Arsenic and Heavy Metals in Sediments Affected by Typical Gold Mining Areas in Southwest China: Accumulation, Sources and Ecological Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Quality Control and Statistical Analysis
2.4. Background Value of As and HMs, Contamination Assessment Index, and Source Analysis Model
3. Results
3.1. Concentration and Accumulation Changes of As and HMs in Sediments
3.2. Chemical Forms of As and HMs in Sediments
3.3. Cumulative Sources of As and HMs in Sediments
3.4. Influencing Factors of As and HMs Accumulation in Sediments
3.5. Contamination and Ecological Risk of As and HMs in Sediments
3.5.1. Contamination and Risk Assessment Based on Igeo, Eir and RI Indexes
3.5.2. Comparison between This Study and Sediments around Other Gold Mining Areas
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Besada, V.; Bellas, J.; Sánchez-Marín, P.; Bernárdez, P.; Schultze, F. Metal and metalloid pollution in shelf sediments from the Gulf of Cádiz (Southwest Spain): Long-lasting effects of a historical mining area. Environ. Pollut. 2022, 295, 118675. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.; Mickus, K.; Camacho, L.M. Abandoned PbZn mining wastes and their mobility as proxy to toxicity: A review. Sci. Total Environ. 2016, 565, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Miranda, L.S.; Wijesiri, B.; Ayoko, G.A.; Egodawatta, P.; Goonetilleke, A. Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Res. 2021, 202, 117386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, S.; Ai, L.; Cao, P.; Wu, K.; Cui, J.; Wang, H.; Mohamed, C.A.R.; Shi, X. Distribution and assessment of heavy metal in sediments of Malacca Strait. Mar. Pollut. Bull. 2022, 178, 113575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X.; Guo, L.; Deng, Z.; Wang, D.; Liu, L. Assessment of heavy metal pollution and water quality characteristics of the reservoir control reaches in the middle Han River, China. Sci. Total Environ. 2021, 799, 149472. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, L.; Li, J.; Wang, C.; Ji, J. Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China. Catena 2014, 119, 52–60. [Google Scholar] [CrossRef]
- Cantwell, M.G.; Burgess, R.M.; King, J.W. Resuspension of contaminated field and formulated reference sediments Part I: Evaluation of metal release under controlled laboratory conditions. Chemosphere 2008, 73, 1824–1831. [Google Scholar] [CrossRef]
- Kretzschmar, R.; Borkovec, M.; Grolimund, D.; Elimelech, M. Mobile Subsurface Colloids and Their Role in Contaminant Transport. Adv. Agron. 1999, 66, 121–193. [Google Scholar]
- Nabuyanda, M.M.; Kelderman, P.; Sankura, M.G.; Rousseau, D.; Irvine, K. Investigating the effect of Eh and pH on binding forms of Co, Cu, and Pb in wetland sediments from Zambia. J. Environ. Manag. 2022, 319, 115543. [Google Scholar] [CrossRef]
- Qin, W.; Han, D.; Song, X.; Liu, S. Sources and migration of heavy metals in a karst water system under the threats of an abandoned Pb-Zn mine, Southwest China. Environ. Pollut. 2021, 277, 116774. [Google Scholar] [CrossRef]
- Thompson, A.; Chadwick, O.A.; Boman, S.; Chorover, J. Colloid Mobilization During Soil Iron Redox Oscillations. Environ. Sci. Technol. 2006, 40, 5743–5749. [Google Scholar] [CrossRef]
- Yongnian, Z.; Taiyi, L.; Kaikai, G.; Tianzhu, X.; Qihou, Z.; Jianqiang, M.; Shangyi, G. Environmental effects in the mining process of Zimudang Gold Mine: 1. Comparison of pollution status. Geogeochemistry 1999, 1999, 1–8. [Google Scholar]
- Chen, M.; Li, F.; Tao, M.; Hu, L.; Shi, Y.; Liu, Y. Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China. Mar. Pollut. Bull. 2019, 146, 893–899. [Google Scholar] [CrossRef]
- Lin, C.Y.; Ali, B.N.M.; Tair, R.; Musta, B.; Abdullah, M.H.; Cleophas, F.; Isidore, F.; Nadzir, M.S.M.; Roselee, M.H.; Yusoff, I. Distance impacts toxic metals pollution in mining affected river sediments. Environ. Res. 2022, 214 Pt 1, 113757. [Google Scholar] [CrossRef]
- Jiang, F.; Ren, B.; Hursthouse, A.; Deng, R.; Wang, Z. Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). Environ. Sci. Pollut. Res. 2019, 26, 16556–16567. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Zhou, S.; Cheng, J.; Wang, Q.; Dai, Y. Heavy metals speciation and distribution of microbial communities in sediments from the abandoned Mo-Ni polymetallic mines, southwest of China. Environ. Sci. Pollut. Res. 2022, 29, 35350–35364. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Han, J.; Zhu, J.-M.; Li, S.; Liang, L.; Wu, P.; Wu, Q.; Qiu, G. Heavy metal(loid)s in agricultural soils in the world’s largest barium-mining area: Pollution characteristics, source apportionment, and health risks using PMF model and Cd isotopes. Process Saf. Environ. Prot. 2022, 166, 669–681. [Google Scholar] [CrossRef]
- Goldscheider, N.; Drew, D. Methods in Karst Hydrogeology. In International Contributions to Hydrogeology; Crc Press: Boca Raton, FL, USA, 2007; Volume 26. [Google Scholar]
- Liu, Z.; Dreybrodt, W.; Liu, H. Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Appl. Geochem. 2011, 26, S292–S294. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Arehart, G.B. Characteristics and origin of sediment-hosted disseminated gold deposits: A review. Ore Geol. Rev. 1996, 11, 383–403. [Google Scholar] [CrossRef]
- Hofstra, A.H.; Cline, J.S. Characteristics and models for carlin-type gold deposits. Rev. Econ. Geol. 2000, 163–220. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Application of Stochastic Models in Identification and Apportionment of Heavy Metal Pollution Sources in the Surface Soils of a Large-Scale Region. Environ. Sci. Technol. 2013, 47, 3752–3760. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Duan, Z.; Liu, G.; Kalla, P.; Scheidt, D.; Cai, Y. Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure. Environ. Sci. Technol. 2015, 49, 9714–9723. [Google Scholar] [CrossRef] [PubMed]
- Loska, K.; Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, R.; Teng, Y.; Wu, J. Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le’an River (China). Ecotoxicol. Environ. Saf. 2016, 125, 85–92. [Google Scholar] [CrossRef]
- Tang, W.; Shan, B.; Zhang, H.; Mao, Z. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. J. Hazard Mater. 2010, 176, 945–951. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Ravisankar, R.; Harikrishnan, N.; Satapathy, K.K.; Prasad, M.V.; Kanagasabapathy, K.V. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India-speatroscopical approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 589–600. [Google Scholar] [CrossRef]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total. Environ. 2014, 470–471, 925–933. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Gao, B.; Xu, D. Improved enrichment factor model for correcting and predicting the evaluation of heavy metals in sediments. Sci. Total. Environ. 2021, 755 Pt 1, 142437. [Google Scholar] [CrossRef]
- He, L.-P.; Liu, D.; Lin, J.-J.; Yu, Z.-G.; Yang, X.-X.; Fu, C.; Liu, Z.-X.; Zhao, Q.-H. Total nitrogen and pH-controlled chemical speciation, bioavailability and ecological risk from Cd, Cr, Cu, Pb and Zn in the water level-fluctuating zone sediments of the Three Gorges Reservoir. Chem. Speciat. Bioavailab. 2017, 29, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Bai, L.; Yue, Z.; Pang, B.; Wei, D. Mineralization processes involved in the formation of the Jinya Carlin-type Au deposit, northwestern Guangxi, China: Evidence from in situ trace element and S isotope geochemistry of Au-bearing zoned pyrite. Ore Geol. Rev. 2021, 138, 104376. [Google Scholar] [CrossRef]
- China, Environmental Protection Administration. Environmental Monitoring Station. Background Values of Soil Elements in China; Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 109–118. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Pereira, W.; RTeixeira, A.; Souza, E.S.; Moraes, A.L.F.; Campos, W.E.O.; Amarante, C.B.D.; Martins, G.C.; Fernandes, A.R. Chemical fractionation and bioaccessibility of potentially toxic elements in area of artisanal gold mining in the Amazon. J. Environ. Manag. 2020, 267, 110644. [Google Scholar] [CrossRef]
- Chen, M.H.; Yu, X.Z.; Feng, Y.X. Tracing the pollution and human risks of potentially toxic elements in agricultural area nearby the cyanide baths from an active private gold mine in Hainan Province, China. Environ. Geochem. Health 2021, 44, 3279–3296. [Google Scholar] [CrossRef]
- Wongsasuluk, P.; Tun, A.Z.; Chotpantarat, S.; Siriwong, W. Related health risk assessment of exposure to arsenic and some heavy metals in gold mines in Banmauk Township, Myanmar. Sci. Rep. 2021, 11, 22843. [Google Scholar] [CrossRef]
- Gao, Z. Evaluation of heavy metal pollution and its ecological risk in one river reach of a gold mine in Inner Mongolia, Northern China. Int. Biodeterior. Biodegrad. 2018, 128, 94–99. [Google Scholar] [CrossRef]
- Kinimo, K.C.; Yao, K.M.; Marcotte, S.; Kouassi, N.L.B.; Trokourey, A. Distribution trends and ecological risks of arsenic and trace metals in wetland sediments around gold mining activities in central-southern and southeastern Côte d’Ivoire. J. Geochem. Explor. 2018, 190, 265–280. [Google Scholar] [CrossRef]
- Adewumi, A.; Laniyan, T. Contamination, sources and risk assessments of metals in media from Anka artisanal gold mining area, Northwest Nigeria. Sci. Total Environ. 2020, 718, 137235. [Google Scholar] [CrossRef]
- Delplace, G.; Viers, J.; Schreck, E.; Oliva, P.; Behra, P. Pedo-geochemical background and sediment contamination of metal(loid)s in the old mining-district of Salsigne (Orbiel valley, France). Chemosphere 2021, 287 Pt 2, 132111. [Google Scholar] [CrossRef] [PubMed]
- Kerrich, R.; Goldfarb, R.; Groves, D.; Garwin, S.; Jia, Y. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Sci. China Ser. D Earth Sci. 2000, 43, 1–68. [Google Scholar] [CrossRef]
- Lead, J.; Wilkinson, K. Environmental colloids: Current knowledge and future developments. Environ. Colloids Behav. Struct. Charact. 2006, 1–15. [Google Scholar]
- Kabata-Pendias, H.A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; pp. 193–220. [Google Scholar]
- Miao, X.; Song, M.; Xu, G.; Hao, Y.; Zhang, H. The Accumulation and Transformation of Heavy Metals in Sediments of Liujiang River Basin in Southern China and Their Threatening on Water Security. Int. J. Environ. Res. Public Health 2002, 19, 1619. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Liu, T.; Yu, Z.; Chen, Z.; Lei, D.; Wang, Z.; Zhang, H.; Li, Q.; Zhang, S. Heavy Metal Bioaccumulation in Rice from a High Geological Background Area in Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 2281. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, F.; Mao, L.; Gu, B.; Peng, C.; Yang, Q.; Lu, L.; Chen, X.; Zhang, D.; Tao, H. Potential Loss of Toxic Elements from Slope Arable Soil Erosion into Watershed in Southwest China: Effect of Spatial Distribution and Land-Uses. Minerals 2021, 11, 1422. [Google Scholar] [CrossRef]
- Mo, Z.; Liu, Q.; Xie, W.; Ashraf, U.; Abrar, M.; Pan, S.; Duan, M.; Tian, H.; Wang, S.; Tang, X. Ultrasonic seed treatment and Cu application modulate photosynthesis, grain quality, and Cu concentrations in aromatic rice. Photosynthetica 2020, 58, 682–691. [Google Scholar] [CrossRef]
- Yuan, W.-L.; Xu, B.; Ran, G.-C.; Chen, H.-P.; Zhao, P.-Y.; Huang, Q.-L. Application of imidacloprid controlled-release granules to enhance the utilization rate and control wheat aphid on winter wheat. J. Integr. Agric. 2020, 19, 3045–3053. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Araújo, M.U.P.; Silva, B.N.; Chaves, J.A.A.; Pinto, L.F.C.C.; Silveira, P.R.; Ribeiro, D.M.; Rodrigues, F. Maize resistance to northern corn leaf blight is potentiated by nickel. Plant Pathol. 2021, 71, 262–278. [Google Scholar] [CrossRef]
- Saudy, H.S.; El-Metwally, I.M.; Shahin, M.G. Co–application effect of herbicides and micronutrients on weeds and nutrient uptake in flooded irrigated rice: Does it have a synergistic or an antagonistic effect? Crop Prot. 2021, 149, 105755. [Google Scholar] [CrossRef]
- Amrhein, C.; Mosher, P.A.; Strong, J.E. Colloid-Assisted Transport of Trace Metals in Roadside Soils Receiving Deicing Salts. Soil Sci. Soc. Am. J. 1993, 57, 1212–1217. [Google Scholar] [CrossRef]
- Bern, C.R.; Thompson, A.; Chadwick, O.A. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model. Geochim. Et Cosmochim. Acta J. Geochem. Soc. Meteorit. Soc. 2015, 151, 1–18. [Google Scholar] [CrossRef] [Green Version]
- King, E.; Thompson, A.; Pett-Ridge, J. Underlying lithology controls trace metal mobilization during redox fluctuations. Sci. Total. Environ. 2019, 665, 1147–1157. [Google Scholar] [CrossRef]
- Ingri, J.; Widerlund, A.; Land, M.; Gustafsson, Ö.; Andersson, P.; Öhlander, B. Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles. Chem. Geol. 2000, 166, 23–45. [Google Scholar] [CrossRef]
- Buffam, I.; Laudon, H.; Seibert, J.; Mörth, C.-M.; Bishop, K. Spatial heterogeneity of the spring flood acid pulse in a boreal stream network. Sci. Total Environ. 2008, 407, 708–722. [Google Scholar] [CrossRef]
- Nemati, K.; Abu Bakar, N.K.; Abas, M.R. Investigation of heavy metals mobility in shrimp aquaculture sludge—Comparison of two sequential extraction procedures. Microchem. J. 2009, 91, 227–231. [Google Scholar] [CrossRef]
- Palleiro, L.; Patinha, C.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Metal fractionation in topsoils and bed sediments in the Mero River rural basin: Bioavailability and relationship with soil and sediment properties. Catena 2016, 144, 34–44. [Google Scholar] [CrossRef]
- Lee, P.K.; Kang, M.J.; Yu, S.; Ko, K.S.; Ha, K.; Shin, S.C.; Park, J.H. Enrichment and geochemical mobility of heavy metals in bottom sediment of the Hoedong reservoir, Korea and their source apportionment. Chemosphere 2017, 18, 74–85. [Google Scholar] [CrossRef]
- Eiche, E.; Kramar, U.; Berg, M.; Berner, Z.; Norra, S.; Neumann, T. Geochemical changes in individual sediment grains during sequential arsenic extractions. Water Res. 2010, 44, 5545–5555. [Google Scholar] [CrossRef]
- Hanebuth, T.J.J.; Lee, K.M.; Isabel, M.; Susana, L.; Lobo, F.J.; Oberle, F.K.; Laura, A.; Alves, F.P.; Isabel, R.M. Hazard potential of widespread but hidden historic offshore heavy metal (Pb, Zn) contamination (Gulf of Cadiz, Spain). Sci. Total Environ. 2018, 637–638, 561–576. [Google Scholar] [CrossRef]
- Ayiwouo, M.N.; Mambou, L.L.N.; Kingni, S.T.; Ngounouno, I. Spatio-temporal variation and assessment of trace metal contamination in sediments along the Lom River in the gold mining site of Gankombol (Adamawa Cameroon). Environ. Earth Sci. 2022, 81, 379. [Google Scholar] [CrossRef]
- Budianta, W. Heavy metal pollution and mobility of sediment in Tajum River caused by artisanal gold mining in Banyumas, Central Java, Indonesia. Environ. Sci. Pollut. Res. Int. 2021, 28, 8585–8593. [Google Scholar] [CrossRef] [PubMed]
- Taiwo, A.M.; Awomeso, J.A. Assessment of trace metal concentration and health risk of artisanal gold mining activities in Ijeshaland, Osun State Nigeria—Part 1. J. Geochem. Explor. 2017, 177, 1–10. [Google Scholar] [CrossRef]
- May, T.W.; Wiedmeyer, R.H.; Gober, J.; Larson, S. Influence of mining-related activities on concentrations of metals in water and sediment from streams of the Black Hills, South Dakota. Arch. Environ. Contam. Toxicol. 2001, 40, 1–9. [Google Scholar]
- Alonso, D.L.; Pérez, R.; Okio, C.K.; Castillo, E. Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo, Colombia. J. Environ. Manag. 2020, 264, 110478. [Google Scholar] [CrossRef]
- Santos, M.V.S.; da Silva Junior, J.B.; de Carvalho, C.E.V.; Vergilio, C.D.S.; Hadlich, G.M.; de Santana, C.O.; de Jesus, T.B. Geochemical evaluation of potentially toxic elements determined in surface sediment collected in an area under the influence of gold mining. Mar. Pollut. Bull. 2020, 158, 111384. [Google Scholar] [CrossRef]
- Pujiwati, A.; Nakamura, K.; Wang, J.; Kawabe, Y.; Watanabe, N.; Komai, T. Potentially toxic elements pose significant and long-term human health risks in river basin districts with abandoned gold mines. Environ. Geochem. Health 2022, 44, 4685–4702. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wu, P.; Zha, X.; Zhou, B.; Liu, J.; Long, E. Arsenic and Heavy Metals in Sediments Affected by Typical Gold Mining Areas in Southwest China: Accumulation, Sources and Ecological Risks. Int. J. Environ. Res. Public Health 2023, 20, 1432. https://doi.org/10.3390/ijerph20021432
Chen S, Wu P, Zha X, Zhou B, Liu J, Long E. Arsenic and Heavy Metals in Sediments Affected by Typical Gold Mining Areas in Southwest China: Accumulation, Sources and Ecological Risks. International Journal of Environmental Research and Public Health. 2023; 20(2):1432. https://doi.org/10.3390/ijerph20021432
Chicago/Turabian StyleChen, Sirui, Pan Wu, Xuefang Zha, Binghuang Zhou, Jingbin Liu, and En Long. 2023. "Arsenic and Heavy Metals in Sediments Affected by Typical Gold Mining Areas in Southwest China: Accumulation, Sources and Ecological Risks" International Journal of Environmental Research and Public Health 20, no. 2: 1432. https://doi.org/10.3390/ijerph20021432
APA StyleChen, S., Wu, P., Zha, X., Zhou, B., Liu, J., & Long, E. (2023). Arsenic and Heavy Metals in Sediments Affected by Typical Gold Mining Areas in Southwest China: Accumulation, Sources and Ecological Risks. International Journal of Environmental Research and Public Health, 20(2), 1432. https://doi.org/10.3390/ijerph20021432