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Abstract: It is inevitable that urban agglomeration will have a coercive impact on the regional
Ecological Environment Quality (EEQ) as a consequence of high-speed urbanization. Balancing the
EEQ and urbanization development has become a problem worthy of attention. In order to objectively
evaluate the EEQ of the Yangtze River Delta Urban Agglomeration (YRDUA) and explore the impact
of the urbanization process on it, this paper is based on the Modified Remote Sensing Ecological Index
(MRSEI) and the Comprehensive Night Light Index (CNLI), respectively, and conducts a quantitative
assessment of the YRDUA in China from 2000 to 2020. The results show that: (1) From 2000 to 2020,
the MRSEI of the YRDUA first decreased and then increased, and the ecological environment quality
degraded first and then improved; however, there were significant differences between regions.
The ecological environment quality in the south is obviously better than that in the north, and the
ecological environment quality in the north changes more drastically, and the low value area of MRSEI
will gradually move downstream as time changes; (2) During the study period, the YRDUA formed a
hierarchical and progressive urbanization pattern. The inland urbanization process expanded from
east to west along the Yangtze River, and the urbanization process of coastal cities expanded from
Shanghai as the center to the north and south with high-intensity urbanization cities concentrated in
Shanghai and its surrounding cities and low-intensity urbanization cities distributed in the western
part of the urban agglomeration; (3) The Coupling Coordination Degree (CCD) between urbanization
and EEQ in the YRDUA has continuously improved with an increase of 28.57% in the past 21 years,
and the number of cities with high level coupling continues to rise, while the number of medium level
coupling cities and low level coupling cities has declined. As a large-scale and long-term analysis
of changes in the EEQ and the urbanization process, this study can provide theoretical support for
policymakers to formulate mesoscale development planning, EEQ monitoring, and environmental
protection policies.

Keywords: eco-environment quality; Google Earth Engine; spatiotemporal variation; MRSEI;
urbanization; the Yangtze River Delta urban agglomeration

1. Introduction

At present, urbanization is a powerful driving force for sustainable and healthy eco-
nomic development which has greatly promoted regional economic development. China
is considered to be a developing country with the fastest urbanization rate and a high
urban population which has experienced rapid urbanization and energy consumption [1,2].
However, urban sprawl, irrational land development and utilization in the process of
rapid urbanization have caused various ecological problems including severe air pollution,
habitat fragmentation, and ecosystem degradation which limit urbanization’s sustain-
able development [3–5]. With the advancement of urbanization and the development
of the regional economy, there is an increasingly evident trend in regional agglomera-
tion in China’s urban development. Based on one or more central urban areas, urban
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agglomeration develops through edge, axial or multi center expansion, and finally forms
regional integrated development. Urban agglomeration has become an essential platform
for promoting China’s economic growth and participation in international competition and
cooperation [6,7]. With the advancement of urbanization, the intensity of human activities
has increased, and the consumption of natural resources and energy has become more
concentrated; therefore, large urban agglomeration face increasingly severe pressure in Eco-
logical Environment Quality (EEQ). Two aspects deserve attention during the interaction
between urbanization and the EEQ. Rapid urbanization will inevitably lead to regional
EEQ degradation, while the deterioration of EEQ will restrict urbanization and sustainable
development. As the contradiction between urbanization and the EEQ in regional devel-
opment becomes more and more prominent, effective models are required to identify the
spatiotemporal changes in regional EEQ, to improve the EEQ of large urban agglomerations
and achieve the coordinated development of the economy and environment.

Recently, remote sensing technology has advanced rapidly, thereby providing data
sources and technological assistance for regional EEQ monitoring and evaluation which can
accurately reflect ecological conditions across scales [8–10]. Various ecological indicators
based on remote sensing have played an important role in reflecting and quantifying the
quality and function of the ecological environment [11]. Xu [12] proposed to acquire the
following four evaluation indexes from remote sensing images: the Normalized Differential
Vegetation Index (NDVI), the Wetness(WET), the Land Surface Temperature(LST) and the
Normalized Difference Build-up and Soil Index(NDBSI). Then, based on the four ecological
indexes, the Remote Sensing Ecological Index (RSEI) was constructed using Principal
Component Analysis (PCA) to quantitatively evaluate the regional EEQ. RSEI can integrate
multiple ecological indicators to objectively and quickly evaluate regional EEQ. Moreover,
as the above four factors can apply the same remote sensing data source, the change or error
of weight definition caused by individual characteristics can be avoided when using RSEI
to evaluate EEQ. The reliability and applicability of RSEI have been verified in numerous
previous studies [10,13,14]. However, RSEI emphasizes near-surface elements including
vegetation, humidity, hotness and dryness. The ecosystem is a complex and diversified
system, especially in large urban agglomerations with a high degree of industrialization
and urbanization. There are many factors that affect the internal EEQ, among which air
quality significantly influences the EEQ of urban agglomeration. In recent years, with the
rapid development of industrial cities, the emission of atmospheric pollutants including
industrial coal consumption, automobile exhaust emissions and dust emissions from
construction sites have increased sharply, leading to the continuously intensified urban
air pollution in China, especially in areas with better economic development, such as the
Yangtze River Delta, the Pearl River Delta and the Beijing-Tianjin-Hebei region [15,16].
A large number of atmospheric pollutants were discharged into the atmosphere, causing
increasingly severe air pollution [16,17]. A high concentration of inhalable atmospheric
particulate matter PM2.5 (particulate matter with airborne diameter ≤ 2.5 µm) is the main
reason for urban air pollution [17,18]. Aerosol Optical Depth (AOD) is an important index
to evaluate the degree of atmospheric pollution which can be applied to study the spatial
distribution of global and regional PM2.5 concentrations [19]. At present, AOD products
based on moderate Resolution Imaging Spectroradiometer (MODIS) have been verified
globally and can well reflect the spatiotemporal distribution and concentration changes of
PM2.5 [20,21]. In addition, the calculation of RSEI based on traditional professional remote
sensing software is very complex and inefficient. Google Earth Engine (GEE) can obtain a
large amount of image data online and process the image online, which greatly improves
the efficiency of work. It has leading advantages in remote sensing application research
of large-scale and long- time series [22,23]. The EEQ monitoring and evaluation research
based on GEE has been applied in numerous academic research settings, domestically and
abroad [24,25].

Nighttime lighting (NTL) data can reflect human activities and economic develop-
ment, and is comprehensively applied to socio-economic parameter estimation [26–28],
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population distribution estimation [29,30], energy and power consumption [31–33], urban-
ization monitoring [34–36], and urban agglomeration evolution [37,38] which has become a
major source for monitoring human activities and socio-economic development. Numerous
studies adopted nighttime light data to extract urban scope and measure urbanization
level, and their results show that nighttime light data can characterize urbanization and
urban expansion [39,40]. Supported by the rapid development of sensor technology in
recent years, nighttime light data has been upgraded from the initial low-resolution De-
fense Meteorological Satellite Program/Operational Linescan System(DMSP/OLS) data
to higher-resolution National Polar-Orbiting Partnership/Visible Infrared Imaging Radio-
meter Suite(NPP/VIIRS) data with more robust nighttime light perception capability that
is more competent in efficiently extracting Urban Built-Up Areas (UBA) and effectively
monitoring urban spatiotemporal changes.

The Yangtze River Delta Urban Agglomeration (YRDUA) is one of the most developed
regions in China and has one of the highest urbanization rates [41]. With the continuous
improvement of the economy and urbanization in the YRDUA, the pressure on the regional
ecological environment is becoming increasingly severe. Assessing and analyzing the
changes of EEQ in the YRDUA and its coupling with the urbanization process is of great
significance for achieving the coordinated development of economy and environment.
Consequently, this paper employed the PCA to couple the greenness, wetness, heat, dryness,
and air quality to construct the Modified Remote Sensing Ecological Index (MRSEI), which
was used to assess and analyze the EEQ of the YRDUA. Then, the comprehensive nighttime
light index (CNLI) was calculated based on NTL to evaluate the urbanization level of
the YRDUA. Finally, CNLI and MRSEI were used to construct the coupling coordination
model of urbanization and EEQ, and the interaction between EEQ and the urbanization
process in YRDUA were explored in this paper. The specific objectives of this study are:
(1) exploring the spatiotemporal changes of EEQ in the YRDUA under the background
of rapid urbanization; (2) evaluating the spatiotemporal changes of urbanization level in
the YRDUA from 2000 to 2020; and (3) evaluating the changes of coupling coordination
level between the EEQ and the urbanization level in the YRDUA. The research results are
expected to promote sustainable development in the YRDUA and provide a reference for
high-quality construction of urban agglomeration in China.

2. Study Area and Data
2.1. Study Area

The YRDUA is located in the lower reaches of the Yangtze River adjacent to the Yellow
Sea and the East China Sea. The Yangtze River Delta includes 26 cities including Shanghai,
Nanjing, Hangzhou, Hefei, etc., with an area of about 210,000 km2. The YRDUA belongs
to the subtropical monsoon climate. Most of the terrain is plain and the terrain is high
in the south and low in the north [42]. The study area is shown in Figure 1. In 2020, the
YRDUA accounted for approximately 11% of the country’s total population and 19% of the
country’s total GDP, thus making it one of the regions with the fastest economic growth,
the highest level of urbanization, and the largest population absorption in China.

2.2. Data and Pre-Processing
2.2.1. MODIS Data

Five ecological indexes were used to construct the MRSEI in this research, including
greenness, wetness, heat, dryness, and air quality. The MODIS is commonly used in
EEQ research because of its moderate spatial resolution, high image quality, and short
monitoring period. All MRSEI indicators were computed using MODIS data products from
2000 to 2020 because of the broad area and cloud cover of remote sensing pictures in the
research region. Specific data are shown in Table 1.

Based on the GEE, this paper selected the high-quality images online with few clouds
from May to October 2000–2020. Then the remote sensing image was pre-processed to
remove cloud pixels and water mask, and each type of remote sensing data was multiplied
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by the corresponding conversion coefficient. In addition, all types of MODIS data products
were unified and resampled to 500 m× 500 m. The data acquisition and processing address
is: https://code.earthengine.google.com/4f607932c615becde3815e591ad62996 (accessed on
5 November 2022).
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Table 1. The data source of five ecological components.

Dataset Resolution Time Resolution Data Description

MOD09A1 500 m 8 Day MOD09A1 is the surface reflectance data of 1–7 bands of Terra MODIS sensor

MOD11A2 1000 m 8 Day MOD11A2 is synthesized by daily MOD11A1, and the daytime surface
temperature is used in this paper

MOD13A1 500 m 16 Day MOD13A1 data uses the optimal pixels within 16 days of 500 m resolution, and
then calculates the vegetation index of each pixel position

MCD19A2 1000 m 1 Day MCD19A2 adopts MAIAC algorithm, which can provide accurate and stable
aerosol retrieval data

2.2.2. Nighttime Remote Sensing Data

DMSP/OLS image is released by the National Geophysical Data Center (NGDC)
of the National Oceanic and Atmospheric Administration (NOAA), with the download
address of https://www.ngdc.noaa.gov/ngdc.html (accessed on 6 November 2022). The
current image data sets include 33 phases of images obtained from 6 different DMSP
satellites including F10 (1992–1994), F12 (1994–1999), F14 (1997–2003), F15 (2000–2007),
F16 (2004–2009), and F18 (2010–2012) for a total of 21 years from 1992 to 2012. NPP/VIIRS
image is derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on
Suomi NPP (National Polar-Orbiting Partnership) satellite and is managed and downloaded
by the Earth Observation Group (EOG) affiliated with the National Geophysical Data
Center (NGDC), with the download address of https://eogdata.mines.edu/products/vnl/

https://code.earthengine.google.com/4f607932c615becde3815e591ad62996
https://www.ngdc.noaa.gov/ngdc.html
https://eogdata.mines.edu/products/vnl/
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(accessed on 6 November 2022). The detailed parameters of the nighttime remote sensing
data utilized in this paper are shown in Table 2.

Table 2. Data parameters of DMSP/OLS and NPP/VIIRS.

NTL Data Sensors Spatial Resolution Temporal Resolution Data Available Interval Unit

STL OLS Annual 30 arc second (around 1 km
at equator) 1992—2013 DN (unitless)

VCMSL VIIRS Monthly 15 arc second (around 500 m
at equator) April 2012—Present Nano

Watts/cm2/Sr

This study selected five years of nighttime light data in 2000, 2005, 2010, 2015 and 2020,
respectively, to analyze the coupling effect of urbanization and EEQ, of which the nighttime
light data in 2000, 2005, and 2010 were from DMSP/OLS Stable Light (STL), with a spatial
resolution of about 1 km (the original resolution of DMSP/OLS sensor was 2.8 km, with
product resampling of 1 km), where the pixel gray value (DN value) represented the average
light intensity, with a range of 0–63. Since there was a light saturation phenomenon with
DMSP/OLS data drifting with images from different satellite sensors, this paper adopted
a Pixel-Based Pseudo-Invariant Features (PBPIF) based on the fluctuation characteristics
of pixels [43] to obtain the calibration light data of 2000, 2005 and 2010 of the study area.
The nighttime light remote sensing data in 2015 and 2020 were from NPP/VIIRS Cloud
Mask Straight Light (VCMSL). The VCMSL dataset provided the monthly average value of
the Day/Night Band, with a spatial resolution of about 500 m. The product corrected the
pollution data using the stray light correction method [44], which realized a more refined
spatial resolution and removed data saturation. Since the light data in 2015 and 2020
were obtained from NPP/VIIRS and standing at the perspective of the time dimension,
they are inconsistent and incomparable with previous lighting data and cannot be directly
applied to the study in this paper. This paper applied the calibration model proposed
by Li et al. [45] to integrate DMSP/OLS data and NPP/VIIRS data and then applied the
low-pass Gaussian filtering to eliminate noise and achieve the matching of light data. In
addition, the paper resampled the STL data to a resolution of 500 m and synthesized the
mean value of multi-period monthly average VCMSL data to obtain annual data.

3. Research Methods
3.1. MRSEI Indexes and Calculation

The MRSEI is coupled with five indexes of greenness, wetness, heat, dryness, and air
quality, with the calculation formula as follows:

MRSEI = f (NDVI, Wet, LST, NDBSI, AOD) (1)

where, NDVI, WET, LST, NDBSI, and AOD represent greenness, wetness, dryness, heat,
and air quality, respectively.

3.1.1. Greenness Index

The greenness index represents the coverage and growth of surface vegetation and is
essential to measure the regional EEQ. The NDVI is established based on the absorption
of green vegetation leaves in the red light band and reflection characteristics of the near-
infrared band, which can detect the state and coverage of surface vegetation [46]. Hence,
NDVI in the growing season was used to represent greenness index in this study, and the
formula is as follows:

NDVI = (ρnir − ρred)/(ρnir + ρred) (2)

where ρred represents the reflectance of the red band, ρnir represents the reflectance of the
near-infrared band 1(NIR1).
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3.1.2. Wetness Index

WET can reflect the humidity of vegetation and soil, which is closely related to the
EEQ [47,48]. In this paper, WET was obtained by the tasseled cap transformation based on
MOD09A1 [49], and the formula is as follows:

WET = 0.1147ρred + 0.2489ρnir1 + 0.2408ρblue + 0.3132ρgreen − 0.3112ρnir2 − 0.6416ρswir1 − 0.5087ρswir2 (3)

where ρred, ρnir1, ρblue, ρgreen, ρnir2, ρswir1 and ρswir2 represent the reflectance of the
bands of the red, NIR1, blue, green, near-infrared band 2(NIR2), short-wavelength infrared 1
(SWIR1), and short-wavelength infrared 2(SWIR2) bands of the MODIS image, respectively.

3.1.3. Heat Index

LST was used to represent the heat index. LST is a crucial parameter that reflects the
land surface environment and an integral part of the Earth’s energy balance. The Daily
Surface Temperature (DLST) of the MOD11A2 dataset was used to calculate the LST and
then convert the grey value to a Celsius temperature. The conversion formula is:

LST = 0.02DN − 273.15 (4)

where DN is the gray value of MOD13A2 daytime surface temperature band.

3.1.4. Dryness Index

This research selects the Index-based Built-up Index (IBI) [50] and Soil Index (SI) [51]
to characterize the land surface dryness jointly. The above two indexes synthesize the
NDBSI, and the calculation formula is:

NDBSI =
SI + IBI

2
(5)

SI =
[(ρswir1 + ρred)− (ρnir1 + ρblue)]

[(ρswir1 + ρred) + (ρnir1 + ρblue)]
(6)

IBI =

2ρswir1

ρswir1 + ρnir1
−
[

ρnir1

ρnir1 + ρred
+

ρgreen

ρgreen + ρswir1

]
2ρswir1

ρswir1 + ρnir1
+

[
ρnir1

ρnir1 + ρred
+

ρgreen

ρgreen + ρswir1

] (7)

where ρ1, ρ2, ρ3, ρ4 and ρ6 are the Red, NIR1, Blue, Green and SWIR1 bands of the MOD09A1
images, respectively.

3.1.5. Air Quality Index

Air quality is an integral part of the EEQ. Relevant research shows that AOD can
accurately reflect the air quality of a particular area [52–54]. The study applies MCD19A2
aerosol products to represent air quality. MCD19A2 realizes (MAIAC) algorithm and con-
ducts inversion by applying the multi-angle atmospheric correction. The above algorithm
significantly improves the data coverage of dense vegetation areas and bright land surfaces.
It also enhances the inversion accuracy by fixing the grid to store the surface spectral and
thermal characteristics [54]. Based on the AOD data obtained from Aerosol Robot Network
(AERONET), the MAIAC algorithm can realize a higher accuracy than the Dark Target (DT)
and Dark Blue (DB) algorithm in Mainland, China [55,56].

3.1.6. Calculation of MRSEI

In order to avoid the impact of the water body on the principal component load and
the influence of the non-uniform index dimension on the weight, the following processing
method was performed before the PCA: (1) The Modified Normalized Difference Water
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Index (MDNWI) mask was used to remove water; (2) Since the data dimensions of the five
ecological indicators were not uniform, these five indicators were normalized before PCA.

MNDWI calculation formula is as follows:

MNDWI = (ρgreen − ρmir)/(ρgreen + ρmir) (8)

The indicator normalization formula is as follows:

NI =
I − Imin

Imax− Imin
(9)

in which, NI represents the normalized index; I represents the original ecological index;
Imin is the minimum value of the annual original ecological index, and Imax is the maximum
value of the annual original ecological index.

PCA uses the method of rotating the coordinate axis vertically, in turn, to concentrate
the multidimensional information into a few feature components, so as to achieve multi
factor dimension reduction. PCA can automatically and objectively determine the corre-
sponding weight of each index according to its contribution to the principal component,
which can avoid the result deviation caused by the weight setting. Based on the GEE, five
ecological indicators were analyzed by PCA. The first principal component (PC1) contains
the maximum information of each variable, which can comprehensively reflect the regional
EEQ. Therefore, PC1 is used as the information source of MRSEI0. The formula is shown as:

MRSEI0 = PC1[ f (NDVI, WET, LST, NDBSI, AOD)] (10)

where the PC1 is the first principal component.
Normalize MRSEI0, the formula is:

MRSEI = (MRSEI0 −MRSEI0−min)/(MRSEI0−max −MRSEI0−min) (11)

where MRSEI0-max represents the maximum value of MRSEI0, and MRSEI0-min represents
the minimum value of MRSEI0.

3.2. Average Correlation Coefficient

The Average Correlation Coefficient(ACC) was used to verify the accuracy of MRSEI
representing EEQ in the YRDUA, so as to check the applicability of MRSEI. The ACC
refers to the average absolute value of the correlation coefficient of an indicator and other
indicators in the same period. If the ACC between MRSEI and each index is greater than
that between each index, it indicates that MRSEI can represent the EEQ of the YRDUA
more comprehensively and accurately than other indexes. The formula of the ACC is:

Cp =

∣∣Cq
∣∣+ |Cr|+ · · ·+ |Cs|

n− 1
(12)

where Cp represents the ACC; p, q, r, and s represent the indexes for correlation analysis,
n represents the number of indexes for correlation analysis and Cp, Cq, Cr, and Cs is the
correlation coefficient among each index.

3.3. Construction of the CNLI

This paper calculated CNLI based on calibrated nighttime light images to reflect the
regional urbanization level and surface human activity intensity, which can effectively
characterize the development of regional urbanization [10]. The calculation formula is
as follows:

CNLI = LAP×MLI (13)
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MLI =

63
∑

i=1
Ci × DNi

63
∑

i=1
Ci × 63

(14)

LAP =
Arealight

Area
(15)

where CNLI is the comprehensive nighttime light index, MLI is mean light intensity, LAP is
the proportion of light area, DNi is the gray value of light pixels, and Ci is the number of
pixels with DNi value; Arealight represents the area of the light patch, and Area represents
the total area of the study area.

3.4. Coupling Coordination Model

The coupling degree refers to the degree to which two (or more) systems interact with
each other through various internal and external factors. The coupling coordination model
can reflect the interaction between MRSEI and CNLI. The coupling degree between EEQ
and urbanization development is an important factor affecting the sustainable development
of YRDUA. This paper introduces the coupling coordination model of urbanization and
EEQ based on the capacity coupling system model in physics [57]. Firstly, the coupling
model is:

CD = 2×
√
(U × E)/(U + E)2 (16)

where U is the CNLI and E is the MRSEI; CD represents the coupling degree between CNLI and
MRSEI. The larger the CD value, the more coordinated the EEQ and urbanization development.

Secondly, in order to avoid “False Coordination” between two systems, this paper in-
troduces a coupling coordination model to objectively reflect the coordinated development
level [10], with the formula as follows:

CCD =
√
(αU + βE)× CD (17)

where CCD represents the Coupling Coordination Degree, the higher the CCD value is, the
higher the coupled and coordinated development level between the two systems. α and β
are weight coefficients. Since urbanization is the critical factor leading to the EEQ changes,
and the impact of the EEQ on urbanization is limited. Therefore, the urbanization system
should be given greater weight (α = 0.65; β = 0.35) [58].

4. Results
4.1. Analysis of MRSEI Applicability

Table 3 shows that the contribution rates of the PC1 are all over 50%, gathering from
most of the information from the five indicators. It indicates that MRSEI is capable of
representing the regional EEQ, among which, the contribution rates of NDVI and Wet on
PC1 are positive, and the contribution rates of LST, NDBSI and AOD are negative, which is
consistent with the actual situation. The study calculated the correlation coefficient between
MRSEI, NDVI, WET, LST, NDBSI and AOD in the same period to test the applicability of
the ecology index MRSEI (Table 4). Also, it tested the applicability of the model through
the mean correlation. During five monitoring years, the mean correlation of MRSEI is the
largest, ranging from 0.49 to 0.53. Then, this paper shows the calculation of the mean value
of the mean correlation over five years. MRSEI is still the largest, higher than NDVI, WET,
LST, NDBSI and AOD at 0.51, 0.18, 0.22, 0.19, 0.09 and 0.31, respectively. It indicates that
MRSEI integrates most of the information of each indicator and is more representative than
any single indicator. Therefore, MRSEI is more competent in comprehensively and widely
representing the EEQ of the YRDUA.
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Table 3. Results of the PC1 analysis.

Indictors 2000 2005 2010 2015 2020 Average Value

NDVI 0.8889 0.8761 0.7997 0.9464 0.9551 0.8932
Wet 0.2502 0.1567 0.0848 0.0200 0.0170 0.1057
LST −0.3709 −0.4388 −0.5873 −0.2304 −0.2869 −0.3829

NDBSI −0.0741 −0.0046 −0.0034 −0.0072 −0.0242 −0.0227
AOD −0.0647 −0.1235 −0.0909 −0.2252 −0.0679 −0.1144

Eigenvalue 0.0162 0.0226 0.0276 0.0210 0.0201 0.0215
PC1 Contribution rate (%) 50.25 51.00 54.76 62.26 75.35 58.57

Table 4. Correlation matrix of indexes.

Year Indictors NDVI WET LST NDBSI AOD MRSEI

NDVI 1.00 0.07 −0.45 −0.51 −0.18 0.84

2000

WET 0.07 1.00 −0.51 −0.74 −0.04 0.32
LST −0.45 −0.51 1.00 0.46 0.08 −0.64

NDBSI −0.51 −0.74 0.46 1.00 0.07 −0.57
AOD −0.18 −0.04 0.08 0.07 1.00 −0.18
ACC 0.30 0.27 0.30 0.36 0.07 0.51

2005

NDVI 1.00 0.10 −0.36 −0.61 −0.25 0.87
WET −0.10 1.00 −0.28 −0.61 −0.12 0.24
LST −0.36 −0.28 1.00 0.26 0.18 −0.59

NDBSI −0.61 −0.61 0.26 1.00 0.14 −0.59
AOD −0.25 −0.12 0.18 0.14 1.00 −0.34
ACC 0.33 0.28 0.27 0.41 0.17 0.53

2010

NDVI 1.00 0.10 −0.36 −0.61 −0.25 0.87
WET 0.10 1.00 −0.28 −0.61 −0.12 0.24
LST −0.36 −0.28 1.00 0.26 0.18 −0.59

NDBSI −0.61 −0.61 0.26 1.00 0.14 −0.59
AOD −0.25 −0.12 −0.18 0.14 1.00 −0.31
ACC 0.33 0.28 0.27 0.41 0.17 0.52

NDVI 1.00 0.06 −0.52 −0.65 −0.31 0.89

2015

WET 0.06 1.00 −0.35 −0.65 0.27 0.06
LST −0.52 −0.35 1.00 0.53 0.10 −0.55

NDBSI −0.65 −0.65 0.53 1.00 −0.09 −0.57
AOD −0.31 0.27 0.10 −0.09 1.00 −0.39
ACC 0.39 0.33 0.38 0.48 0.39 0.49

2020

NDVI 1.00 0.03 −0.56 −0.68 −0.30 0.89
WET 0.03 1.00 −0.32 −0.57 0.14 0.07
LST −0.56 −0.32 1.00 0.52 0.19 −0.61

NDBSI −0.68 −0.57 0.52 1.00 0.07 −0.63
AOD −0.30 0.14 0.19 0.07 1.00 −0.29
ACC 0.39 0.27 0.40 0.46 0.18 0.50

4.2. Evaluation of EEQ of the YRDUA
4.2.1. Spatiotemporal Pattern of EEQ

Figure 2 shows that the MRSEI of the YRDUA fluctuated and increased from 2000 to 2020,
with the lowest mean of only 0.537 in 2005 and increased to 0.624 in 2020. The increase
of MRSEI in the past 20 years shows a specific improvement in the EEQ of the YRDUA.
Combining the ecology classification method Hu and Xu [59] provided, MRSEI was divided
into five grades to better reveal the changes in RSEI in the past 20 years: Extremely
Poor (0.0–0.2), Poor (0.2–0.4), Moderate (0.4–0.6), Good (0.6–0.8), and Excellent (0.8–1.0). It
can be observed that there is apparent spatial heterogeneity in the distribution of MRESI in
the YRDUA. Overall, the south has better EEQ than the north. The regions with “Good” and
“Excellent” EEQ grades are primarily concentrated in the south, with a high altitude, low
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intensity of human activities and high vegetation coverage; the regions with “Moderate”
and “Poor” EEQ are mostly distributed in the north and on both banks of the Yangtze
River, mainly in urban built-up areas, especially in Hefei and Shanghai. The above regions
have a high intensity of human activities, with a high level of urbanization, low vegetation
coverage, and poor EEQ. In addition, the EEQ in the northern YRDUA has dramatically
changed over the past 20 years, and the low-value area of MRSEI has gradually migrated
downstream. From 2000 to 2005, there was an extensive deterioration in the EEQ, mainly in
the northwest, such as Hefei and Chuzhou, and the east of the YRDUA, such as Shanghai
and Suzhou. After 2005, there was an increasing improvement in the overall EEQ of the
study area, of which low-value MRSEI regions in the north have been vastly reduced, and
the low-value MRSEI regions are primarily in the urban built-up areas.
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The change in area proportion of EEQ at all grades was calculated based on the five
MRSEI distribution maps in 2000, 2005, 2010, 2015 and 2020 (Figure 3). The results show
that in 2000, the EEQ maintained a “Good” grade in Yangtze River Delta, accounting for
58.33%. However, from 2000 to 2005, the area with “Good” EEQ decreased significantly
to 26.28%. The regions with “Moderate” and “Poor” EEQ have increased considerably,
with area proportion rising from 31.31% and 6.09% to 51.55% and 16.77%, respectively.
The EEQ improved continuedly between 2005 and 2020. From 2005 to 2010, the EEQ
slightly improved and the EEQ in most areas was Moderate. Since then, the EEQ in
the study area improved further. The region of areas with “Good” and “Excellent” EEQ
increased continuedly, with the area proportion rising from 30.99% to 54.65%. The change
of proportion structure shows that the transformation of MRSEI has mainly distributed
three grades of “Moderate”, “Good” and “Excellent,” and the change of EEQ is primarily
in the “Good” to “Excellent” or “Moderate” grades for the past 21 years.

4.2.2. Spatiotemporal Change Characteristics of EEQ in the YRDUA

To further analyze the change level of EEQ of the YRDUA from 2000 to 2020, this
study conducted a pairwise difference analysis on the MRSEI index of each year through
five grades of MRSEI. If the ecology grade rises, the grade difference is positive, which
represents the improvement of EEQ in the study area. On the contrary, if the ecology grade
decreases, the grade difference is negative, representing that the EEQ in the study area
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is deteriorating. Accordingly, the paper divides the change amplitude into five grades:
“Obvious Improvement (OI),” “Slight Improvement (SI),” “No Change (NC),” “Slight
Determination (SD),” and “Obvious Determination (OD)” (Table 5).
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Table 5. Statistics of changes in MRSEI level in the YRDUA from 2000 to 2020.

Year
Change Type OD SD NC SI OI

Change Level −4 −3 −2 −1 0 1 2 3 4

2000—2005
Type area/km2 128.01 86,664.62 99,559.48 14,676.79 12.03

Percent (%) 0.06 43.11 49.52 7.30 0.01

2005—2010
Type area/km2 790.08 29,269.49 130,981.95 40,096.90 6.85

Percent (%) 0.39 14.55 65.12 19.93 0.01

2010—2015
Type area/km2 5.77 12,345.76 109,031.59 77,550.12 1651.13

Percent (%) 0.01 6.15 54.36 38.66 0.82

2015—2020
Type area/km2 76.34 27,779.07 138,784.97 33,860.49 50.04

Percent (%) 0.04 13.85 69.20 16.88 0.03

2000—2020
Type area/km2 111.26 43,565.69 105,987.51 51,310.62 38.04

Percent (%) 0.06 21.67 52.73 25.52 0.02

In general, the change characteristic of EEQ in most areas of the YRDUA from
2000 to 2020 were NC, accounting for 52.73%, followed by SI and SD, accounting for
25.52% and 21.67%, respectively. The proportion of OD and OI was less than 1%. From
2000 to 2005, the area with deteriorated EEQ in the study area was 86,792.63 km2. It
was mainly in the SD, accounting for 43.11% of the total area of the study area. From
2000 to 2005, the area with improved EEQ was 14,688.82 km2, it was mainly in the SI,
accounting for 7.30%, indicating that the overall EEQ of the YRDUA was deteriorated.
Then, from 2005 to 2010, the area with deteriorated EEQ in the study area was mainly SD,
accounting for 14.94%, and the area with improved EEQ was mainly SI, accounting for
19.94%, with a decreased proportion in ecology deterioration and improvement. From
2005 to 2010, 65.12% of regional EEQ remained unchanged, indicating that the EEQ of
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the YRDUA was relatively stable. Afterward, from 2010 to 2015, there was 6.16% of the
area with deteriorated EEQ and mainly in the SD, and 39.48% of the area with improved
EEQ and mainly in the SI, indicating that the EEQ of the YRDUA was improved in a large
area from 2010 to 2015. From 2015 to 2020, the area of EEQ deterioration in the YRDUA
accounted for 13.89%, and the area of EEQ improvement accounted for 16.91%, indicating
that the EEQ change of YRDUA was relatively stable and continued to improve. Therefore,
it can be seen that the EEQ of the study area has experienced a process of deterioration first
and then improvement afterward.

Figure 4 shows the spatial changes of EEQ. It can be seen that the areas where EEQ has
been improved from 2000 to 2020 were mainly concentrated in the southwest and northwest,
mainly in Hefei, Chuzhou, Chizhou, Xuancheng and Hangzhou. The regions where EEQ
deteriorated were primarily concentrated in the east, mainly in Shanghai, Suzhou, Wuxi,
Changzhou, Nantong and Taizhou. From 2000 to 2005, the EEQ in the north and east
deteriorated, mainly in Shanghai, Suzhou, Wuxi, Yancheng, Nantong and Jiaxing. Then,
from 2005 to 2010, the EEQ of most areas was maintained stably. Ecology deterioration
areas were mainly distributed in the south, including Ningbo, Shaoxing and Taizhou. Few
ecological improvement areas were distributed northwest, including Hefei and Chuzhou.
Afterward, from 2010 to 2015, there was a significant improvement in EEQ, mainly in
Yancheng and Nantong in the north and Ningbo, Shaoxing and Taizhou in the south.
From 2015 to 2020, the EEQ of most areas remained stable. Ecological improvement areas
were mainly distributed in the north, and ecological deterioration areas were primarily
distributed in the south.
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4.3. Nighttime Light in the YRDUA
4.3.1. The Nighttime Light Intensity Distribution and Its Changes

It is widely believed that the nighttime light remote sensing images with necessary
preprocessing and calibration can directly or indirectly reflect the scope and intensity
of human activities at night. Moreover, it possesses certain advantages in urban issues
research including urban expansion and built-up area extraction. Figure 5 shows the
calibrated nighttime light images of the YRDUA from 2000 to 2020. Nighttime light areas
and high-intensity light pixels significantly increased in the past 21 years. In 2000, most
high-brightness pixels were concentrated in major central cities that were independent and
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disconnected from each other. However, the area of high-brightness pixels has increased
dramatically, forming a continuous high-brightness light area. During the research period,
there was a relatively low change in light intensity in central urban areas of cities with
high urbanization levels (Shanghai, Nanjing, Hefei and Suzhou). On the contrary, there
were relatively substantial changes in light intensity in counties and districts around the
central urban area. Another noteworthy point was that the nighttime light brightness took
Shanghai as the center and extended inland along the Yangtze River during the study
period. Meanwhile, the high-brightness nighttime light also expanded to the south and
formed a large area of high brightness in the Hangzhou Bay area.
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4.3.2. CNLI Changes in Prefecture-Level Cities

This paper calculated the CNLI of each unit and its changes in the scale of prefecture-
level cities based on the CNLI, as shown in Figure 6. During the research period, CNLI in the
YRDUA area had changed dramatically, indicating significant differences in urbanization
levels within the YRDUA. In 2000, only Shanghai’s CNLI value was at a very high level,
Wuxi and Suzhou were at a moderate level, and other cities were at a low or very low level,
thus indicating that most of the urbanization levels of most cities in the study area were at
a low level. In 2005, the CNLI of Suzhou and Wuxi reached the high level. At the same
time, the CNLI of Nanjing, Zhenjiang, Changzhou and Jiaxing reached a moderate level.
In 2010, the CNLI of Suzhou and Wuxi reached the very high level, and that of Ningbo and
Zhoushan reached the moderate level. The high CNLI value of the YRDUA began to show
an expansion trend along the Yangtze River and coastline. Since then, compared with 2010,
the high value of CNLI further extended “inland” in 2015, when the CNLI of Ma’anshan
rose to the low level and Jiaxing rose to the high level. In 2020, the CNLI of Zhoushan rose
to the high level. Then, the CNLI of Taizhou, Nantong and Huzhou rose to the moderate
level. At the same time, the CNLI of Yancheng, Hefei, Wuhu, Hangzhou, Jinhua and
Taizhou rose to the low level. From 2000 to 2020, a well-defined and gradually promoted
urbanization pattern in the YRDUA was formed. The inland urbanization process develops
from the east to the west along the Yangtze River, while the coastal urbanization process
is expanding from Shanghai to the north and south. Moreover, the urbanization cities at
a very high level are concentrated in Shanghai and its surrounding cities such as Wuxi,
Suzhou and Jiaxing. The urbanization cities at a high level are centered on the areas of
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high-intensity urbanization. The change gradient of CNLI in different cities shows that the
CNLI in eight cities has increased significantly, accounting for 30.77% of all units mainly
concentrated in the core areas of the Yangtze River Delta including Nanjing, Zhenjiang,
Changzhou, Wuxi, Suzhou, Huzhou and Jiaxing during the 21-year period. These cities
have experienced rapid urbanization during the study period and are also one of the most
economically dynamic regions in China that shows a high growth rate in CNLI. Eleven
cities showed a slightly increased CNLI, that accounted for 42.31% of all cities and were
mainly distributed around high-intensity urbanization areas along the Yangtze River to
the west, and along the coastline to the north and south. In addition, there are seven cities
with slight changes in CNLI that account for 26.92% of all cities. Apart from Shanghai, the
initially highly urbanized city, other cities are distributed outside the study area, mainly in
the west or north of the Yangtze River Delta, with a relatively low urbanization level and
relatively slow urbanization speed.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 15 of 22 
 

 

began to show an expansion trend along the Yangtze River and coastline. Since then, com-
pared with 2010, the high value of CNLI further extended “inland” in 2015, when the 
CNLI of Ma’anshan rose to the low level and Jiaxing rose to the high level. In 2020, the 
CNLI of Zhoushan rose to the high level. Then, the CNLI of Taizhou, Nantong and Hu-
zhou rose to the moderate level. At the same time, the CNLI of Yancheng, Hefei, Wuhu, 
Hangzhou, Jinhua and Taizhou rose to the low level. From 2000 to 2020, a well-defined 
and gradually promoted urbanization pattern in the YRDUA was formed. The inland ur-
banization process develops from the east to the west along the Yangtze River, while the 
coastal urbanization process is expanding from Shanghai to the north and south. Moreo-
ver, the urbanization cities at a very high level are concentrated in Shanghai and its sur-
rounding cities such as Wuxi, Suzhou and Jiaxing. The urbanization cities at a high level 
are centered on the areas of high-intensity urbanization. The change gradient of CNLI in 
different cities shows that the CNLI in eight cities has increased significantly, accounting 
for 30.77% of all units mainly concentrated in the core areas of the Yangtze River Delta 
including Nanjing, Zhenjiang, Changzhou, Wuxi, Suzhou, Huzhou and Jiaxing during the 
21-year period. These cities have experienced rapid urbanization during the study period 
and are also one of the most economically dynamic regions in China that shows a high 
growth rate in CNLI. Eleven cities showed a slightly increased CNLI, that accounted for 
42.31% of all cities and were mainly distributed around high-intensity urbanization areas 
along the Yangtze River to the west, and along the coastline to the north and south. In 
addition, there are seven cities with slight changes in CNLI that account for 26.92% of all 
cities. Apart from Shanghai, the initially highly urbanized city, other cities are distributed 
outside the study area, mainly in the west or north of the Yangtze River Delta, with a 
relatively low urbanization level and relatively slow urbanization speed. 

 
Figure 6. CNLI in prefecture-level cities and its changes. 

4.4. Interaction between EEQ and Urbanization 
Based on the calculated MRSEI and urbanization characteristic element CNLI of each 

city, this paper applies Formula (16)–(17) to generate the CCD of prefecture-level cities in 
the YRDUA, as shown in Figure 7. In general, the CCD between MRSEI and CNLI shows 

Figure 6. CNLI in prefecture-level cities and its changes.

4.4. Interaction between EEQ and Urbanization

Based on the calculated MRSEI and urbanization characteristic element CNLI of each
city, this paper applies Formulas (16)–(17) to generate the CCD of prefecture-level cities
in the YRDUA, as shown in Figure 7. In general, the CCD between MRSEI and CNLI
shows an upward trend from 2000 to 2020 which indicates that the coupling coordination
development of EEQ and urbanization in the Yangtze River Delta had been improved.
Specifically, CCD grew at an annual rate of about 0.01 from 0.49 in 2000 to 0.63 in 2020,
with a growth rate of 28.57%. The continuous and stable rise of CCD indicates that the EEQ
and urbanization of the YRDUA were going through a healthy development process.

To better analyze the coupling coordination characteristics of urban MRSEI and CNLI,
the CCD of prefecture-level cities was divided into three stages, namely the low-level
coupling coordination stage, with CCD lower than 0.45; the middle-level coupling coordi-
nation stage, with the CCD between 0.45 and 0.65; the high-level coupling coordination
stage, with CCD higher than 0.65, counting the number of cities with different CCD levels,
as shown in Figure 8. In 2000, only four cities (15.38%) were in the high-level coupling
stage, and 11 cities were in the low-level coupling stage and the middle-level coupling
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stage, the latter of which took a dominant position. In 2005, the number of cities in the
low-level coupling stage maintained stably, which was still at 11. The number of cities in
the middle-level coupling stage dropped to eight. Nanjing, Zhenjiang and Changzhou
entered a high-level coupling coordination stage. In 2010, the number of low-level coupling
cities decreased significantly to six, and the number of medium-level and high-level cou-
pling cities increased, surpassing the low-level coupling cities for the first time. Yancheng,
Maanshan, Wuhu, Hangzhou, and Jinhua became medium-level coupling cities. Ningbo
and Zhoushan have become high-level coupling cities. In 2015, the proportion of high-level
coupling cities increased, reaching 11. The number of cities with medium coupling grades
was reduced to nine, and Taizhou and Yangzhou changed from a medium coupling level
to a high coupling level. The number of low-level coupling cities was maintained stably
at six. In 2020, the number of high-level coupling cities continued to increase, reaching 13
and accounting for 50%. Yangzhou and Huzhou became high-level coupling cities. The
number of medium-level and low-level coupling cities decreased, with eight medium-level
and five low-level coupling cities. Hefei was changed from a low-level coupling city to a
medium-level coupling city.
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Reviewing the past 21 years, the CCD of the YRDUA has changed significantly, which
was not only represented in area and proportion but also in spatial distribution. In 2000,
most of the cities in the study area were low-level coupling cities, while a few high-level
coupling cities were clustered around the estuary of the Yangtze River. In 2020, the
number of high-level coupling cities reached 50%, and the distribution area expanded
significantly. The high coupling level cities were mainly expanded around Shanghai, and
the low coupling cities, accounting for 9.23%, were primarily concentrated in the west of
the YRDUA. In addition, during the study period, there were two expansion routes for
CCD of the YRDUA. One was to expand westward along the Yangtze River, and the other
was to expand south-north along the coastal zone with Shanghai as the center, which was
basically in line with the expansion trend of CNLI.
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5. Discussion

As a densely populated and mostly urbanized area, the changes in the EEQ of the
YRDUA will have an inestimable influence on the stability and development of the re-
gion. Therefore, it is of great significance to comprehensively and objectively realize the
monitoring and coupling coordination analysis of the EEQ and urbanization in urban
agglomeration for sustainable urban development and green city construction. Meanwhile,
considering the characteristics of the EEQ in the study area, the impact of air quality on the
EEQ of the study area cannot be ignored. On top of the original RSEI, this paper adds air
quality indicators and constructs the MRSEI by integrating multi-source remote sensing
data and applying the GEE cloud platform to retrieve the temporal and spatial pattern of
the EEQ of the YRDUA and analyze the spatiotemporal changes. The results show that
MRSEI can realize the comparative analysis of regional EEQ and urbanization rapidly
and efficiently. It can provide scientific support for the development planning and the
monitoring and protection of EEQ in mesoscale regions.

The results of this study are similar to those of previous studies [10,60] which have
certain reference value, but there are still some deficiencies in the study. For instance, the
MRSEI constructed in this paper is completely based on remote sensing images, which
means that remote sensing images will also have errors due to different sensors and transit
times. In addition, this paper is engaged in ensuring the comparability of MRSEI in different
years, reducing the image selection time window as much as possible and removing clouds
and water from images to avoid interference. However, affected by the quality of MODIS
data, the results are still inevitably affected by clouds and other noises, and it is difficult to
ensure that the image acquisition time in different years is exactly the same. Therefore, in
future research, when calculating MRSEI, we should further denoise the image to improve
the image quality and ensure the accuracy of the results [61–64]. Although our research
shows the spatiotemporal pattern and changes in EEQ in the YRDUA, the ecosystem is
an intricate and varied system. The composition and alterations of EEQ involve many
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aspects including natural and socio-economic factors. Only five indicators are selected to
reflect the EEQ in this study. Future research should consider adopting more refined and
diversified index data such as Net Primary Productivity (NPP), Vegetation Health Index
(VHI), meteorological drought index, and various socio-economic indicators [65].

Considering the persistence of urban-rural disparity in China, the resource concen-
tration effect of cities will continue to attract people, industries and resources through
resource concentration. Since urban expansion is still one of the main trends of the future
development of the YRDUA, the coercion effect of urbanization on the EEQ will not disap-
pear in the short term. It is worth noting that based on the coupling coordination model
constructed by MRSEI and CNLI, this paper can intuitively depict the coupling changes
between large urban agglomeration areas and the EEQ during urbanization. However,
influenced by the limited spatial resolution of the data and model parameters, it is difficult
to further explore the coupling mechanism and driving force between urbanization and
the EEQ. Whether the method proposed in this paper can effectively reflect the practical
problems also needs to be further tested with non-remote sensing data. In addition, the
urbanization grade of different areas within the city varies greatly. The coordination and
coupling relationship between the urbanization process and EEQ in urban built-up areas
and suburban or rural areas are different.

With the continuous improvement of the quality of the data sources and continuous
optimization of the model algorithms, there are several topics that should be focused
on in future research such as the introduction of multi-dimensional ecological index pa-
rameters (economic, population, and environmental protection policies) to improve the
coupling evaluation system of the ecological environment and the urbanization level, the
interaction mechanism between urban expansion and the ecological environment in urban
development and discussion of the coupling mechanism of urban expansion and ecological
environment in different land use types on a smaller spatial scale in order to reveal the
relationship between the environment and urban development more comprehensively.

6. Conclusions

Combining MODIS images and nighttime light data, this paper constructs MRSEI and
CNLI to evaluate the ecology status and urbanization intensity of the YRDUA in the past
21 years and explore the coupling and interaction between them.

The results show that: (1) During the research period, the EEQ of the YRDUA deterio-
rated from 2000 to 2005. Although the EEQ had continuously improved from 2005 to 2020,
there were significant differences among regions. The EEQ of the YRDUA in the south was
better than that in the north. Most regions with “Good” and “Excellent” EEQ were located
in the south of the YRDUA. The areas with “Moderate” and “Poor” EEQ were mostly
located in the urban built-up areas in the north of the YRDUA and on both banks of the
Yangtze River. In addition, the EEQ in the north of the YRDUA has changed dramatically
in the past 21 years, and the MRSEI low-value region has shifted downstream. (2) Through
21 years of urbanization, the YRDUA has formed a hierarchical and progressive urban-
ization pattern, where the inland urbanization process expands from east to west along
the Yangtze River. Meanwhile, the urbanization process of coastal cities expanded from
Shanghai to the north and south. High-intensity urbanization cities are concentrated in
Shanghai and its surrounding cities including Wuxi, Suzhou and Jiaxing. In contrast,
low-intensity urbanization cities are distributed in the west of the urban agglomeration.
(3) The number of cities with a high-level coupling of EEQ and urbanization in the YRDUA
has been increasing continuously in the past 21 years, changing from four to 13. Meanwhile,
the number of cities with medium-level and low-level coupling has declined, changing
from 11 to eight and five, respectively. The CCD of the YRDUA was increasing at a rate of
around 0.01 per year and rose from 0.49 in 2000 to 0.63 in 2020 with an increase of 28.57%.
The coupling level between its urbanization and EEQ is constantly improving.
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