
Citation: Zhou, S.; Wu, X.; Jiang, F.;

Huang, Q.; Huang, C. Emotion

Recognition from Large-Scale Video

Clips with Cross-Attention and

Hybrid Feature Weighting Neural

Networks. Int. J. Environ. Res. Public

Health 2023, 20, 1400. https://

doi.org/10.3390/ijerph20021400

Academic Editor: Sunghyup

Sean Hyun

Received: 19 December 2022

Revised: 6 January 2023

Accepted: 7 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Emotion Recognition from Large-Scale Video Clips with
Cross-Attention and Hybrid Feature Weighting
Neural Networks
Siwei Zhou, Xuemei Wu, Fan Jiang, Qionghao Huang * and Changqin Huang

Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province,
Zhejiang Normal University, Jinhua 321004, China; siweizhou@zjnu.edu.cn (S.Z.);
wuxuemei@zjnu.edu.cn (X.W.); fanjiang@zjnu.edu.cn (F.J.); cqhuang@163.com (C.H.)
* Correspondence: 2018010055@m.scnu.edu.cn

Abstract: The emotion of humans is an important indicator or reflection of their mental states,
e.g., satisfaction or stress, and recognizing or detecting emotion from different media is essential
to perform sequence analysis or for certain applications, e.g., mental health assessments, job stress
level estimation, and tourist satisfaction assessments. Emotion recognition based on computer vision
techniques, as an important method of detecting emotion from visual media (e.g., images or videos) of
human behaviors with the use of plentiful emotional cues, has been extensively investigated because
of its significant applications. However, most existing models neglect inter-feature interaction and
use simple concatenation for feature fusion, failing to capture the crucial complementary gains
between face and context information in video clips, which is significant in addressing the problems
of emotion confusion and emotion misunderstanding. Accordingly, in this paper, to fully exploit the
complementary information between face and context features, we present a novel cross-attention
and hybrid feature weighting network to achieve accurate emotion recognition from large-scale video
clips, and the proposed model consists of a dual-branch encoding (DBE) network, a hierarchical-
attention encoding (HAE) network, and a deep fusion (DF) block. Specifically, the face and context
encoding blocks in the DBE network generate the respective shallow features. After this, the HAE
network uses the cross-attention (CA) block to investigate and capture the complementarity between
facial expression features and their contexts via a cross-channel attention operation. The element
recalibration (ER) block is introduced to revise the feature map of each channel by embedding global
information. Moreover, the adaptive-attention (AA) block in the HAE network is developed to infer
the optimal feature fusion weights and obtain the adaptive emotion features via a hybrid feature
weighting operation. Finally, the DF block integrates these adaptive emotion features to predict an
individual emotional state. Extensive experimental results of the CAER-S dataset demonstrate the
effectiveness of our method, exhibiting its potential in the analysis of tourist reviews with video clips,
estimation of job stress levels with visual emotional evidence, or assessments of mental healthiness
with visual media.

Keywords: emotion recognition; large-scale video clips; deep convolutional neural network; attention
mechanism; cross-channel; deep feature fusion

1. Introduction

The emotion of humans is an important indicator or reflection of their mental states,
e.g., satisfaction or stress, and recognizing or detecting emotion from different media is
essential to perform sequence analysis or different applications [1,2], e.g., mental health as-
sessments, job stress level estimation, and tourist satisfaction assessments. As visual media
(e.g., images or videos) of human behaviors contain plentiful emotional cues, the automatic
recognition of human emotions from these visual materials, as a trending research field
of computer vision, has received much attention in the past decade due to its significance
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in a wide range of computer vision applications, such as education [3], human–computer
interaction [4,5], behavioral science [6], security [7] and health care [8–10]. As an important
basis for emotion science research, emotion category classification models mainly include
discrete classification representation and continuous dimension representation [11]. The
discrete emotion classification model universally defines emotional states with categories in
discrete feature space, such as the seven basic emotions: angry, disgust, fear, happy, neutral,
sad, and surprised. In this paper, we focus on developing a robust deep-neural-network-
based technique to perceive the discrete emotional state of the subject from large-scale
videos or images, and we lay a solid foundation for their application, e.g., in the analysis of
tourist reviews with video clips, the estimation of job stress levels with visual emotional
evidence and the assessment of mental health with visual media.

Researchers have recently introduced different data modalities from traditional emo-
tion recognition tasks, such as visual, speech, and text features [12–15], to conduct more
specific research on human emotion perception. Facial expression has been the de-facto
standard for emotion recognition research among the various data modalities. It is con-
sidered the most effective non-verbal emotion medium, containing the most abundant,
salient, and directly explicit emotional information. Emotion recognition based on facial
expressions has also attracted much research attention. In recent years, with the support of
backbone networks, such as convolutional neural network (CNN) and vision transformer
(ViT), facial expression recognition (FER) methods based on deep neural networks have
achieved impressive performance improvements on major benchmarks [16,17]. However,
many previous studies have revealed that emotion recognition methods that only consider
facial information in real applications often fail to produce stable and ideal results. This
is mainly because (1) a specific facial expression itself in the wild is a combination of
basic emotions, as shown in Figure 1, which can be difficult and confusing to identify and
(2) the vital role of context information, such as gestures, interpersonal interactions, and
scenes, which can compensate for limited emotion information, is ignored. Recently, many
researchers focusing on context-aware emotion recognition have revealed that such context
information, which is regularly utilized as a reference for emotion evaluation, affects and
indicates the emotional state of the subject visually. Therefore, with the additional con-
sideration of context information, methods for context-aware emotion recognition have
been investigated to alleviate the limitations of the aforementioned FER-based emotion
recognition methods.
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Figure 1. Human facial expressions, in reality, can be regarded as a combination of basic expressions.
The label distributions on the facial images are the output of the ResNet-50 network trained on facial
regions of the CAER-S dataset.

While the additional analysis of context information provides us with information
compensation related to emotion perception, the efficient extraction and utilization of
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complementary information between face and context features cannot be underestimated,
which is helpful in understanding the emotion cues underlying respective features. Given
cropped face images, as shown in Figure 2a,b, it is difficult for us to identify the emotional
states of the subjects only by virtue of facial cues, such as muscle curves (from their facial
expressions it seems the subjects are feeling either sad or surprise (in Figure 2a) and surprise
or fear (in Figure 2b)). However, when we present the context information, such as body
movements and the context in which they are, as shown in Figure 1, we can more readily
guess their emotional states as surprise and sad, respectively, based on the combination
of facial expressions and context information. The above emotion information processing,
which can be summarized as “perceiving the emotional state expressed by the subject
under the premise of understanding where and what the subject is doing”, implicitly
contains the perception of inter-feature complementary gains. Focusing on the information
interaction and complementarity between face and context can enable us to rectify the
emotion information understanding of respective features, thereby obtaining the emotion
cues most related to emotion recognition. However, neither the approaches from the
coarse-grained perspective of face-context dual-channel [18,19] nor the approaches from
the multi-channel fine-grained perspective with consideration of face, pose, and non-subject
information [20,21] take into account the effective information interaction between feature
streams, as shown in Figure 3a.

(a)

(b)

Figure 2. Intuition of emotion understanding: for the images in (a,b), the complementary information
between facial expressions and context can rectify our understanding of their respective implied
emotion information, which enables us to perceive the emotional states more precisely.

To address these issues, in this paper, we propose a novel emotion evaluation frame-
work named the cross-attention and hybrid feature weighting network (CAHFW-Net) to
more precisely evaluate human emotions from images from large-scale video clips contain-
ing context information with human facial expression and context information in a joint,
interactive and complementary manner (as shown in Figure 3b). We focus on extracting
and utilizing the complementary information between the features of the face and context,
instead of simple feature fusion using direct concatenation like most existing context-aware
emotion recognition (CAER) methods. Our approach has three stages: shallow encoding,
deep encoding, and deep fusion. First, in the shallow encoding stage, a CNN-based dual-
branch encoding (DBE) architecture is designed to extract the shallow features of facial
expressions and context simultaneously. Second, in the deep feature encoding stage, we
propose a hierarchical-attention encoding (HAE) network to obtain the adaptive emotion
features, which will be fused to predict the final individual emotional state. Specifically,
we define an interaction–rectification (I-R) pair, in which a cross-attention (CA) block
is designed to generate informative complementary features by considering the correla-
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tion and heterogeneity between the features of both face and context in a cross-channel
manner. Then, an element recalibration (ER) block is introduced behind the CA block to
revise each channel’s feature map by embedding global information, thereby capturing
the salient emotion cues and compressing the worthless information. Furthermore, an
adaptive-attention (AA) block is designed to obtain a set of optimal weighted features with
its core operation, namely hybrid feature weighting. Eventually, in the deep fusion stage,
the emotion-adaptive features in the above-mentioned feature set will be fused via a deep
fusion (DF) block hierarchically and densely to predict the final emotion category.
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Figure 3. Intuition of CAHFW-Net: For images as in (a,b), conventional CAER methods that fuse
the features using single-level simple concatenation only as in (a) often fail to overcome emotion
confusion. Unlike these methods, CAHFW-Net introduces inter-channel interaction to capture
complementary information between face and context as in (b).

The main contributions of this paper can be summarized as follows:

• We propose an interaction–rectification pair constructed with cross-attention and
element recalibration blocks in the deep encoding stage of the network (as shown in
Figure 3b). This module adopts the CA block to capture complementary information
between facial expression and context features. Moreover, the introduced ER block can
further rectify the model’s emotion understanding by embedding global information
into respective feature maps.

• To effectively integrate the features of face and context channels, we develop the AA
block to obtain the optimal weighted features via a strategy named hybrid feature
weighting. Additionally, a DF block is defined to fuse these features hierarchically and
densely for final classification (as presented in Figure 3b).

• We use the proposed DBE network, I-R pair module, AA, and DF blocks to construct a
novel deep architecture, i.e., the cross-attention and hybrid feature weighting network
(CAHFW-Net), to predict individual emotional states. Experiments are performed
on a publicly available dataset (i.e., the CAER-S emotion dataset) to demonstrate the
contribution of each block and confirm the effectiveness of our method.

The remainder of this paper is organized as follows. Section 2 overviews the work
related to context-based emotion recognition methods and the attention mechanism in deep
neural networks. Section 3 provides a detailed description of the proposed framework
and algorithm. Our experimental steps and results are presented in Section 4. Finally, the
conclusions are provided in Section 5. To help readers understand our work better, some
notations in this paper are summarized in Table 1.
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Table 1. Summary of the mathematical notations used in this paper.

Symbol Notation

N The number of images
Ii The i-th image
Ii
F The i-th face image

Ii
C The i-th context image with masked facial region

bbox f ace The bounding box of a facial region
F i

F(.) The i-th CNN block of TE block
F i

C(.) The i-th CNN block of front part of CE block
X̄F The output of TE block
X̄C The output of front part of CE block
F i

AH(.) The i-th CNN block of the attention-based highlight module
C1(.) The one-dimensional convolution layer
C2(.) The two-dimensional convolution layer
B(.) The batch normalization layer
M(.) The max pooling layer
δ(.) The ReLU function
σ(.) The softmax function

A The attention map of attention-based highlight module
X̂C The output of CE block

YCA
F The output of first cross-attention operation

ZCA
F The output of first CA block

QF, QC The query of X̄F and X̂C
KC, KZF The key of X̂C and ZCA

F
VF, VC The value of X̄F and X̂C
F f latten(.) The flatten operation
FQ,K,V The function to obtain query, key and value

ZF The tensor flattened from ZCA
F in the last dimension

WTM
F The transformation matrix in GIE of ER block

GF The global information of feature map ZCA
F

RER
F The output of first ER block
λ The fusion weight list of adaptive fusion network

X̃F The tensor after operating global average pooling on X̄F
X̃C The tensor after operating global average pooling on X̂C

X f usion The fused feature for classification
∏(x) The concatenation operator
R̃CA

F The tensor after operating global average pooling on RCA
F

R̃CA
C The tensor after operating global average pooling on RCA

C
λshallow The fusion weight list generated from X̃F and X̃C

λdeep The fusion weight list generated from R̃CA
F and R̃CA

C
f i
AAshallow

, f i
AAdeep

The emotion adaptive features
f1, f2 The intermediate fused feature in deep fusion block
xcls The output feature of network
pi The i-th predicted label
yi The i-th true label

TP, FP, TN , FP True_positive, False_positive, True_negative, False_negative

2. Related Work

Our work relates to two major research directions: context-aware emotion recognition
(CAER) and the attention mechanism in deep neural networks. Here, we focus on several
representative methods closely related to our work.
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2.1. Context-Aware Emotion Recognition

Since the human face contains strong salient information that is conducive to extract-
ing more refined emotion information, such as micro-expressions [22–24], the research on
human emotion recognition methods throughout the past decade has focused on facial
expression analysis [25–29]. Traditional research either uses facial fiducial points based
on the Gabor-feature facial point detector [30] or focuses on facial action unit detection
where a set of facial muscle movements is utilized for encoding corresponding facial
expressions [31,32]. Compared with traditional methods, deep neural networks, such as
deep convolution neural networks (CNNs) and vision transformer (ViTs)-based networks,
can extract deeper and more contextual information [33,34]. To capture the temporal
dynamic variations of expression intensities among consecutive video frames, several
techniques have also been introduced to make interactions across the time axis utilizing
3D-CNNs or graph convolution networks combined with Bi-LSTM [35–37]. However, the
aforementioned methods that primarily rely on face analysis fail to take into account the
context information in sample mining, which means the model cannot overcome the prob-
lems of emotion confusion and misunderstanding (as described in Section 1). Furthermore,
in terms of practical applications, faces’ occlusion and uneven surface illumination limit
models’ steady and efficient performance. This impedes the process of expanding related
research to real-world settings.

Psychological research [38–40] has shown that similar to most psychological pro-
cesses, emotion processes cannot be interpreted in isolation without context information.
To address the limitations of limited emotion information on facial regions on emotion
recognition tasks, several methods integrating visual cues such as body and scene context
into encoding streams have been proposed [18–21], resulting in the evolution of emotion
recognition methods from facial feature analysis to context-aware emotion recognition.
Kosti et al. [18] and Lee et al. [19] make significant strides in the CAER task, proposing
a similar two-stream feature extraction architecture considering the object’s body (face
for [19]) and context features jointly. Lee et al. [19] propose the CAER dataset and leverage
the attention mechanism into the CAER task for the first time; therefore, the model can
better examine the importance of face and context features. From a fine-grained perspective,
Mittal et al. [20] fuse face, pose, context, socio-dynamic context, and inter-agent interactions
to jointly analyze the emotional state. Thuseethan et al. [21] additionally consider facial
expressions and pose information of non-target subjects in the same context. At the same
time, a novel hybrid feature fusion method is proposed to obtain fine-grained information
from feature interaction.

However, most of the aforementioned methods, which still merely adopt single-level
simple concatenation for feature fusion (as presented in Figure 3a), fail to effectively capture
the interactive information and weaken the complementary gains among feature streams.

2.2. Attention Mechanism in Deep Neural Networks

Interest in the attention mechanism, which enables humans to capture valuable goal-
oriented information in complex situations, has recently become a hot topic in research.
The past few years have witnessed various approaches for visual tasks attempting to in-
troduce various attention mechanisms into deep neural networks (e.g., CNN, ViT) with
success. For the unimodal encoding framework, recent studies mainly focus on the at-
tention operation on a homogeneous feature map. Hu et al. [41] investigated the channel
relationship between network features and proposed a squeeze-and-excitation block, which
highlights the beneficial features and suppresses the less useful ones to retain the most
valuable channel information. To emphasize the salient and meaningful features along the
channel and spatial axes, Woo et al. [42] proposed the convolutional block attention module
(CBAM), which sequentially combines two sub-modules (i.e., channel and spatial attention
modules) so that each of the branches can learn “what” and “where” to allocate attention
in the above two principal dimensions, respectively. Wu et al. [43] propose a collabora-
tive multi-attention module to extract the collaborative information of the corresponding
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foreground object by using self-attention to the activation maps of multi-images in the
task of weakly supervised semantic segmentation. Furthermore, Wang et al. [44] propose a
self-supervised equivariant attention mechanism to discover additional supervision and
narrow the gap between fully and weakly supervised semantic segmentation, and improve
the network ability for consistent prediction by incorporating self-attention with equivari-
ant regularization. To improve the performance of face forgery detection for images with
low quality and/or diverse sources, Lin et al. [45] propose an improved Xception method
by embedding the dual-attention feature (i.e., the CBAM) into the original Xception model,
which enables the network to refine and reorganize the high-semantic features captured by
the middle flow of Xecption. For multimodal features, the extension of attention modules
aims to capture the interactive information among features in multi-stream architecture.
Kim et al. [46] proposed a bilinear attention network to exploit bilinear interactions be-
tween input channels of two different modalities. Meanwhile, the joint representations for
each pair of channels are extracted by using low-rank bilinear pooling. Nagrani et al. [47]
proposed a novel ViT-based architecture named multimodal bottleneck transformer, which
restricts the stream of cross-modal information among latent units to condense the most
related inputs in each modality through tight fusion bottlenecks. Chen et al. [48] migrated
multi-scale feature representation learning from CNN [49,50] to ViT and proposed the CA
mechanism to exchange information with non-patch tokens from two feature streams with
different patch sizes. Zhou et al. [51] leverage the motion cues implied in optical flow
features as a cross-channel and bottom-up signal to guide the model’s perception of object
appearance in input images by using the proposed motion-attentive transition module,
which is constructed with the soft attention unit and attention transition unit.

Along the same line of exploring the complementary effect between the features of
different views, as shown in the network constructed by Zhou et al. [51], we adopt a
cross-channel operation into our network to fully capture and exploit the complemen-
tary information between the face and context features. However, compared with the
cross-channel operation in [51] (i.e., the motion-attentive transition), our method (i.e.,
the CA block) can be regarded as an extension of self-attention from unimodal feature
processing to multimodal processing, which is task-specific and has a distinctly different
computational graph.

3. CAHFW-Net Framework for Context-Aware Emotion Recognition

This paper uses the proposed CAHWF-Net to evaluate individual emotional states
by considering the complementary gains implied in the correlation and heterogeneity
between face and context features. Specifically, the face and context images are denoted
as IF = {I1

F, · · · , IN
F } and IC = {I1

C, · · · , IN
C } , respectively, where N is the number of

images. Our ultimate objective is to infer the emotional states p among K emotion labels
{y1, . . . , yK} on discrete space. Our model first obtains the shallow representation pair of
face and context images via the DBE network, constructed with TE and CE blocks. Second,
the complementary information is mined and embedded into corresponding feature maps
through the CA block and ER block in the I-R pair of the HAE network, respectively. Finally,
the AA block in the HAE network produces adaptive emotion features, which then serve
as the inputs of the DF block to estimate the current emotional state. Figure 4 illustrates
the overall pipeline of our proposed framework. In the following, we describe the DBE
network, CA block, ER block, AA block and DF block according to the above model flow.

3.1. Representation Generation by Dual-Branch Encoding Network

The experimental results presented in [52,53] illustrate the strong representation ca-
pacity and promising performance of CNN-based models. Hence, to represent facial and
contextual information, with a proper account of the trade-off between performance and
parameters, we develop a lightweight DBE network to extract the facial and contextual
feature maps, which includes TE and CE blocks, as shown in Figure 4. We first detect
and crop the facial regions from the original images using the CNN-based face detectors
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available in the off-the-shelf library, namely Dlib [54], to build the input set IF to feed into
the TE block. Secondly, to locate the semantic components containing more discriminative
emotion cues, a masking mechanism is introduced to build the input set IC for the CE
block. The i-th masked contextual image, Ii

C ∈ R224×224, for an input image Ii is given as
Equation (1).

Ii
C =

{
Ii(x, y) i f Ii(x, y) /∈ bbox f ace, i ∈ N,
0 otherwise,

(1)

where bbox f ace denotes the bounding box with the coordinate (x, y) produced from face
detector.
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Figure 4. The proposed cross-attention and hybrid feature weighting network (CAHFW-Net) is used
for automatic emotion prediction. The dual-branch encoding (DBE) network is constructed with
target encoding (TE) (dealing with facial regions) and context encoding (CE) blocks, by which a pair
of face-context images can be encoded into respective shallow representations. C, H and W denote the
number of channels, the height, and width of the input tensor, respectively. � refers to element-wise
multiplication. I-R denotes the interaction–rectification pair constructed with cross-attention (CA)
and element recalibration (ER) blocks. The adaptive-attention (AA) block is used to find the optimal
fusion weights for feature integration. GIE refers to Global Information Extraction. GAP and Conv2D
denote the global average pooling and two-dimensional convolution layer. The loss function for the
CAHFW-Net is cross-entropy (CE), as shown in Equation (27).

The dual-branch encoding method achieves representation generation with its core
blocks, namely the TE and the CE blocks. As shown in Figure 5, the TE block and the front
part of the CE block are built with five two-dimensional convolution blocks in the same
stacking manner. Mathematically, the former four 2D convolution blocks and the 5-th one
can be expressed as Equations (2) and (3), respectively.

F k+1
t =M

(
δ
(
B
(
C2(Xk

t )
)))

, k = 0, 1, 2, 3, (2)
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F 5
t = δ

(
B
(
C2(X4

t )
))

, t ∈ {F, C}, (3)

where t is the type of input tensors, and F and C refer to face and context, respectively.
Xk

t is the (k + 1)-th input tensor of C2 layer in face and context encoding blocks. C2 is a
two-dimensional convolution (i.e., a Conv2D layer), while B(.), δ(.) andM(.) refer to the
batch normalization, ReLU, and max-pooling functions. The whole feedforward process
described above can be expressed as

X̄t = Ft(Xt, Wt) ∈ RC×H×W , (4)

where Wt is the parameters for the encoding layers. Ft(.) denotes the stacked two-
dimensional convolution blocks constructed, as shown in Equation (5), while X̄t ∈ {X̄F, X̄C}
is the representation generated via the above process and C× H ×W is the shape of X̄t.

Ft = [F 1
t ,F 2

t , · · · ,F 5
t ]. (5)

Target Encoding Block

…

×M

…

×M

Context Encoding Block

෡𝑿c𝑨



ഥ𝑿𝒄

M = 4

N = 4

Conv2d

Max Pooling

Softmax

ഥ𝑿𝑭

Figure 5. The shallow feature maps of the face and context branches are extracted via a parallel
encoding process using the face and context encoding blocks. X̄F ∈ RC×H×W and X̂C ∈ RC×H×W

are the corresponding results. � denotes the element-wise multiplication. “×M” means that the
enclosed part is performed M times.

Additionally, an attention-based highlight module is developed and appended at the
end of the CE block (as shown in Figure 5), which takes the intermediate feature map
X̄C ∈ RC×H×W as the input to the inference of an attention map A ∈ RH×W , to further
enable the CE block to locate the salient context regions and extract discriminative emotion
cues. H ×W is the spatial resolution of each channel map of X̄C. The complete process of
the attention-based highlight module can be expressed as shown in Equations (6) and (7).

A = σ(F 2
AH(F 1

AH(X̄C)) ∈ RH×W , (6)

X̂C = A� X̄C, (7)

where σ refers to the softmax function, and FAH is the two-dimensional convolution layers
in the attention-based highlight module as expressed in Equation (8)

F i
AH = δ(B(C2(X̄C))), i = 1, 2. (8)

As described above, the dual-branch encoding network utilizes a lightweight CNN-
based framework to produce shallow representations of the face and context branch in
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parallel. Note that the attention map, serving the model to extract discriminative emotion
cues, is implicitly learned in an unsupervised manner.

3.2. Hierarchical Cross-Attention Block and Element-Recalibration Block for Feature Interaction
and Rectification

The cross-channel attention mechanism, with its strong ability to capture inter-feature
correlation and heterogeneity, has certain advantages when it comes to processing the
multi-modality and the multi-view data in the fields of emotion recognition [47], object
detection [55] and image classification [48]. Hence, in this paper, we propose a novel
hierarchical cross-attention method to extract the complementary information between face
and context features in a cross-channel manner, which benefits the model’s understanding
of emotion cues and emotional state prediction.

The aforementioned inter-channel interaction process is conducted through two tiers
of the I-R pair, as shown in Figure 4. Each I-R pair is constructed with one CA block and one
ER block, where the CA block extracts the inter-feature complementary information and
the ER block embeds the global information to the respective representation, to recalibrate
the model’s emotion understanding of the feature regions by sufficiently utilizing the
complementary information previously obtained.

In more detail, for the given facial feature map X̄F ∈ RC×H×W and contextual feature
map X̂C ∈ RC×H×W produced, respectively, via the TE block and CE block, the CA opera-
tion of the first tier of the inter-channel interaction (as shown in Figure 6) can be expressed
using Equations (9) and (10).

YCA
F = Softmax

(
QFK>C√

D

)
VF ∈ RC×D, (9)

ZCA
F = δ(B(C2(Reshape(YCA

F )) ∈ RC×H×W (10)

where T refers to matrix transposition. The query, key, and value of the face and context
features can be obtained using Equation (11), while D is the product of H and W.

QF = FQ(X̄F) ∈ RC×D

KC = FK
(
X̂C
)
∈ RC×D

VF = FV(X̄F) ∈ RC×D
, (11)
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Figure 6. Architecture of cross-attention in the fist I-R pair. The complementary information is
extracted via a cross-channel interaction using the CA operation. ZCA

F ∈ RC×H×W denotes the
corresponding output. The detailed shape of each tensor is presented in this figure.

In our method, for feature map X = {X̄F, X̂C} ∈ RC×H×W , we adopt Conv2D layers
to produce the raw query, key, and value. To obtain the Qi, Ki and Vi in Equation (x), we
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flatten the respective query, key, and value at the last dimension of the tensor. Thus, FQ(.),
FK(.) and FV(.) can uniformly be expressed as Equation (12).

FQ,K,V = F f latten(C2(X)). (12)

where X is the feature map from the TE and CE blocks, i.e., X̄F ∈ RC×H×W and X̂C ∈ RC×H×W .
The complementary information is then extracted via Equation (9) and via Equation (10);

the output is denoted as ZCA
F . Figure 6 illustrates the process of capturing inter-feature

complementary information through cross-attention. We can treat the above process as a
preliminary rectification to the model’s understanding of the facial feature.

Recently, the successful introduction of the ER block [56] and the squeeze-and-excitation
block [57] has resulted in the significant improvement of the model’s representation abil-
ity brought using global information embedding. Thus, to further boost the network’s
emotion representation ability, an ER block (as shown in Figure 4) is introduced to utilize
the underlying complementary information by embedding the global information into the
whole feature map. The generation of global information GF (i.e., GIE in Figure 4) and
recalibration for the feature element can be expressed as shown in Equations (13) and (14),
respectively.

GF = Softmax
(

ZFWTM
F ZF

>)⊗ ZF ∈ RC×(H×W), (13)

RER
F = Reshape

(
ZF �GF

)
∈ RC×H×W , (14)

where ZF ∈ RC×(H×W) is the matrix constructed by flattening the ZCA
F ∈ RC×H×W at its

height dimension, while WTM
F is the transformation matrix, i.e., the weight of a Conv1D

layer. ⊗ and � represent matrix multiplication and element-wise multiplication, respectively.
The process of the second I-R tier to obtain the rectified feature RER

C of the context
branch is similar to that described above, except for the generation of the query, key, and
value for the CA operation. The query, key, and value of the features of the two channels
can be obtained using Equation (15).

QC = FQ
(
X̂C
)
∈ RC×D

KZF = FK
(
RER

F
)
∈ RC×D

VC = FV
(
X̂C
)
∈ RC×D

, (15)

From the above process, it can be observed that CA takes the feature maps of the
face and context channel as a multi-view objective and processes the inter-channel repre-
sentations interactively. Therefore, the cross-attention operation can seamlessly mine the
complementary information by considering inter-channel feature interaction, which can
significantly improve the model’s understanding of emotion cues hidden in the individual
and context regions of the images. Furthermore, from the pipeline of the introduced ER
block, we can see that a Gram-like matrix, which implies the element correlation between
ZF and WTM

F ZF
>, is obtained using Equation (13) without softmax for normalization. Such

a matrix reveals the trade-off among feature elements, that is, the greater the original value
in the feature maps of ZF and WTM

F ZF
>, the greater the value in the same dimension of the

Gram-like matrix. In other words, in line with the principle that the larger the eigenvalue,
the more important the element, the ER block can highlight the feature elements that are
beneficial for emotional state prediction and suppress the less valuable ones. Hence, the ER
block has advantages in extracting the more salient representation of emotion cues.

3.3. Adaptive-Attention Block and Deep Fusion Block to Combine Features

To recognize the final emotional state by combining the face and context effectively,
the approach in [19] uses an adaptive fusion network which combines the facial features
and contextual features by using a feature weighting operation, which can be expressed
as in Equations (16) and (17). The above operation infers the optimal fusion weights for
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the respective features similarly using an attention module to Equation (6) to alleviate the
limitations of the previous methods where a direct concatenation of varied features fails to
achieve subtle and optimal performance.

λ = σ(∏(C1(C1(X̃F)), C1(C1(X̃C)))) ∈ R1×2 (16)

X f usion = ∏(X̃F � λF, X̃C � λC) ∈ R(2×C) (17)

where ∏(.) is a concatenation operator. X̃F and X̃C are the tensors generated by the GAP
layers with the feature maps from the CE and TE blocks as inputs. λ = [[λF, λC]] refers to
the fusion weight list, and σ refers to softmax function.

However, the above process fails to filter ambiguous information, which is unfavor-
able for extracting salient emotion cues. It only utilizes the shallow features and their
dimension-reduced weights without sufficiently considering the valuable complementary
gains between face and context information. Therefore, in our work, supported by the
informative complementary features from the I-R pair, we propose a novel AA-based
fusion block, as shown in Figure 4, to alleviate this limitation and to further enrich the
emotion information of the fused features by using the complementary gains between the
face and context information. Different from the pipeline expressed in Equation (16) and
Equation (17), we not only utilize the deep abstract features, corrected with complementary
information between face and context features, to generate the adaptive features such as
the items in the bracket of Equation (17), we also account for information compensation
by introducing shallow feature maps of face and context, which ensures the model is free
from overfitting to a certain extent and further improves the network’s robustness. To this
end, the process of our proposed AA block can be expressed as in Equations (18)–(21). The
details of the AA block are presented in Figure 7

λshallow = σ(∏(C1(C1(X̃F)), C1(C1(X̃C)))), (18)

λdeep = σ(∏(C1(C1(R̃CA
F )), C1(C1(R̃CA

C )))), (19)

f i
AAshallow

= λdeep[i]� X̃t, i = {0, 1}, t = {C, F}, (20)

f i
AAdeep

= λshallow[i]� R̃t, i = {0, 1}, t = {C, F}, (21)

where λshallow = [[λF
shallow, λC

shallow]] and λdeep = [[λF
deep, λC

deep]] are the optimal fusion

weights. X̃F, X̃C, R̃CA
F and R̃CA

C and RCA
C are the respective feature vectors generated by

GAP layers with X̄F, X̂C, RCA
F and RCA

C as inputs. f i
AAshallow

and f i
AAdeep

are the four adaptive

features generated by the AA block. For given (i = 0, t = C) and (i = 1, t = F), we
can obtain the adaptive feature f 0

AAshallow
and f 1

AAshallow
using Equation (20). Repeating this

process, we can obtain the rest of the adaptive features using Equation (21).
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Figure 7. Adaptive-attention and deep fusion blocks for inferring optimal fusion weights and
integrating the corresponding emotion adaptive features. The hybrid feature weighting is expressed
as Equations (20) and (21).

To combine the adaptive features generated with the AA block for final emotion classi-
fication, i.e., f 0

AAshallow
, f 1

AAshallow
, f 0

AAdeep
and f 1

AAdeep
, a DF block is defined with hierarchical

concatenation and classification parts (as presented in Figure 7), which can be expressed as
Equations (22)–(26).

f1 = Dropout(δ(C1(∏(f 0
AAshallow

, f 0
AAdeep

)))), (22)

f2 = Dropout(δ(C1(∏(f 1
AAshallow

, f 1
AAdeep

)))), (23)

X f usion = ∏(f1, f2), (24)

xcls = σ(C1(Dropout(δ(C1(X f usion))))), (25)

p = argmax(xcls), (26)

where X f usion is the final fused feature for classification. xcls is the final output of network
for classification, and p is the predicted label.

From the above pipeline of feature fusion, it can be seen that the process illustrated by
Equations (16) and (17) can be treated as a particular case of the one by Equations (18)–(21),
in which the inter-feature interaction performed by the CA block is neglected. Furthermore,
as described above, the ER and AA blocks are successively introduced and developed to
sufficiently utilize the complementary information obtained via the CA block and conduct
the multi-feature fusion. Thus, with the removal of the CA block, the whole architecture of
our proposed framework will shift to be consistent with the baseline method, as shown in
Section 4.4.
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3.4. Model Training Strategy

In the process of model training, the training set samples are fed into the proposed
framework in the form of {(Xi

F, Xi
C), yi}Ne

i=1, where (Xi
F, Xi

C) denotes the input pair corre-
sponding to the facial region image and context image in the training set, and yi is the
ground-truth label corresponding to the input pair. Ne is the number of training samples.
To ease the problem of overfitting, the cross-entropy loss function with a flooding level [58]
is utilized for parameter optimization, which can be expressed as:

LC = − 1
Ne

Ne

∑
i=1

K

∑
j=1

log Pr
(

yi = j |
(

Xi
F, Xi

C

)
; Θ
)
+ α, (27)

where α is the hyper-parameter of the flooding level. Pr
(
yi = j |

(
Xi

F, Xi
C
)
; Θ
)

is the prob-
ability that the input pair belongs to the j-th class, and K denotes the total number of
emotion classes. Since the above function is continuously differentiable, we utilize the SGD
optimizer with Nesterov momentum to obtain the optimal parameters [59]. Algorithm 1
details the overall model training process of CAHFW-Net.

Algorithm 1: CAHFW-Net.
Input:
{XF}: A set of images of facial region;
{XC}: A set of context images with facial regions masked;
E: Number of training epochs;
B: Batch size;
Output: Network parameter Θ.
for e = 1 to E do

for b = 1 to B do
/* The TE operation */
X̄F = TE(Xi

F), Xi
F ∈ XF

/* The CE operation */
X̂C = CE(Xi

C), Xi
C ∈ XC

/* The first CA operation */
ZCA

F = CA(X̄F, X̂C)
/* The first ER operation */
RER

F = ER(ZCA
F )

/* The second CA operation */
ZCA

C = CA(X̂C, ZCA
F )

/* The second ER operation */
RER

C = ER(ZCA
C )

/* The Hybrid Feature Weighting operation */
f 0
AAshallow

, f 1
AAshallow

, f 0
AAdeep

, f 1
AAdeep

= AA(RER
F , RER

C , X̄F, X̂C)

/* The hierarchical concatenation operation */
X f usion = DF(f 0

AAshallow
, f 1

AAshallow
, f 0

AAdeep
, f 1

AAdeep
)

/* Output feature for classification */
logits = σ(C1(Dropout(δ(C1(X f usion)))))

/* Loss computation */
L = CrossEntropy(logits, labels)
/* Update network */
Θ = optimize(Θ,L)

end
end
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4. Experiments

To verify our idea and evaluate the effectiveness of the proposed CAHFW-Net, we
conducted experiments on the publicly available context-aware emotion recognition dataset,
namely the CAER-S dataset [19]. This section presents detailed information on the CAER-S
dataset, followed by the implementation details of CAHFW-Net. We then compare the
performance of our approach with some baseline algorithms. Finally, ablation studies are
conducted to demonstrate the effects of different blocks.

4.1. Database and Evaluation Metrics

To overcome the lack of large-scale emotion recognition datasets, including sponta-
neous and unconstrained human faces and various context information in the wild, a static
image dataset, called CAER-S, is extracted and created from 13,201 large-scale video clips
containing around 1.1 M frames. It has about 70,000 images manually annotated with seven
emotion categories, i.e., anger, disgust, fear, happy, neutral, sad, and surprise. For a fair
comparison, we use the same split of 70%, 10%, and 20% for the training, validation, and
testing sets as in Lee et al. [19].

The experimental results are reported with a widely used indicator, namely accuracy,
to evaluate the prediction performance on discrete emotion categories in CAER tasks.
Accuracy describes the deviation between the distribution of predicted and true categories,
i.e., reporting the overall performance. The higher the accuracy value, the better the
experiment performance. Equation (28) defines the calculation formulas for accuracy, where
TP, FP, TN and FP indicate true_positive, false_positive, true_negative and false_negative,
respectively.

Accuracy =
TP

TP + FP + TN + FN
, (28)

4.2. Experiment Setup and Implementation Details
4.2.1. Implementation Details

The implementation of our proposed framework, which is deployed and accelerated
on an AMAX GPU server with 4 NVIDIA GPUs (GeForce RTX 2080 Ti), is based on the
PyTorch library [60]. We use the SGD optimizer with parameter values (0.9, True) for
(momentum and nesterov). We trained CAHFW-Net from scratch with a learning rate
initialized as 0.01 and dropped by a cosine annealing mechanism. As the primary sizes of
face regions cropped by the Dlib CNN face detector and the context images are 96× 96
and 400× 712, for meeting the size requirement of the CA block, we resize IF and IC to
224× 224. To reduce the effects of overfitting and avoid the phenomenon of validation
loss and accuracy divergence, we employ a hyperparameter called flooding level [58] to
restrict the bottom of the calculation of the training loss function. At the same time, dropout
schemes with a default ratio of 0.5 are introduced in the DF block.

It is evident from the description in Section 3 that the parameters in the experiment
are included in the construction of the DBE network, HAE network, and the deep fusion of
adaptive features. Hence, in the following, we elaborate on the parameter settings in these
three processes.

4.2.2. The Network Structure of DBE and HAE networks

The overall architecture of our proposed DBE and HAE networks is illustrated in
Figure 4. In this network, the TE and CE blocks in the DBE network are used to gen-
erate shallow representations of the face and context channels. The feature extraction
part of the TE and CE blocks includes five Conv2D layers, which are set as (filters = 32,
kernel_size = 3 × 3), (filters = 64, kernel_size = 3 × 3), (filters = 128, kernel_size = 3 × 3),
(filters = 256, kernel_size = 3 × 3) and (filters = 256, kernel_size = 3 × 3). The context
attention inference module of the CE block is constructed with three Conv2D layers with
the setting of (filters = 256, kernel_size = 3 × 3), (filters = 128, kernel_size = 3 × 3) and
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(filters = 1, kernel_size = 3 × 3). The above 2D convolution layers have the same values
(1, 1) for (stride, padding).

A single interactive operation between the face and context features in the HAE
network is constructed with a CA block and an ER block. For the CA block, Figure 6
illustrates the corresponding structure. The four Conv2D layers at the transformation and
output stages have the same setting, namely 256 filters with a size of 3 × 3 for one kernel,
stride, and padding sizes of 1, 1. For the GIE of the ER block, as expressed in Equation (13),
the Conv1D layer has 256 filters with a kernel_size of 1. The AA block executes the
generation of adaptive features (as presented in Figures 4 and 7), which has eight Conv1d
layers with setting of (filters = 128, kernel_size = 1) and (filters = 1, kernel_size = 1) for
each pair.

4.2.3. Deep Fusion of Adaptive Features

The DF block for integrating the adaptive features generated by the AA block is
constructed with the following two parts: hierarchical concatenation and classification.
The hierarchical concatenation includes two linear layers with the same weight setting
of W ∈ R128×512 and concatenation at the last dimension of tensors. The classification
part is built with two Conv1D layers, which are set as (filters = 128, kernel_size = 1) and
(filters = 7, kernel_size = 1). In the above layers in the DBE network, HAE network, and
deep fusion block, ReLU is used as the activation function. The value of the flooding level
in the training loss function is 0.05.

4.3. Comparisons to Baseline Methods

In this section, we compare our proposed method with some baseline works, i.e.,
AlexNet-based [52], VGGNet-based [61], ResNet-based [53] and CAER-Net-S [19] methods,
on the test set of the CAER-S dataset to illustrate the effectiveness of CAHFW-Net. The
corresponding experimental results are presented in Table 2 and Figure 8. In the table,
off-the-shelf and fine-tuned indicate the models pre-trained on the ImageNet dataset and
fine-tuned on the CAER-S dataset, respectively. The CAER-Net-S and our CAHFW-Net are
trained from scratch on the CAER-S dataset. From these comparisons, both from the macro
(i.e., average accuracy) and micro (i.e., accuracy on each emotion category) view, we can
determine that our proposed approach achieves a better experimental performance than
these baseline methods.

From the macro perspective (i.e., average accuracy), it can be observed that the emotion
recognition performance of the models fine-tuned on the CAER-S dataset is generally better
than that of the off-the-shelf models only pre-trained on large-scale image datasets, where
the ResNet-based network, with its more robust ability to resist network degradation and
more vital feature abstractions, performs better overall than the other methods under
the same training conditions. Furthermore, compared to the ResNet-based networks, the
average prediction accuracy of CAER-Net-S increases by around 5.05% by benefiting from
mining visual emotion cues in context, as in the work of [19]. From the table, we can observe
that our proposed CAHFW-Net significantly outperforms the baseline methods with an
accuracy of 83.76%. This is because the HAE network in the deep encoding stage jointly
extracts and exploits emotion-related information from the perspective of inter-feature
interaction and hybrid feature fusion.

Additionally, from the micro perspective (i.e., accuracy for each emotion category),
we can see that the prediction accuracy of ResNet-F on the category Disgust is inferior
to VGGNet-F. Similarly, the prediction accuracy of CAER-Net-S on the category Anger is
lower than ResNet-F. These results partly reveal the limitations of the baseline methods
in extracting discriminative emotion cues for a specific emotion category. In contrast, our
proposed CAHFW-Net consistently performs favorably against baseline networks on each
category in the CAER-S benchmark, as shown in Table 3. Specifically, compared to CAER-
Net-S, the performance of CAHFW-Net on each emotion category significantly increases by
approximately 4–17%. The accuracy of Happy and Neutral increase by around 17.35% and
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12.35%, respectively, which further demonstrates that our proposed approach has a greater
sensitivity and discrimination ability to different emotion categories using complementary
information between different views of features via the CA and ER blocks.

Table 2. Quantitative evaluation of CAHFW-Net in comparison to baseline methods on the test set of
the CAER-S benchmark.

Methods Acc. (%)

Off-the-shelf AlexNet [52] 47.36
Off-the-shelf VGGNet [61] 49.89
Off-the-shelf ResNet [53] 57.33

Fine-tuned AlexNet [52] 61.73
Fine-tuned VGGNet [61] 64.85
Fine-tuned ResNet [53] 68.46

CAER-Net-S [19] 73.51

CAHFW-Net (ours) 83.76
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Figure 8. Comparison of emotion prediction performance with baseline methods on each category in
the CAER-S benchmark. O and F denote off-the-shelf and fine-tuned versions, respectively.

Table 3. Accuracy (%) of CAHFW-Net and baseline methods on each emotion category in the CAER-S
benchmark.

Emotions
AlexNet VGGNet ResNet CAER-Net-S CAHFW-Net

Off-the-Shelf Fine-Tuned Off-the-Shelf Fine-Tuned Off-the-Shelf Fine-Tuned From Scratch From Scratch

Anger 59.92 66.49 60.34 68.34 66.80 79.14 77.93 82.73
Disgust 57.01 74.59 61.40 78.08 68.29 75.28 83.49 93.07

Fear 54.62 71.20 57.59 75.70 59.07 78.83 86.40 94.61
Happy 27.79 47.74 30.58 51.77 47.11 56.21 63.15 80.50
Neutral 34.08 42.71 34.34 47.16 39.74 50.39 59.39 71.74

Sad 49.12 64.58 51.71 68.76 61.19 72.79 74.11 85.21
Surprise 48.48 64.21 52.72 63.57 58.54 66.01 69.51 78.47

4.4. Ablation Analysis

As previously discussed, the proposed model employs the complementary information
between face and context features via the HAE network(including the CA, ER, and AA
blocks) to predict the emotional state using a deep fusion strategy after obtaining the
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adaptive features. Hence, in this section, we conduct some necessary ablation experiments
to demonstrate the role played by the three blocks (CA, AA, and ER) on the CAER-S dataset.
The ablated architectures of networks are presented in Figure 9. In all three networks, the
Input Pair indicates the image pair of face-context inputted into the SE block for shallow
feature encoding. Note that the output is the discrete category of emotion and the loss
functions for the three networks are all cross-entropy, as expressed in Equation (27). The SE
refers to the shallow encoding block constructed with the TE and CE blocks. CA, ER, AA,
and AF stand for cross-attention, element recalibration, adaptive-attention, and adaptive
fusion (as expressed in Equations (16) and (17)), respectively. CH refers to the classification
head (i.e., the classification part of the DF block).

SE AF CategoryCH
Input Pair

SE AA CategoryCH
Input Pair

CA

SE AA CategoryCH
Input Pair

CA ER

（a）

（b）

（c）

Figure 9. Different network architectures are used to investigate the role of proposed CA, AA, and
introduced ER blocks for emotional state prediction. (a,b) denote the network without the CA, ER and
AA blocks and the CAHFW-Net without the ER block, respectively, while (c) denotes the complete
CAHFW-Net.

4.4.1. The Joint Role of the Cross-Attention and the Adaptive-Attention Blocks

To carefully explore the complementary benefit of the emotion inference of individ-
uals between facial and contextual information, we construct a CA block to optimize the
understanding of information strongly correlated with emotion in the facial and contextual
regions from the perspective of feature interaction and complementary enhancement. From
the description in Section 3.3, it is suggested that the AF block in the work of Lee et al. [19]
is a particular case of our proposed framework, which neglects the effect of the comple-
mentary gains between face and context features. Furthermore, the AA block, which is
used to integrate the adaptive features and is used for emotion inference, can be regarded
as a twin block for the CA block, which is similar to the AF block. In other words, in the
network (as shown in Figure 9b), the AA block is equivalent to the AF block when the CA
block is removed. Thus, to jointly illustrate the effectiveness of the CA and AA blocks, we
use the networks presented in Figure 9a,b to conduct the experiments. The corresponding
results on the test set of the CAER-S dataset are presented in Table 4.

Table 4. Performance of emotion prediction on CAER-S test set using different networks. The
networks of SE block + AF block and SE block + CA block + AA block are shown in Figure 9. The
network of SE block + CA block + ER block + AA block is shown in Figure 4.

Network Structures Acc. (%)

SE blocks + AF block 73.51
SE blocks + CA block + AA block 80.26

SE blocks + CA block + ER block + AA block 83.76
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From Table 4, we can observe that the performance of networks SE + CA block + AA
block (as shown in Figure 9b) is superior to that of SE blocks + AF block (as shown in
Figure 9a). This result reveals that the CA block effectively captures the correlation and
complementation between the features of the facial and contextual view. In contrast, the
features used for inference are efficiently integrated by the AA block, which can boost
the network’s capacity to infer the emotional state. Figure 10 presents the prediction
accuracy of the aforementioned two networks on the seven emotion categories, which also
verifies that compared to the network that uses a single-level simple concatenation for
feature fusion only, a network with the CA and AA blocks, which perceives and utilizes the
complementary gains between the two views of face and context, can significantly boost
the emotion recognition performance.
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Figure 10. Comparison of emotion prediction performance among ablation networks as shown in
Figure 9 on each emotion category in the CAER-S benchmark.

4.4.2. The Role of the Element Recalibration Blocks in the I-R Pair

The purpose of introducing the ER block in the I-R pair of the HAE network is to boost
the representation of each branch by sufficiently embedding the global information using
the aforementioned complementary information from the CA block. In other words, we
highlight the feature regions related to the emotion cues and suppress the less valuable
ones. Thus, comparative experiments with the network architectures shown in Figure 9b,c,
are conducted to illustrate the effectiveness of the ER block. The experimental results are
presented in Table 4.

From Table 4, SE + CA + ER + AA (as shown in Figure 9c) achieves the best exper-
imental performance and is better than SE + CA + AA in terms of prediction accuracy.
The confusion matrices and prediction performance of the seven categories of SE + CA
+ AA and SE + CA + ER + AA are presented in Figures 10 and 11. The aforementioned
networks refer to CAHFW-Net without the ER block and CAHFW-Net, respectively. The
reason for this result is that the ER block can examine all feature elements of tensors indi-
vidually in each branch to pick out the salient ones and capture the subtle emotional cues.
Furthermore, the better and more balanced performance of CAHFW-Net on each emotion
category further verifies that the implying abundant complementary information, which
is beneficial for the model to promote the understanding of emotion cues in the face and
context features, is efficiently utilized by the ER block to generate deep abstract features.
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Figure 11. Confusion matrices of SE + CA + AA and SE + CA + ER + AA on the CAER benchmark.
(a) SE + CA + AA; (b) SE + CA + ER + AA.

5. Conclusions

To exploit discriminative complementary information between facial and contextual
features in improving the performance of emotion predictions, in this paper, we propose a
novel framework called CAHFW-Net for context-aware emotion recognition. Specifically,
the I-R pair module is proposed in CAHFW-Net, in which the CA block focuses on seeking
inter-feature complementary information by mining the correlation and heterogeneity
between the face and context features. Following the CA block, the ER block is introduced
to boost the network’s emotion representation ability by recalibrating the feature map of
each channel using global information. Furthermore, to efficiently integrate the features,
the AA block, with its core operation of hybrid feature weighting, is defined to obtain
the optimal weighted features, which are further fused via a DF block in a hierarchical
and dense manner for final emotion classification. The experiment results on the publicly
available CAER-S emotion dataset verify not only the effectiveness of each block but also
the superiority of our proposed method in the field of context-aware emotion recognition.
In the future, we will try to extend our approach to more datasets, including videos, and
utilize emotional representations in the dimensional space [62] (e.g., Valance, Arousal, and
Dominance) to evaluate the emotional states from multiple perspectives. Additionally, we
will integrate the proposed model with its potential applications, such as the analysis of
tourist reviews with video clips, or the estimation of job stress levels with visual emotional
evidence, or the assessment of mental health with visual media.
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