approach multiple fluorescence signals from the sensor via supervised machine
learning, which specifically or nonspecifically interacted with the polymers was applied
for polymer classification for next-generation sensing systems in wastewater or natural
environments [62]. A polarization-resolved holographic flow cytometer in a Lab-on-Chip
(LoC) platform was engaged to add material specificity while operating in a microfluidic
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stream modality in classifying natural and microplastics fibers through a machine learning
numerical pipeline [63,64]. A new approach for the classification of microbeads (MBs)
based on microscopic images via a Convolutional Neural Network (CNN) was introduced
to classify, and characterizing microplastics, which achieved a classification performance of
89% for microbeads (MBs) in wastewater [64].

The #4 cluster reveals automatic quantification technologies of microplastic-imaging
segmentation. Due to the large-capacity characteristics of microplastics particles, artificial
intelligence technologies such as convolutional neutral network, image segmentation, are
used to automatically identify and count microplastics quickly and accurately, which is still
a hot-spot research direction for scholars from all over the world. An ad-hoc methodology
for monitoring and automatically quantifying Anthropogenic Marine Debris (AMD), based
on the combined use of a commercial Unmanned Aerial Vehicle (UAV) and a deep-learning-
based software (such as PlasticFinder) was demonstrated—for the first time—the potential
of deep learning for the automatic detection and quantification of Anthropogenic Marine
Debris (AMD) [65]. High-performance segmentation and shape classification based on
deep learning (U-Net and ResUNet) were engaged in scanning electron micrographs of
microplastics particles (fragments or beads) in the range of 50 pm-1 mm and fibers with
diameters around 10 pm with high accuracy, which is remarkably cheaper and faster than
manual labor [66]. A high throughput screening method based on near-infrared hyperspec-
tral imaging (HSI-NIR) was proposed to identify microplastics in beach sand automatically
with minimum sample preparation using multivariate supervised soft independent mod-
elling of class analogy (SIMCA) classification models [67]. A U-Net neural network was
trained to segment microplastics and image post-processing techniques were then applied
to count the number of microplastics as well as highlight their position in an image for
the automated counting of microplastics [68]. The use of Kernel ridge regression-based
machine learning to estimate the number of microplastics particles on the basis of aggre-
gate particle weight measurements is better at predicting the counts of larger and more
homogeneous samples [69].

The #5 cluster explores several new methods about microplastics identification tech-
nologies combined spectroscopic techniques with machine learning. The research subjects
are mainly about infrared spectroscopy, deep learning, microscopy, water monitoring and
FTIR. ATR-FTIR, NIR reflectance spectroscopy, and LIBS coupled with machine learning
classifiers can be used to identify both consumer and environmental plastic samples of
plastic-type identification and characterization rapidly [70]. Artificial intelligence-enabled
coherent imaging holographic technologies was engaged in identifying and mapping the
microparticles content of marine waters so as to unlock new possibilities in the fields of
diagnostics and environmental monitoring [71]

The #6 cluster presents other research trends around related microplastics pollution.
The research subjects are mainly about prediction, deep learning, image dataset, and
surgical waste. Particle and salinity sensing for the marine environment via deep learning
using a Raspberry Pi was proposed to identify mixtures of particles in a solution via
analysis of scattered light to demonstrate a portable and low-cost environmental marine
sensor technology [72]. An improved random forest machine learning regression model
to the observed litter concentrations was investigated in which environmental variables
play an important role in the beaching process and exploring the variability of beach litter
concentrations and the related further finding is that tides play an especially important
role, where an increasing tidal variability and tidal height leads to less litter found on
beaches [73].The t-distributed stochastic neighbor embedding machine learning algorithm
revealed a strong association between microplastics abundance with turbidity, phosphate,
and nitrate, which was having comparable microplastics removal efficiency with previously
reported advanced way [60]. Since these types of surgical masks and gloves waste are
scattered around us and turned into microplastics during the pandemic of COVID-19,
different versions of the You Only Look Once (YOLO) are applied as the architecture of
a computer vision-based system for surgical waste detection [74].
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In Figure 25, all of author keywords are separated into 7 clusters, such as environmen-
tal monitoring, microplastics, deep learning, machine learning, unmanned aerial vehicles,
shape classification, automation, and chemometrics. Cluster #0 is the category with the
longest time. There are four hot-spot research fields which are machine learning, microplas-
tics, convolutional neural network and deep learning as shown via tree ring history style in
Figure 25. The vast majority of keywords broke out with the development of artificial intelli-
gence, such as image classification, size, quantification, counting, identification, recognition,
and image processing. With the development of IT, special for advanced artificial intelli-
gence technologies, it rapidly promoted artificial intelligence-based microplastic imaging in
different research directions. Especially, deep learning is another emerging hot-spot in the
last few years again after machine learning, and the phenomena obtained more attention
from scholars and scientific research institutions. Therefore, it is particularly important
to examine the current research achievements in a timely manner, which emphasizes the
significance of this review once again.

6. Discussion

The research hot-spots in the field of Al-based microplastic imaging are mainly con-
centrated in specific practical technologies and the role of the microplastic-imaging fields
is emphasized. Al-based microplastic imaging is the integration of microplastic imaging
and artificial intelligence technology and environment science, the latter promotes the de-
velopment and progress of the former dramatically. Consequently, in the next period, due
to Al methodology development with many problems remaining, how to jointly achieve
deep cross-domain innovation between MPs imaging and Al will be a very significant
challenge. Several issues should be seriously considered, such as depth and interpretability
of algorithmic models, cooperation features, data open access, the and data complexity
from huge-volume imagery.

6.1. Gap between Deep CNNs Algorithm Application and MPs Imaging Technology

In order to acquire relevant metric data information of microplastics (1 um-5 mm),
image segmentation technologies are introduced to recognize the specified MPs image from
background images and other particles. Although automated methods for identification
and classifying have been very successfully in medical image field, there is still a certain gap
in the application of these methods to microplastic imaging due to the size class distribution
which is the most sensitive parameters used by artificial intelligence from microplastics.

At this time, the need for new definitions and new methods for the identification,
quantification, and characterization of existing microplastics is evident in the high com-
plexity and diversity of studying this, perhaps the most challenging, analyte. In order to
meet the quantification method of microplastics, it is necessary to reliably and sensitively
identify, quantify and characterize MPs in the whole size range and different media, and
establish or improve the existing artificial assumptions, data models and pretreatment from
the perspective of artificial intelligence. However, this work requires further in-depth coop-
eration between artificial intelligence and chemistry, marine science, and environmental
science, and enhances interdisciplinary research and cooperation.

Due to the significant differences in microplastics dimensions (1 um-5 mm), there
is no one-size-fits-all solution for microplastics. In terms of identification and classifying
and counting on marine debris pollution in clusters #3—#5 from Figure 25, these methods
often meet some issues with the classification of irregular object patterns and a relatively
large noise background and interference signal, such as chain-aggregated, convex-shaped,
and noise. Additionally, some of these algorithms rely on too much human assumptions
and various time-consuming data prepossessing, which is still in a semi-artificial and
semi-intelligent state, it is very inconvenient to detect and identify specified shapes of
microplastics. In the context of microplastics classification, the pixels of the particles
must be obtained to estimate their size. In this case, more deep-learning segmentation
architectures (such as FCNN, Mask-RCNN, and U-Net) can be used, because they can not
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only detect objects, but also label each pixel with the class of objects around it. Techniques
for automatically counting and classifying microplastic particles between 1 um and 5 mm in
size have not been widely studied and could stimulate the development of new analytical
methods in a number of interdisciplinary fields.

With the application of advanced machine learning, especially deep learning, such as
GoogLeNet, ResNet, and U-net, deep convolutional neural networks (CNNs) have once
again replaced traditional ML algorithms in a wide variety of research fields. Deep learning
networks have approached or surpassed humans in some specific tasks, but there is still no
one-size-fits-all algorithm that can solve all problems. In solving a certain class of prob-
lems, it seems to be extremely important to choose and customize appropriate model and
algorithm to solve a given problem. To some certain more depth CNNs model is designed
when it is engaged into a complicated method for a specific problem. Unfortunately, the
more depth the deep CNNs model algorithm designs, the more parameters the model
needs. Therefore, it is hard for the interpretability of the model and how to find tradeoff
between performance and interpretability for deep CNNs model is a critical point. In other
words, it is worth noting that the lack of transparency for a deep CNNs algorithm may
make the method unacceptable and the balance strategy between the interpretability and
performance is a critical thinking for constructing a deep CNNs model.

6.2. Data Open Access and Cooperation Mechanisms

In order to be able to train deep neural networks, there is an increasingly strong de-
mand for large-scale real datasets with a large number of manually annotated results. From
the publications of WoS in the past five years in the Al-based MPs imaging field, although
deep CNNs models have been already introduced into different MPs environmental fields,
there are still highly demanding for long-term data sharing and co-operation mechanisms
from different institutes. In terms of microbial communities on marine debris pollution in
clusters #1 from Figure 25, with the help of advanced machine learning approaches the
existing deep learning methods coupled with data set, such as ChemIDplus and ToxCast,
published and shared images database can be optimized and refactored based on the avail-
able intellective base. However, the most possible obstacle is the lack of related original
data which cannot be accessible from different organizations or institutes so that the full
potential of deep CNNs models is restricted by limited data open access. Furthermore, most
productive authors are always from the same institute and have the closest co-operation
relationship internally from Figures 10-12. Thus, the severe situation made the raw data
sharing become dramatically worse. From the unbalance collaboration network of coun-
tries/regions in Figure 8, the developed countries need to improve the widespread data
open-access with developing countries, such as South-America and Africa, and help more
institutes and countries co-operate in date set, artificial intelligence, information sharing,
etc., to fill in the gaps and deficiencies for the above knowledge and solve the “data island”
and the current situation of working behind closed doors.

6.3. Demand for Automatic Processing Innovation of the High-Volume Imagery

There are some challenges in huge volume of anthropogenic plastic debris. Therefore,
there are still major bottlenecks in the estimation of efficient access to beach litter. With the
help of advanced UAV technology, smart robot technology, etc., techniques for processing
high-throughput image data generated by UAVs were engaged in this research area, which
is that the huge volume of images was developed through machine learning and deep
learning, applied in identification and classification. To a certain extent, although the
machine learning tool encountered too many challenges in correctly identifying objects
based on the high-resolution images from UAYV, such as low image resolution, false positives,
inaccuracy, etc., this type of demonstration is still good practice in efficiently acquiring
anthropogenic plastic debris which is promising and promotes efforts to further develop
new technologies and implement them on a larger scale and scope.
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Another burning question is from tremendous amounts and different data types,
which posed lots of challenges to the data pre-process. Many types of tremendous MPs
imagery are hard to pre-process before coupling with deep CNNs algorithm, such as
data scaling. Accordingly, based on different deep CNNs algorithms, tremendous MPs
imagery dataset, including different ranges, units and scales should be rescaled to meet the
corresponding data standardization and prerequisite. The complexity from huge volume
data posed the great challenge, which is the major obstacle on automatic processing of the
high-volume imagery.

7. Conclusions and Perspectives

Although a large number of data have been published in terms of automatic quan-
tification and interaction with the ecology of anthropogenic plastic debris, there are still
many outstanding problems in terms of Al technical limitations, data sharing, data com-
plexity from huge-volume imagery, depth and interpretability of algorithmic models, and
cooperation features, etc. To realize a wider use of advanced machine learning approaches
in microplastic-imaging fields, there are still various challenges waiting for solutions to
fill these technology and knowledge gaps in future. Among them, exploring efficient and
low-cost automatic quantification of microplastics in images by their physical characteriz-
ing properties is the most urgent and important. It is worth noting that the problems of
microplastics water-soluble synthetic polymers and interaction with other ecology environ-
ments are critical to broaden its the depth of investigation with the help of deep learning
technologies. Looking for efficient artificial intelligence algorithms and rapidly quantifi-
cation methods, even including intelligent robot technology, smart UAYV, is important to
reduce time-consuming and promote its application and efficiency in microplastics imaging.
Moreover, the experimental study on the creating and sharing robust data set, such as
spectral libraries and toxicity databases, is still at the early stage, which are still needed to
strengthen cooperation and sharing between different countries and institutes. It is also
important to optimize and refactor the existing deep learning models and interpretability
of deep CNNs model based on the available intellective base. Thus, the corresponding
experimental and theoretical work should be further carried out in the intersection of
artificial intelligence and microplastics in the near future. Again, it is expected that these
perspectives will provide some insight in the future to help reduce and minimize the impact
of microplastics on the environment and human health.
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