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Abstract: Understanding the specific effects of multidimensional elements of a built environment,
transportation management policies, and the socio-demographics of travelers associated with com-
muting carbon emissions is significant for planners in promoting low-carbon and healthy urban
development through transportation and land use and urban management policies. Most of the
existing studies focus on the complex mechanisms affecting commuting behavior, but the relevant
elements and specific mechanisms affecting commuting carbon emissions have not received suffi-
cient attention. This study uses a random forest approach to analyze residential travel data from
Wuhan, China. The results show that built environment and transportation demand management
policies are critical to commuting carbon emissions, and that there is a non-linear association be-
tween multidimensional factors and commuting carbon emissions in Chinese cities. In addition,
the study examines the synergistic effects of built environment and transportation management
policies on commuting carbon emissions among different built environment elements. The results of
the study provide valuable insights for planners in formulating low-carbon city and transportation
development policies.

Keywords: nonlinear and synergistic effects; multidimensional elements; commuting
carbon emissions

1. Introduction

Transportation-related carbon emissions are major contributors to global climate
change. The transportation sector is now the second-largest source of carbon emissions
worldwide, accounting for 25% of total emissions [1]. At almost 50% of all trips, commuting
is the most important transport activity in daily life [2], and commuting CO2 emissions
are, therefore, a significant source of transport CO2 emissions. Understanding the mech-
anism by which multidimensional urban factors influence commuting CO2 emissions is
critical for developing low-carbon transportation and urban development policies and for
guiding the healthy development of cities [3]. In the context of China’s goal to achieve
carbon peaking by 2030 and carbon neutrality by 2060, transportation carbon reduction is
under tremendous pressure, and there is a lack of localized empirical research guidance.
Therefore, this study integrates the correlation of multidimensional elements of the built
environment, urban transportation management policies, individual socio-demographic
factors, and commuting CO2 emissions to provide guidance for the healthy development
of low-carbon cities.

Existing studies have used both aggregate and disaggregate analyses to analyze the
factors and mechanisms that influence travel carbon emissions [4]. Over the last 30 years,
several aggregate studies have been conducted on urban form [5–8], land
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use [9,10], transport provision [11], transport demand, transport energy use, and car-
bon emissions, and several valuable conclusions have been drawn. Although they all
show that the built environment is significantly related to CO2 emissions from travel, a
number of issues remain. Overall, aggregate research cannot reveal the mechanism of
the built environment’s impact on CO2 emissions from individual travel. To address this
issue, a portion of the studies used individual (or household) data (disaggregate data)
and a disaggregate model [12,13] to investigate the causal pathways of the impact of built
environment characteristics on traffic carbon emissions and demonstrated that there is a
mediating effect of travel decisions between the two variables.

In recent years, increasing studies have focused on the built environment and travel
behavior. Multiple studies have examined the mechanism by which the built environ-
ment influences travel behavior [14] and the relative importance of different built en-
vironment characteristics regarding travel behavior [15–17]. The research framework
of “aggregate analysis—comparative study—correlation conclusion” and “disaggregate
analysis—mechanism study—causal path inference” has been developed [18]. However,
the influencing mechanism of travel CO2 still needs further exploration. This is because
transport-related carbon emissions are the result of a combination of modal split, the
distance travelled by different modes of transport, and mode-specific emission factors.
Therefore, built environment variables that affect mode choice and VMT are expected to
contribute to the variation in carbon emissions. For example, access to transit facilitates
individual transit use and hence reduces carbon emissions. Higher employment density
and mixed land use enable residents to internalize their trips within the neighborhoods
and promote low-carbon travel behavior [17]. It should be noted that the research base and
theoretical basis for the study of travel-related carbon emissions are derived from travel
behavior studies. However, as carbon emissions are the result of a combination of travel
behaviors, the complexity of this combination may lead to differences in the mechanisms
of impact, and, therefore, travel carbon emissions deserve further exploration based on the
original research framework. Many studies have touched on the relative importance of
different built environment characteristics on travel behavior, but the influence on carbon
emissions is in need of more exploration [3,12,13,19]. This is because the current study
shows that the key determinants of carbon emissions and travel behavior (mainly mode
choice and VMT) somewhat differ [19]. So, we cannot study the factors that affect VMT or
the factors that affect the travel mode in isolation and then use the results of these studies
as a direct guide to reducing carbon emissions.

In addition, most existing studies assume that the relationship between the built
environment and CO2 emissions from travel is linear or logarithmic [20,21], which some
academics believe is incorrect [22,23]. The latest study is based on a small number of
communities in the central areas of American cities and attempts to investigate the nonlinear
relationship between them [21]; however, the smaller research scope and small number
of samples may result in model over-fitting [24], affecting the accuracy of the results.
Furthermore, the form, built environment, provision of facilities, and travel preferences
and characteristics of residents are very different between China and Western countries, so
the experience of Western countries may not be applicable to China [25,26].

Alternatively, most existing studies focus on the effect of a single built environment
factor on CO2 emissions, whereas only a few studies discuss the synergistic effect of
different factors on CO2 emissions when discussing the relative importance of different
built environment factors regarding CO2 emissions. A nonlinear association implies that the
variables have different threshold effects, while synergistic effects indicate the joint effect
of multiple variables [27]. This joint effect exists between different dimensional variables,
such as the joint effect of TDM and the built environment on travel carbon emissions [23].
It also exists between variables of the same dimension, such as different built environment
variables. For example, established studies have shown that the effects of travel cost on the
choice of driving alone and non-motorized modes are larger in areas that have a higher
sidewalk density and are close to activity centers [28]. This implies a synergistic effect of
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two built environment variables: sidewalk density and location. This synergistic effect
is crucial for urban planners, because once certain factors (such as population density,
specific age groups, and urban management policies) have been identified, they have to
determine the appropriate range of indicators for other built environment factors. For
example, established studies have shown that the combination of land use policy and
TDM produces a synergistic effect on travel mode choice [18]. Since land use policies are
difficult to change in a short period of time, which TDM policy is the most beneficial for
carbon reduction under a given land use indicator? To take another example, in old urban
areas, it is difficult to change the land use function due to the difficulty of changing land
property rights. If we want to achieve carbon emission reduction through urban renewal,
we can only adjust the land use intensity, and it is important to determine the land use
intensity value under a specific land use diversity value. Consequently, precisely defining
the synergistic effect of various elements and commuting carbon emissions can provide
more detailed guidance for specific planning. This study employed a larger sample size to
reveal the true relationship between the built environment, traffic demand management,
personal socio-demographic characteristics, and carbon emissions, further highlighting the
reduction of commuting CO2 emissions through urban planning policies.

This study uses resident travel survey data collected in Wuhan, China, a city with
typical high-density development characteristics, to examine the nonlinear influence of
built environment elements on commuting carbon emissions and the synergistic effect
between variables. The goal of this research is to answer the following questions: (1) What
are the specific effects and threshold relationships of multidimensional factors influencing
commuting carbon emissions? Which dimensions are more important? (2) Do the different
variables have synergistic effects on commuting carbon emissions?

The organizational structure of this study is as follows: Section 2 examines the litera-
ture on the relationship between the built environment, carbon emissions, and commuting
behavior, identifying research gaps. Section 3 introduces data, variables, and the modeling
method. Section 4 presents the main results of the study. Section 5 discusses the empirical
results of the study and proposes corresponding policy recommendations. The final section
summarizes the main conclusions.

2. Literature Review
2.1. Multidimensional Elements, Travel Behavior, and Travel Carbon Emissions

The determinants and influence mechanisms of CO2 emissions and travel behavior are
different [19]. However, research indicates that the built environment influences residents’
travel decisions, which, in turn, influences travel carbon emissions. This means that carbon
emissions, as a derived outcome, and travel behavior act as mediating variables between
many independent variables and carbon emissions [13,29,30]. Therefore, it is likely that
the built environment variables that impact individual travel behavior will also impact
CO2 emissions [19]. Most academics focus on travel mode selection, travel distance, travel
frequency, travel purpose, and travel time when studying the relationship between the built
environment and travel behavior [17,31–34]. Although the findings of these studies are
not entirely consistent, they have some similarities. According to a review by Ewing and
Cervero [33], the built environment has the greatest influence on how far people travel, fol-
lowed by socio-demographic characteristics. The built environment and socio-demographic
characteristics have the greatest influence on mode choice; however, the influence of socio-
demographic characteristics may be greater. Individual socio-demographic characteristics
are more likely to determine how often people travel than the built environment. The
built environment has a greater impact on the total travel distance or travel time than
individual socio-demographic characteristics. In a follow-up study over a ten-year period,
the author [17] found that the built environment has a massive impact on travel behavior.

In the theoretical field, behavior-centered demand analysis has become a hot issue in
the field of transportation in recent years. According to the classical theory of transportation
behavior, travel is a derived demand [35]. People must travel to their destinations in order
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to participate in activities that are in different locations. Since the built environment
determines the spatial distribution of different activities and the time constraint to travel
to and from different locations, it directly affects people’s activity participation and, thus,
their traffic travel behavior. So far, travel behavior research has built up a framework
of “disaggregate analysis—mechanism study—causal path inference” based on derived
demand theory. However, the outcomes of travel behavior, such as carbon emissions,
have received little attention in these studies [13,36]. The established literature suggests
that the focus of existing studies on carbon emissions as an outcome of travel behavior
is inadequate, that travel behavior is only a mediating variable affecting travel carbon
emissions [12,13,36], and that direct research on carbon emissions is needed to obtain a
threshold for the impact of travel carbon emissions. Therefore, travel carbon emissions
studies are warranted [19,30]. In terms of empirical results, the determinants that influence
travel behavior and travel carbon emissions also differ. In Ding et al.’s study [22] of travel
distance in Oslo, location and density were the two major determinants, while in Wu et al.’s
study [19] of carbon emissions from travel in Minneapolis, land use diversity and age
were determinants, but both concluded that the built environment was the more important
element. There are differences in the specific influence mechanisms of each element on
distance and carbon emissions. Personal social attributes seem to be a more important
dimension in the travel mode choice [37,38]. The specific impact mechanisms of travel
mode choice are the opposite of carbon emissions. These comparisons show that, although
the theoretical framework of travel carbon emission studies is derived from travel behavior
studies, the determinants of travel carbon emissions and the specific impact mechanisms
are different from travel behavior. These differences may be attributed to the fact that travel
carbon emissions are superimposed on travel mode choice and travel distance, and this
superimposed effect brings about differences in impact mechanisms. A direct reference to
the findings of travel behavior studies to guide carbon reduction may be fallacious.

At present, most of the studies on travel CO2 emissions are based on the framework of
travel behavior studies conducted in developed countries, such as North America, Europe,
and Oceania. According to the research methodology, this literature can generally be
divided into aggregate and disaggregate research.

Typically, aggregate studies analyze the relationship between the built environment
and CO2 emissions at an aggregate level, using the traffic zone (or the community, street,
city, or country) as the basic unit. Newman [39] compared 32 cities worldwide and con-
cluded that residential and job density are negatively correlated with energy use. Hankey
and Marshal [29] examined aggregate data from 142 cities in the USA and predicted six
urban-expansion scenarios. According to the study, compact development can reduce
cumulative emissions by 15–20%. Gallivan [40] examined data from more than 300 urban-
ized areas in 9 metropolitan areas in the USA and concluded that changing density and
accessibility can reduce travel distance, energy consumption, and carbon emissions by 8%.
Yang et al. [25] studied the impact of socio-demographic factors, urban morphology, and
traffic development on traffic CO2 emissions in China from 2000 to 2012 and concluded
that population density had a significantly positive effect on traffic CO2 emissions in China,
while the level of public transportation development had a significantly negative effect on
traffic CO2 emissions. These studies have not yet reached consistent conclusions. However,
they provide strong evidence for carbon reduction policies. Because of the aggregated na-
ture of the built environment and CO2 emissions data, aggregate studies can only assemble
individual travel factors to a specific area, which masks differences between individuals in
the same area and leads to a partial generalization of research findings [18].

A disaggregate analysis is required to address these issues. Disaggregate analysis, as
opposed to aggregate analysis, where individual characteristics are lumped together in
a specific area, typically uses built environment variables that focus on individuals, such
as measuring the built environment within 1 km of an individual’s home address [41].
Individual travel behavior is typically expressed as a function of the built environment
and socio-demographic attributes in disaggregate analysis [18]. This can provide an em-
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pirical basis for inferring the mechanism of the impact of the built environment on CO2
emissions and judging the relative importance of the impact of the built environment
and socio-demographic attributes; thus, it has gradually become the mainstream of built
environment and CO2 emissions research. According to the impact mechanism, the built
environment influences travel CO2 emissions through intermediate variables such as car
ownership [12,13], travel distance [12], and choice of travel mode [42]. Regarding travel
behavior, most of the literature examines the impact of “5D” built environment elements
(density, diversity, design, destination accessibility, and transit proximity) [43,44] on CO2
emissions. Some studies [23] have considered elements of transport demand management,
such as bus subsidies and parking supply and charges. According to the literature, built en-
vironment factors, such as residential and job density [45,46], land use mix [47], intersection
density [47], and public transportation accessibility [46], are all negatively correlated with
energy consumption and carbon emissions. Research from Zahabi et al. [48] in Montreal,
Canada, showed that a 10% increase in residential density, land-use mix, and transport
accessibility leads to 3.5%, 2.5%, and 5.8% reductions in GHG emissions from household
transport, respectively. Hong and Goodchild [49] arrived at a similar conclusion in their
study conducted in Puget, USA. Transport emissions can be reduced by 31.2–34.4% by dou-
bling the land use mix and intersection density. Hong [50] found a nonlinear relationship
between residential density and travel carbon emissions, with increasing residential density
having a marginal decreasing effect on carbon emissions reduction. Wu et al. [19] studied
the Twin Cities of Minneapolis and St. Paul, USA, confirmed the prevailing nonlinear
relationship between “5D” built environment elements and CO2 emissions, and examined
the threshold effects of each variable on the impact of travel CO2 emissions.

Moreover, Chinese travel preferences are different from those in the West [51]; for
example, Chinese residents prefer to commute short distances and commute by public
transport, and the Chinese use of cars depends heavily on them as a sign of social status.
The built environment and transport carbon emissions in China are different from those in
the developed West [25,26]. On the one hand, the density of China’s large cities is generally
higher than that of cities in Western countries. On the other hand, unlike Western countries
that currently advocate for compact development, Chinese cities are undergoing a process
of suburbanization and decentralization, and the supply of urban public transportation is
unequally distributed, forcing people to choose motor vehicles for long-distance commuting
in suburban areas with a single function and insufficient public transportation facilities.
This dual variability in subjective travel preferences and the objective built environment
may result in differences in inherent mechanisms. Academic studies of Chinese cities
have come to different conclusions from those in Western countries, and several density
studies conducted in China have shown that the relationship between density and CO2
emissions is not significant [25,52]. Ma et al. [42] and Xiao et al. [53] arrived at opposing
conclusions regarding the provision of public transport. The former shows a negative
relationship between public transport accessibility and CO2 emissions, whereas the latter
has a positive impact on CO2 emissions. Therefore, in the context of the goal of achieving
carbon peaking by 2030 and carbon neutrality by 2060, there is a great need for direct travel
carbon emissions research in China.

2.2. Synergistic Effect of Multidimensional Elements

As discussed in the previous section, although single variables such as the built envi-
ronment, individual social characteristics, and TDM can all influence travel behavior and
travel carbon emissions by themselves, integrating them may have synergistic effects [18,20].
The synergistic effect of variables has two implications for planning policy development.

First, there is a joint effect of independent variables on dependent variables among
different dimensions, such as the synergistic effect of TDM and built environment variables;
TDM amplified the impact of the built environment on travel mode choice [23]. Guo
et al. [54] studied the synergistic effects of Portland land use variables and congestion
pricing on VMT, and they found that congestion pricing tended to have a greater impact
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on VMT reduction in downtown neighborhoods than in suburban neighborhoods. This is
attributed to the fact that urban centers with a mixed density and mixed uses have more
travel options, and when residents are charged by congestion, they can choose to reach
closer destinations to avoid the congestion charge. Lee et al. [55] showed that the effect of
gasoline prices on public transportation ridership was greater in areas with higher densities
and more complete transit facilities. Overall, these studies of synergies between transport
and land policies point to the importance of synergies between different dimensional
variables over the impact of single built environment dimension variables. This means that
the research horizon should not be limited to exploring the impact of the built environment
but should extend to multiple dimensions.

Second, there are synergistic effects between variables of the same dimension, such
as the synergy of different individual socio-demographic variables. Research shows that
women in the low-income group are more likely to choose public transport for com-
mutes [38]; this implies a synergistic relationship between income level and gender. Yang
et al. [56], in Shenzhen, concluded that land use elements and metro station accessibility
have a synergistic effect on urban vitality and that increased land use intensity amplifies
the positive effect of metro station accessibility on urban vitality. This can provide empirical
evidence for urban TOD development. In addition, synergistic effects are important for
the capture of specific thresholds. For example, in the case of land use policy, we derived a
threshold for land use diversity, but this single threshold may not be accurate due to the
joint effects and complex interactions between different independent variables. For land
use, the two aspects of land use intensity and land use mixture are the most important.
We prefer to know the optimal combination of the values of these two key elements, and
capturing the synergistic effects of variables helps us to address this issue.

2.3. Research Gaps

Although established studies have explored the nonlinear effects of the built en-
vironment on travel behavior, such as travel mode choice, travel distance, and travel
frequency, travel behavior has been shown to be only a mediating variable of carbon emis-
sions [3,12,13,57], and travel carbon emissions are a derivative of the combined effects of
multiple travel behaviors. This causes the findings of carbon emission and travel behav-
ior studies to differ in terms of the relative importance of variable effects, impact effects,
and threshold relationships. However, there is a limited amount of literature addressing
commuting carbon emissions. Recently, a few studies have attempted to investigate the
complex mechanism of the built environment’s influence on CO2 emissions in Chinese
cities using methods such as structural equation modeling and geographic weighting re-
gression [3,12,13,58]. However, these methods rely on linear assumptions, and few studies
have focused on the nonlinear relationship between them. Indeed, accurately identifying
this nonlinear relationship is critical because the threshold effect implies that land-use
policies for reducing carbon emissions by changing built environment variables may only
be effective within a range of values [22,23], and the cost of policy implementation can be
significantly reduced by identifying a reasonable range and threshold [59].

Alternatively, most existing studies have considered the impact of a single built envi-
ronment variable on carbon emissions, while few have considered the synergistic effect of
multiple variables. As the growth rate of China’s urban expansion decelerates, planners
formulating land use and transport policies need to determine a reasonable range of indica-
tors for other elements of the built environment, given that some elements (e.g., location,
population density, land use intensity, and socio-demographic characteristics of the popu-
lation) are established. Identifying the differential impacts of the built environment and
transportation policy characteristics under different planning scenarios can provide more
subtle implications for planning and policy development [23,56]. Traffic congestion and
emissions are becoming increasingly serious as China’s motorization continues. Parking
charges, transport subsidies, congestion charges, and other transport demand management
policies have been widely used in urban transport management. However, the interactions
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between these policies and traditional land use policies in terms of carbon emissions are
poorly understood. Furthermore, with little consideration of the urban physical geography
grid, all previous studies have assumed that built environment factors are distributed over
an idealized homogeneous surface. However, these factors must not be overlooked. For
example, cross-river commuting may influence the mode of transportation of residents,
thereby influencing CO2 emissions. How do these characteristics relate to commuting
carbon emissions? Do they have a synergistic effect on commuting carbon emissions when
combined with other “5D” built environments?

To address these issues, this study uses a large global sample dataset in Wuhan, China,
and a machine learning method to investigate the nonlinear and synergistic effects of
built-up environmental factors on commuting carbon emissions in a Chinese metropolis.

3. Methodology
3.1. Research Area and Data Source

Wuhan was chosen as a case study for two reasons. First, Wuhan is representative;
it is the largest metropolis in central China and has the typical high-density and outward
expansion characteristics of Chinese cities. In the past two decades, Wuhan has experienced
rapid urbanization and motorization. The population density of the Wuhan metropolitan
area has reached 5898–25,790 people/km2 (regional average), and the built-up area of
Wuhan grew by 365 km2 from 2012 to 2022 (Figure 1). There was intense pressure to reduce
transport emissions, as Wuhan’s transport carbon emissions increased at an average annual
rate of 11.6% from 2005 to 2017. Secondly, Wuhan is unique in that it is divided by two
major rivers, the Yangtze River and the Han River, and its unique geographical features
create a large demand for cross-river commuting, which may have a significant impact on
commuting carbon emissions [60]. Wuhan can therefore serve as an excellent reference for
other cities, especially those of a similar urban size, urban form, and traffic structure.
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The travel data in this study came from the fourth travel survey of residents in 2020
conducted by the Wuhan Institute of Transportation Development Strategy. Surveys have
been conducted every decade to determine the basic characteristics of the daily movements
of the population. A structured Family Interview Questionnaire was used to collect daily
travel information from residents, such as the start and end points of daily travel, the
purpose of travel, the selected mode of travel, and the social and economic characteristics
of families and individuals, including age, gender, personal education level, employment
status, household registration, family income, family size, and number of children. The
survey was conducted in Wuhan, with a 0.5% sample rate (Table 1). During the two-
month period from October to December 2020, surveyors randomly selected a sample of
every 10 households for face-to-face household interviews according to the principle of
equidistant sampling and used WeChat applets to fill in the questionnaire. Researchers
conducted random household surveys using the WeChat app. A total of 43,660 people’s
travel information was collected over a two-month period. The data were further processed,
missing information was removed, and 29,291 samples were obtained.

Table 1. The scope and sampling of Wuhan’s previous resident travel surveys.

Year Zone Resident Population
and Scale

Survey Population
and Household Size Sample Rate

1987 Main urban
area

330,000 people
940,000 households — —

1998 Main urban
area

3,810,000 people 76,000 people
2.0%150,000 households 24,000 households

2008 City area 870,000 people 120,000 people
1.5%200,000 households 38,000 households

2020 City area 12,320,000 people 40,000 people
0.5%4,080,000 households 15,000 households

The preliminary statistics of the survey results show that, in terms of the structure
of motorization modes, the share of public transportation in Wuhan in 2020 was 50.3%,
and the share of car trips was 45.1%. Compared with 2008, when public transportation
in the main urban area accounted for 54.5%, car trips accounted for 25.9%, and other
motorized trips such as cabs and motorcycles accounted for 20.0%, the share of public
transportation decreased slightly, while the share of car trips and trips increased greatly.
The number of private cars increased from 308,000 to 3.159 million from 2008 to 2020. The
number of private cars increased by about nine times, which is the main reason for the
significant growth of small cars and other modes of transportation. In terms of travel
purposes, commuting trips account for the largest share: about 37.7%. The city’s average
travel distance also increased from 5.1 km in 2008 to 6.0 km. The city’s average commuting
travel distance reached 8.5 km in 2020, and the average motorized travel distance was
10.5 km.

3.2. Variables and Data

The origin and destination (OD) points of residents’ commuting trips obtained from
the residents’ travel survey were vectorized, and the Baidu Map Path Planning API was
used to calculate the actual commuting distance of a single sample. The algorithm calculates
distances based on the respondents’ OD point addresses and according to the principle of
optimal route decision (considering the shortest travel time, the shortest travel distance, the
travel comfort, and the travel cost), which is the closest to the respondents’ real commuting
scenarios. Its commuting carbon emissions are based on the individual commuting modes
obtained from the survey. For the calculation, the following formulae were used:

Ci = ∑ Cij (1)

Cij = MTDij × EFm (2)
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MTDij = TD ij − NTDij (3)

Ci is the daily carbon emissions from individual commuting, which is the total amount
of carbon emissions generated by individual commuting in a day. Cij is the carbon emissions
from commuting trip j for sample i, and EFm is the carbon emission coefficient of residents’
commuting vehicles. This study refers to the Carbon Emission Intensity Table for Mass
Transportation in China. Xiao et al. [53] calculated the carbon emissions of the daily travel of
Beijing citizens and compiled the carbon emission factors applicable to this study (Table 2).
To estimate the carbon emissions of the commute as accurately as possible, it is necessary to
compute the pure motorized distance of this regular sample i trip. Consequently, when an
M-class regular trip is used to complete trip j, the “Baidu Map Batch Road Calculation API”
is used to calculate the travel distance (TDij) of the shortest travel scheme. This section
of travel distance includes both motorized and non-motorized travel distances. NTDij
represents the non-motorized travel distance in this section, and MTDij represents the pure
motorized travel distance.

Table 2. Carbon emission coefficient of different commuting modes.

Traffic Category Means of Transportation
Carbon Emission Coefficient

(g/(km per Person))

Small cars Private car, unit car, car rental 135
Bus class Bus and unit shuttle bus 50

Rail transportation category Subway 9.1
Personal assistance class Electric bicycle/moped, light motorcycle 8

Others Walking, cycling 0

In addition, using the Baidu Map API and the actual path, the actual range of the
residents’ 15 min walk (15 min isochronous circle) was calculated as the exact range of the
built environment index around the statistical residence. Existing studies primarily use
communities, streets, traffic districts [3,12,13], or buffer zones at a certain distance from
the residence [19,41] as boundaries to measure the built environment around individuals;
however, these boundaries cannot accurately reflect residents’ actual daily activities. Errors
may occur in the measurement of the built environment around an individual when using
these simplified “data boundaries”. This leads us to replace these common boundaries
with the isochronous circle of actual travel.

The Wuhan Urban GIS database provides measured data for built environment vari-
ables. Among them, dwelling location characteristics were expressed by the Euclidean
distance between the dwelling and the city public center and the nearest cluster center, and
the cluster center was identified by Wuhan mobile phone LBS data [61]. The mixed entropy
index of land use considers six land types: residential, commercial, educational, industrial,
public services, and green space. Data on the resident and employed populations were
obtained from the Wuhan census. Furthermore, the residents’ transportation subsidies and
parking facility use were obtained from the questionnaire.

The statistical table of the variables involved in the study is as follows (Table 3).
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Table 3. Variable statistics table.

Variables Description Mean. Std. Min Max

Dependent
variable Commuting CO2 emissions Daily commute CO2

emissions Commuting carbon emissions per respondent per day (in grams) 717.30 1424.03 0.00 13154.26

Independent
variable

Built
environ-

ment

District Location
Distance from the city

center Distance to Hankou, the first-class urban center of Wuhan (in km) 10.73 9.92 0.13 56.97

Distance to the nearest
cluster center Distance to the center of the nearest cluster (in km) 7.93 10.93 0.16 76.68

Public transport
accessibility

Distance to nearest
public transport stop

Distance (in km) from the respondent’s residence to the nearest bus stop
(both metro and surface bus) 0.74 3.40 0.002 29.09

Density of public
transport stations

Number of public transport stops within a 15 min walking isochronous circle
of the respondent 50.25 34.56 0.00 151.00

Density
Population density Residential density (persons/km2) within a 15 min walking isochronous

circle of respondents
24595.50 17363.19 36.52 72108.06

Job density Job density (persons/km2) within a 15 min walking isochronous circle of
respondents

16483.62 11181.14 135.20 46206.18

Land use intensity Floor area ratio of sites within a 15 min walking isochronous circle of the
respondent 3.05 1.46 0.01 5.97

Design Intersection density Density of intersections of four or more roads within a 15 min walking
isochronous circle of respondents (pcs/km2) 16.68 9.97 0.64 53.19

Road network density Density of the road network within a 15 min walking isochronous circle of
the respondent (in km/km2) 7.28 3.58 0.01 42.26

Diversity Land use mixed
entropy index

Mixed entropy of land use within a 15 min walking isochronous circle of
respondents 0.68 0.12 0.00 0.97

Cross River Commute Whether the respondent has a cross-river commute, dummy variable, yes = 1,
no = 0 0.07 0.25 0.00 1.00

Socio-demographics

Age Age of respondent 32.47 11.83 6.00 86.00
Gender Respondent gender, dummy variable, male = 1, female = 0 0.55 0.50 0.00 1.00

Employment status Whether the respondent is a full-time working employee, dummy variable,
yes = 1, no = 0 0.56 0.50 0.00 1.00

Family size Number of family members interviewed 2.91 0.94 1.00 7.00

Family income

Respondent’s annual household income, dummy variable, less than CNY
50,000 = 1, CNY 50,000–100,000 = 2, CNY 100,000–250,000 = 3, CNY

250,000–400,000 = 4, CNY 400,000–550,000 = 5, CNY 550,000–700,000 = 6,
greater than CNY 700,000 = 7

2.87 0.85 1.00 7.00

Car ownership Whether the respondent’s household owns a private car, dummy variable,
yes = 1, no = 0 0.60 0.49 0.00 1.00
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Table 3. Cont.

Variables Description Mean. Std. Min Max

Housing area
Respondent’s household housing size, dummy variable, below 40 m2 = 1,

40–70 m2 = 2, 70–90 m2 = 3, 90–110 m2 = 4, 110–120 m2 = 5, 120–150 m2 = 6,
greater than 150 m2 = 7

3.59 1.11 1.00 7.00

Education level
Respondents’ degree status, dummy variable, primary school and below = 1,
middle school = 2, high school = 3, undergraduate = 4, undergraduate and

above = 5, postgraduate and above = 6
3.31 1.01 1.00 6.00

Transport Demand
Management

Destination parking
facilities Does the respondent’s destination offer free parking, yes = 1, no = 0 0.18 0.39 0.00 1.00

Transport allowance Does the respondent have a transport subsidy, no = 0, public transport
subsidy = 1, fuel, taxi subsidy = 2 0.17 0.50 0.00 2.00
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3.3. Modeling Methods

The random forest (RF) model was used in this study to uncover the complex rela-
tionship between multidimensional elements and commuting carbon emissions. Ho [62]
proposed RF, which is based on the integration method of decision trees and optimizes
model fitting and prediction by assembling a large number of individual decision trees [63].
It extracts multiple samples from the original samples using the bootstrap resampling
method and builds a decision tree model for each bootstrap sample. The split in each tree
lasts until the tree reaches its maximum depth. The forecasts of multiple decision trees are
then combined, the final forecast is obtained through voting, and the final result is obtained
by averaging the forecasts of all individual trees. The working route is shown in Figure 2.

1 
 

 
 
 

 

Figure 2. Working route of the random forest algorithm. Source: Cheng et al., 2020 [38].

To enhance the interpretability of the model, the random forest model can generate
partial dependence plots (PDP) to illustrate the relationship between a single independent
variable and the dependent variable while considering its interactions with other indepen-
dent variables. This function can be used to assess the nonlinear relationships between
variables through multivariate analysis. In addition, it can be used to assess the interaction
effects between two or more independent variables, which is another important model
function used in this study.

Numerous theoretical and empirical studies have shown that RF is highly predictive,
robust regarding outliers and noise, and not prone to overfitting [64,65]. Most importantly,
it directly expresses the true relationship between variables rather than assuming a specific
parameter relationship between the self and dependent variables, as in traditional linear
regression [66]. The RF algorithm can handle missing values and maintain accuracy if some
data are lost. In addition, the RF algorithm performs better on a large-sample dataset and
is less sensitive to outliers than another popular machine learning algorithm, GBDT. The
random forest model generalizes better when dealing with datasets with larger samples
(GBDT is prone to overfitting), and the estimation of parameters takes less time. (Due to
the sample size being close to 30,000, the parameter optimization for GBDT is unacceptably
time-consuming.)
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For model calibration, three parameters must be considered: the total number of
trees n (forest size), the number of split variables m, and the maximum tree depth d [67].
Alternatively, it can calculate the relative importance of a single variable in a variable dataset
and create partial dependency plots to show the relationship between the independent
and dependent variables. Furthermore, in recent years, some researchers have questioned
whether the higher fit of RF compared to linear forest is due to overfitting. This study used
a dataset with a larger sample size (29,291) to avoid overfitting.

4. Results

This study used Python3.8 to build an RF model, with 20% of the samples randomly
selected as the test set and 80% as the training set, in order to obtain more reliable model
results. The parameters were optimized in two steps using Bayesian estimation with the
Hyperopt algorithm: (1) determine the best decision tree scale n, and (2) determine the
best split variable number m and tree depth d. Finally, after 300 iterative optimizations,
optimal model parameters are determined. The results show that the model’s predictive
performance can be neglected, and more time is consumed after more than 241 trees;
therefore, the number n of trees was set to 241. The model’s prediction performance is best
when the maximum tree depth d is 35 and the split variable m is 5. Furthermore, the RF
model was found to have a better goodness of fit and generalization when comparing the
regression results of the GBDT model. The final model’s R2 was 0.51 (the R2 of the linear
regression model with the same independent variable dataset was 0.29 (Appendix B), and
the GBDT’s R2 was 0.40 (Appendix A)), which was used to quantify the importance of each
built environment variable and draw partial dependency plots.

4.1. The Relative Importance of Independent Variables

Table 4 depicts the relative importance of the built environment characteristics, socio-
demographic characteristics, and traffic demand management policies. The total relative im-
portance of all the predicted variables was 100%. In general, residents’ socio-demographic
characteristics accounted for only 18.75% of the total, while the built environment (60.21%)
and traffic demand management indicators (21.04%) played an important role in predicting
commuting carbon emissions. Notably, the availability of free parking in the workplace
contributes 18.29% of the importance, indicating that it has a significant impact on commut-
ing carbon emissions. The contribution of “whether or not to commute across rivers” ranks
second at 11.09%, indicating that, in Wuhan, a megalopolis with riverine development,
cross-river commuting behavior has a significant impact on commuting carbon emissions,
and the inconvenience of non-motorized commuting caused by river barriers increases the
possibility of motorized travel.

In addition, job and residential density contributed the most, at 6.32% and 5.41%,
respectively. Location is also important, with the distance to the city center and the distance
to the nearest cluster center contributing 6.15% and 5.10%, respectively. This is similar
to the conclusion of Ewing and Cervero’s review [17]: people living in higher-density
areas tend to have shorter commutes, as a higher density can encourage non-motorized
travel and the use of public transport. Location largely determines the characteristics of the
built environment around a place of residence [68]. For example, people living near urban
centers have shorter commuting distances and are more likely to choose to commute by
public transport because urban centers have a higher concentration of employment and
transport services. In this respect, we differ from Zhang et al. [69], who studied the impact
of multi-centers on travel mode choices in Beijing. For Wuhan, the distance from the city
center affects carbon emissions more than the distance from the cluster center. This shows
that, although Wuhan has recently embraced multi-center planning to reduce commuting
demand and distance, the attraction of the original powerful center remains considerable.
Moreover, the impact of land-use diversity in Wuhan was less significant (4.44%, ranked
11th), in contrast to the findings of Wu et al. [19], who studied carbon emissions from travel
in the Twin Cities of Minneapolis using a similar methodology (GBDT). This could be
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due to the fact that Wuhan has a higher level of land use diversity (0.68 on average) than
Minneapolis (0.53 on average), which makes the marginal impact of land use diversity on
carbon emissions less obvious. Therefore, reducing CO2 emissions by adjusting land-use
diversity in Wuhan may be ineffective.

Table 4. Relative contribution of independent variables to commuting carbon emissions.

Variable Rank Importance (%) Total Importance (%)

Built environment
variable

Distance from the city center 4 6.15%
Distance from the nearest group center 6 5.10%

Distance to the nearest public transport station 10 4.46% 60.21%
Public transportation station density 12 4.02%

Population density 5 5.41%
Job density 3 6.32%

Land development intensity 8 4.83%
Intersection density 9 4.54%

Mixed entropy index of land use 11 4.44%
Cross-river commuting 2 11.09%
Road network density 13 3.85%

Socio-demographic
characteristics

Age 7 4.96%
Gender 17 1.89%

Employment status 21 1.02%
Family size 19 1.84%

Family income 20 1.81% 18.75%
Car ownership 14 3.39%
Housing area 16 1.99%

Level of education 18 1.85%

Traffic demand
management policy

Free parking 1 18.29%
Traffic allowance 15 2.75% 21.04%

According to a review by Ewing and Cervero [33], the built environment is more
important for travel distance, followed by socio-demographics, and mode choice depends
on both. It is possible that the built environment has a greater impact on travel CO2
as a function of both. In addition, a more recent study by Ewing [17] found that the
comprehensive effect of built environment variables on travel behavior was substantial.
Furthermore, several studies have found the built environment to be more relevant to
travel behavior using nonlinear models. They generally agree that nonlinear models (such
as decision trees, random forests, GBDT, and GAM) can accurately capture the potential
threshold effects of built environment variables on carbon emissions, whereas ignoring
these subtle effects can lead to an underestimation of the impact of the built environment.
Second, nonlinear models have the advantage of capturing as much of the influence of
built environment variables as possible because they can automatically capture interactions
between variables and help deal with multicollinearity. Thus, it is reasonable to conclude
that the built environment has a greater impact. The study also found that parking fees,
transit subsidies, and other transportation demand management (TDM) policies cannot be
ignored on this basis. We must examine the specific impact of these variables on commuting
carbon emissions.

4.2. Nonlinear Influence of a Single Variable on Commuting CO2 Emissions

Using an RF approach, partial dependence plots were developed to explain the as-
sociation between commuting carbon emissions and the built environment, individual
characteristics, and TDM.

Figure 3 depicts the effect of density on commuting CO2 emissions. As shown in
the partial dependence plots, both residential and job density have a negative effect on
commuting carbon emissions. The threshold for residential density is approximately
23,000 people/km2. Commuting carbon emissions reached their lowest point at a res-
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idential population density of 23,000 persons/km2, at which point the trend of carbon
emission reduction slowed until a weak positive correlation was observed. Commuting
carbon emissions are the lowest at a job density of approximately 5000 persons/km2, and
then marginal effects become weak. This demonstrates that, while density is negatively
correlated with commuting carbon emissions, this negative correlation does not persist
and disappears or becomes weakly positive above a certain threshold. Notably, the density
threshold obtained in this study was markedly higher than that obtained by Wu et al. [19]
in Minneapolis, owing to the high density in Wuhan. The population density of the Wuhan
metropolitan area is 5898–25,790 people/km2 (regional average) [70], and the population
density of local communities exceeds 60,000 people/km2, which is significantly higher
than that of Minneapolis (average 2750 people/km2). This demonstrates the importance of
conducting relevant research in developing countries such as China, because the experi-
ence of Western developed countries may not apply to China. Currently, the population
density in Wuhan’s city center is above the threshold obtained in this study. Therefore, for
densely populated urban areas, increasing population density is unsuitable for reducing
CO2 emissions from transport. The population of urban centers should be controlled to
avoid additional commuting CO2 emissions due to the excessive population concentration
in urban centers, while the functions and population should be relieved to cluster centers
with low population densities.
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Figure 4a depicts the effect of the distance to the city center on CO2 emissions from
commuting. The effect of the distance to the nearest cluster center on commuting CO2
emissions is shown in Figure 4b. Using Wuhan mobile LBS data, five cluster centers were
identified in Wuhan, and these urban clusters are also key development targets identified
in Wuhan’s recent polycentric planning. Overall, the distance to the city center has a
positive relationship with carbon emissions from commuting. This is because the farther
the place of residence from the city center, the longer the commuting distance of the
residents. Consequently, people prefer to drive long distances to save time compared to
public transport. The closer to the center, the shorter the commute, and the higher the level
of transit is, the more green transportation options (e.g., walking, bicycling, and public
transit) there are, reducing commuting CO2. For centers at different levels, commuting
carbon emissions begin to increase sharply beyond 8 km from the old city center, and
the marginal impact disappears beyond 16 km. However, commuting carbon emissions
increase when the distance to an adjacent cluster center exceeds 4 km. This phenomenon
illustrates two issues. First, the low-carbon commuting sphere of influence of the top
urban center is around 8 km, beyond which the attractiveness of green transportation
modes decreases, leading to an increase in commuting carbon emissions until the distance
reaches 16 km, when the top urban center is replaced by other low-level centers such
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that the marginal impact disappears or even becomes negative. Second, cluster centers
have a sphere of influence of approximately 4 km, which is smaller than that of urban
centers. It has a certain substitution effect on urban centers; however, in terms of partial
dependence and contribution, urban centers clearly have a greater influence on commuting
carbon emissions. This indicates that, despite the recent trend of Wuhan developing in a
multi-center mode, the occupation and residence functions of each cluster center have not
yet been fully developed and cannot replace the top-level urban center.
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Figure 5 depicts the nonlinear effects of other built environment factors on commuting
carbon emissions, including land use diversity (Figure 5a), intensity (Figure 5b), road den-
sity (Figure 5c), intersection density (Figure 5d), and bus accessibility (Figure 5e,f). These
variables have nonlinear effects on carbon emissions from commuting. The impacts of
land-use intensity and diversity on commuting CO2 emissions are depicted in Figure 5a,b.
Most existing studies suggest that land-use mix and development intensity are negatively
correlated with travel CO2 emissions because more intensive and mixed development
encourages public transit use and non-motorized travel [17]. However, our conclusions
are different. The partial dependence plot of land development intensity and land use
mixing degree demonstrates that this negative correlation exists but only at the threshold.
The land development intensity threshold was approximately 3.5, and the land-use mixing
degree threshold was approximately 0.68. Personal commuting CO2 can be reduced by
80 g per day as the mixing degree increases from 0.5 to 0.68; however, when it exceeds the
threshold, the negative correlation disappears. This demonstrates that, for a low-carbon
land use policy, the degree of land use mixing and intensity should not be increased in-
definitely, as excessive density and mixing may lead to increased commuting demand,
offsetting the original negative effects. Furthermore, the density of the road network and
the density of intersections are negatively correlated with commuting CO2 emissions over
a wide range, and denser road networks and intersections can increase road connectivity
and promote non-motorized public transportation. However, the road intersection den-
sity threshold was 15 per square kilometer, and the road network density threshold was
8 km/km2. Beyond these values, the negative correlation weakens and even turns into a
rapid positive correlation.
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between land use entropy index and commuting CO2; (b) The relationship between land development
intensity and commuting CO2; (c) The relationship between road intensity and commuting CO2;
(d) The relationship between intersection density and commuting CO2; (e) The relationship between
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For public transit (Figure 5e,f), when the number of stops within a resident’s 15 min
isochronous circle exceeds 37, the negative correlation between the number of stops and
commuting carbon emissions changes to a sharp positive correlation (Figure 5e), indicating
that more bus stops are not better for carbon reduction. The same pattern is observed
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in the effect of distance to the nearest bus stop on carbon emissions, where distance is
negatively or weakly correlated with carbon emissions in the linear distance range of
0–180 m (Figure 5f). Above 180 m, the carbon emissions begin to increase sharply. This
indicates that when the linear distance to the stop exceeds 180 m, public transit becomes
significantly less attractive to commuters because they have to walk or ride a distance to
reach the transit stop (this actual distance may be much greater than the linear distance of
180 m), which is not convenient enough for commuters; therefore, commuters will prefer to
commute by car if the nearby public transit stop is too far from where they live.

Figure 6 depicts the impact of age and traffic demand management policies as well as
cross-river commuting on carbon emissions from transportation. The age of commuting
CO2 first has a negative correlation and then has a positive correlation after 25 years old
(Figure 6a). Providing bus, fuel, and taxi subsidies increased commuting carbon emissions;
however, the positive correlation of bus subsidies was weak. Subsidies for gasoline or
taxis increased carbon emissions from 750 g per person per day to approximately 1400 g
per person per day (Figure 6b). Similarly, cross-river commuting and free parking both
significantly increase commuting carbon emissions (Figure 6c,d).
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4.3. Synergistic Effects of Different Variables on CO2 Emissions

The synergistic effect of cross-river commuting behavior and other built environment
variables on commuting CO2 emissions is shown in Figure 7. First, the partial dependence
plots show that cross-river commuting has a significant positive effect on commuting
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carbon emissions. For example, with the same population density of 19,116 persons/km2,
the partial dependence plot shows that residents with cross-river commuting emitted
139,031 g of extra CO2 compared to those without cross-river commuting (Figure 7a).
Furthermore, cross-river commuting and residence location had a clear synergistic effect
on carbon emissions from commuting. A similar phenomenon exists when synergizing
with other built environment variables (Figure 7b,c). Without cross-river commuting, the
distance to the city center increased from 3.77 km to 15.84 km, individual commuting
carbon emissions increased by 169.52 g per day, and with cross-river commuting, the
increase in individual commuting carbon emissions was 846.11 g (Figure 7d). In other
words, cross-river commuting amplifies the impact of the residential area location. This
is because Wuhan is divided into three cities, Hankou, Hanyang, and Wuchang, by the
Yangtze and Han rivers, which are connected by a limited number of river bridges and
do not have convenient pedestrian and bicycle lanes; therefore, even if the commuting
distance is short, it is inconvenient and unsafe to use non-motorized means to cross the
river. Therefore, commuters prefer to drive across the river to reach the city center, which
increases commuting CO2 emissions.
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Figure 8 depicts the additive effects of free parking and other environmental factors
on commuter CO2 emissions. When free parking is provided at the destination, there is
a substantial increase in individual commuting carbon emissions (Figure 8a–f), suggest-
ing that free parking facilities increase the likelihood of motorized travel, which in turn
significantly increases commuting carbon emissions. Second, when free parking is not
provided, the effects of some built environment variables are reduced. The synergetic
partial dependence plot of the number of bus stops and free parking, for example, shows
that as the number of bus stops increases from 0 to 54, the carbon emission from commuting
is only reduced by 37.90 g without free parking; however, it can be reduced by 247.14 g with
free parking (Figure 8f). It is demonstrated that free parking and other built environments
have a synergistic effect on commuting carbon emissions. In other words, the parking
fee policy can partially compensate for the effects of changes in the built environment.
Setting a parking fee policy is an effective and low-cost method for reducing individual
commuter carbon emissions. In the absence of a parking fee policy, the second-best means
of reducing commuting carbon emissions by changing the built environment has been
effective to some extent.
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land intensity and free parking; (b) Synergy of land use entropy and free parking; (c) Synergy of
population density and free parking; (d) Synergy of the distance to the city center and free parking;
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Figure 9 depicts two important land-use indicators: the synergistic effect of the land-
use mixing degree and land development intensity on commuter CO2 emissions. The
predicted findings show that individual carbon emissions for commuters are the lowest
at 709.73 g when the land mix entropy index is 0.70 and the land use intensity is 4.00
(Figure 9a). Furthermore, the circle of lowest commuting CO2 emissions forms when the
land mix entropy indexes are within the range of 0.66–0.73, while the land use intensities are
within the range of 3.12–4.41, indicating that a moderate mixed land-use mode combined
with appropriate high-intensity land development is beneficial for reducing CO2 emissions.
This provided a specific numerical basis for policy development. In addition, a bivariate
partial dependence plot based on road network density and land development intensity
shows that a reasonable neighborhood scale around the residence and an appropriate
volume ratio can significantly reduce commuting CO2 emissions. The combination of a
road network density of 9.41 km/km2 and a floor area ratio of 4.00 results in the lowest
individual commuting CO2 emissions (Figure 9b). The road network density of Wuhan in
2021 was 6.2 km/km2, indicating that the city’s road network still needs to be encrypted
to reduce carbon emissions. In recent years, Wuhan has controlled the floor area ratio of
the central urban area, which does not exceed 3.0 and should be slightly adjusted upward.
Simultaneously, other indicators of the built environment have similar synergistic effects
(Figure 10a–f).
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Figure 10. Synergistic effects among other built environment variables. (a) Synergy of land intensity
and the distance to the city center; (b) Synergy of land intensity and the number of public transit
stations; (c) Synergy of road network density and intersection density; (d) Synergy of population
density and the distance to the nearest station; (e) Synergy of land intensity and intersection density;
(f) Synergy of the distance to the city center and the number of public transit stations.

5. Discussion and Policy Recommendations

In terms of theory, there are many established studies that focus on travel behavior but
few studies that transfer the nonlinear premise to travel carbon emissions. Travel carbon
emissions are a combined outcome of travel behaviors such as travel mode, travel distance,
car ownership, and residence self-choice. Our study demonstrates the applicability of the
nonlinear research framework to products derived from travel behavior. This framework
can be used to conduct similar studies in the future, such as travel satisfaction and transit
satisfaction studies. This study is a further extension of the origin framework of nonlinear
studies on travel behavior. This study demonstrates that the study of travel behavior and
its derivatives should not be limited to the built environment, and the research horizon
should be further expanded.

The empirical results of this study have important implications for megacity planning
in China. China plans to achieve “peak carbon” by 2030 and “carbon neutrality” by
2060. Wuhan intends to limit its carbon emissions to 173 million tons by 2022 and house
16.6 million permanent residents by 2035. If the future population and employment growth
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can be relatively concentrated (within 8 km of the city center and 4 km of the nearest cluster
center) rather than sprawled, the CO2 emissions associated with individual commuting
can be minimized. Currently, Wuhan plans to build 17 new cross-river passages by 2025;
however, research shows that cross-river commuting caused by natural river divisions is
unfavorable for reducing CO2 emissions, and newly built cross-river passages of motor
vehicles may instead aggravate CO2 emissions. Therefore, the right approach should
be to increase non-motorized and public transportation facilities across the river and to
plan a compact and multi-centered urban spatial structure in accordance with the natural
geographic pattern of the city in order to minimize the need for commuting across the river,
rather than trying to “stitch” fragmented plates together with the river crossing to form a
larger single center. In addition to the built environment, the role of TDM transportation
demand management in carbon reduction is also clear. Parking regulation, appropriate
parking charges, and the reduction of fuel and taxi subsidies can help reduce commuting
carbon emissions. In addition, in recent years, Wuhan has been committed to improving
public transportation and spatial quality to promote green travel for residents to reduce
their travel CO2 emissions, and the results of our empirical study can provide precise
guidance for specific planning efforts.

The findings of this study can be applied to other developing countries with urban
conditions similar to those in China. This study demonstrates that the relationship between
China’s built environment and commuting CO2 emissions differs from the conclusions
reached in developed countries. However, controlling urban sprawl, developing moder-
ately compact and mixed land around public transportation facilities, and combining it
with appropriate TDM policies are all critical for lowering CO2 emissions.

6. Conclusions

This study uses a large sample disaggregate dataset of 29,291 samples covering the
entire area of Wuhan and employs the RF method to investigate the nonlinear and synergis-
tic relationships between multidimensional elements and commuting CO2. It specifically
contributes to the literature in three ways: (1) the nonlinear relationship between the urban
built environment and commuting CO2 emissions in China is precisely described, further
challenging the linearity assumption in the established literature and comparing the results
with developed countries. (2) The relative importance of multidimensional influencing
factors was further assessed. (3) The synergistic effect of the built environment and traffic
demand management policies on the CO2 emissions from commuting was investigated. In
general, it fills the gaps in the research on the nonlinear correlation between the urban built
environment and commuting CO2 emissions in China, as well as research on the synergistic
effects of different variables on commuting CO2 emissions.

This study contributes significantly to the literature on low-carbon city planning in
China. First, it demonstrates that the built environment (60.21%) has a greater overall
impact than individual characteristics (18.75%) on commuting CO2, and the proportion
of the importance of the built environment is greater than that of the research conclusions
of developed countries. The conclusion that the built environment is more important is
relatively reliable because more samples are used, and the samples cover urban developed
and suburban areas. The impact of TDM policy on commuting carbon emissions was also
found to be significant (21.04%). Free parking at the destination contributed 18.29% of
importance. Because parking is usually a significant cost in large cities, if free parking spaces
(formal or informal) are available at commuter destinations, commuters can disregard the
cost of parking and are thus more likely to choose motorized travel, which contributes to
increased commuting carbon emissions. In other words, if parking spaces are regulated
and a fee is charged, commuting by car may be significantly reduced due to the cost of
travel, which is a low-cost and effective way to reduce carbon emissions. It also illustrates
the important role of TDM in carbon reduction in a particular dimension. Furthermore, the
study details the nonlinear effects of various built environment variables on commuting
CO2 emissions and quantifies the synergistic effects of factors such as TDM, location, and



Int. J. Environ. Res. Public Health 2023, 20, 1616 25 of 28

land use on commuting CO2 emissions. Specifically, the cut-off values for population
density and job density are 23,000 persons/km2 and 5000 persons/km2, respectively; the
distance to the city center has two cut-off values of 8 km and 16 km, respectively, while
the distance to the nearest cluster center has a cut-off value of 4 km; for land use, the
cut-off value for the mixed entropy index of land use is 0.67, while the cut-off value for
land use intensity is 3.50, beyond which the marginal utility reverses; for design, the cut-
off value for road network density is 9 km/km2, while the cut-off value for intersection
density is 15/km2; for public transportation, the cut-off value for the number of bus
stops is 38, and the cut-off value for the distance to the nearest bus station is 180 m.
Commuter allowance, free parking, and cross-river commuting are all strongly associated
with increases in carbon emissions, and all of these elements have synergistic effects with
built environment variables.

This study, however, has several limitations: (1) because the study uses cross-sectional
data from a residential travel survey, the findings of this study are closer to an “association”
than to a causal “effect”. This is similar to most current studies and should be further
explored in the future using data over time. (2) The measurement range of the built
environment in this study was a 15 min isochronous circle in which residents walked
around their residences. In the future, the impact of the built environment around residents’
workplaces on CO2 emissions, as well as the impact of the built environment on CO2
emissions at different scales, should be investigated. (3) The measurement and calculation
of commuting CO2 emissions did not consider carpooling. This was due to the method
of obtaining the questionnaire, and we were unable to obtain relevant information about
sharing because our method was the same as that in most of the literature. (4) Limited by
data, commuting distance is calculated based on residents’ commuting OD points according
to the principle of optimal path (considering time, distance, comfort, and cost), and this
calculation has limitations. For example, different emission factors for different types of
vehicles should be taken into account, along with the impact of terrain (uphill and downhill)
on carbon emissions and the impact of different energy types on carbon emissions.
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Figure A1. Prediction results of the GBDT model.

Appendix B

Table A1. OLS Regression Results.

Dep. Variable Model Method R-
Squared

Adj. R-
Squared

F-
Statistic

Prob (F-
Statistic)

Log-
Likelihood AIC BIC

Commuting
carbon emissions OLS Least

Squares 0.289 0.288 539.9 0 −2.49 × 105 4.99 × 105 4.99 × 105
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