Impact of Plastic-Wrap Properties and Cleaning Intervals on the Disinfection of Elevator Buttons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Investigation and Sampling Process
2.3. Statistical Analysis
3. Results
3.1. Comparison of PE, PMP, PVC, and PVDC Wraps
3.2. Comparison of TPU Keyboard Cover, PET-EVA Laminating Film, PVDC Wrap, and Uncovered Panel (Null)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geadas Farias, P.; Gama, F.; Reis, D.; Alarico, S.; Empadinhas, N.; Martins, J.C.; de Almeida, A.F.; Morais, P.V. Hospital microbial surface colonization revealed during monitoring of Klebsiella spp., Pseudomonas aeruginosa, and non-tuberculous mycobacteria. Antonie Leeuwenhoek 2017, 110, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Suleyman, G.; Alangaden, G.; Bardossy, A.C. The Role of Environmental Contamination in the Transmission of Nosocomial Pathogens and Healthcare-Associated Infections. Curr. Infect. Dis. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Facciolà, A.; Pellicanò, G.F.; Visalli, G.; Paolucci, I.A.; Venanzi Rullo, E.; Ceccarelli, M.; D’Aleo, F.; Di Pietro, A.; Squeri, R.; Nunnari, G.; et al. The role of the hospital environment in the healthcare-associated infections: A general review of the literature. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1266–1278. [Google Scholar] [PubMed]
- Ide, N.; Frogner, B.K.; LeRouge, C.M.; Vigil, P.; Thompson, M. What’s on your keyboard? A systematic review of the contamination of peripheral computer devices in healthcare settings. BMJ Open 2019, 9, e026437. [Google Scholar] [CrossRef] [PubMed]
- Tanner, W.D.; Leecaster, M.K.; Zhang, Y.; Stratford, K.M.; Mayer, J.; Visnovsky, L.D.; Alhmidi, H.; Cadnum, J.L.; Jencson, A.L.; Koganti, S.; et al. Environmental Contamination of Contact Precaution and Non-Contact Precaution Patient Rooms in Six Acute Care Facilities. Clin. Infect. Dis. 2021, 72, S8–S16. [Google Scholar] [CrossRef]
- Wille, I.; Mayr, A.; Kreidl, P.; Brühwasser, C.; Hinterberger, G.; Fritz, A.; Posch, W.; Fuchs, S.; Obwegeser, A.; Orth-Höller, D.; et al. Cross-sectional point prevalence survey to study the environmental contamination of nosocomial pathogens in intensive care units under real-life conditions. J. Hosp. Infect. 2018, 98, 90–95. [Google Scholar] [CrossRef]
- Marzoli, F.; Bortolami, A.; Pezzuto, A.; Mazzetto, E.; Piro, R.; Terregino, C.; Bonfante, F.; Belluco, S. A systematic review of human coronaviruses survival on environmental surfaces. Sci. Total Environ. 2021, 778, 146191. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Makuła, M.; Włodarczyk-Makuła, M.; Wołejko, E.; Wydro, U.; Serra-Majem, L.; Wiater, J. Inanimate Surfaces as a Source of Hospital Infections Caused by Fungi, Bacteria and Viruses with Particular Emphasis on SARS-CoV-2. Int. J. Environ. Res. Public Health 2022, 19, 8121. [Google Scholar] [CrossRef]
- Wißmann, J.E.; Kirchhoff, L.; Brüggemann, Y.; Todt, D.; Steinmann, J.; Steinmann, E. Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms 2021, 9, 343. [Google Scholar] [CrossRef]
- Bhatta, D.R.; Hamal, D.; Shrestha, R.; Hosuru Subramanya, S.; Baral, N.; Singh, R.K.; Nayak, N.; Gokhale, S. Bacterial contamination of frequently touched objects in a tertiary care hospital of Pokhara, Nepal: How safe are our hands? Antimicrob. Resist. Infect. Control 2018, 7, 97. [Google Scholar] [CrossRef]
- Kandel, C.E.; Simor, A.E.; Redelmeier, D.A. Elevator buttons as unrecognized sources of bacterial colonization in hospitals. Open Med. 2014, 8, e81–e86. [Google Scholar] [PubMed]
- Chen, Y.; Pradhan, S.; Xue, S. Novel role of plastic wrap in COVID-19. JAAD Int. 2020, 1, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Querido, M.M.; Aguiar, L.; Neves, P.; Pereira, C.C.; Teixeira, J.P. Self-disinfecting surfaces and infection control. Colloids Surf. B Biointerfaces 2019, 178, 8–21. [Google Scholar] [CrossRef]
- Ellingson, K.D.; Pogreba-Brown, K.; Gerba, C.P.; Elliott, S.P. Impact of a Novel Antimicrobial Surface Coating on Health Care-Associated Infections and Environmental Bioburden at 2 Urban Hospitals. Clin. Infect. Dis. 2020, 71, 1807–1813. [Google Scholar] [CrossRef]
- Kim, M.; Linstadt, R.T.H.; Ahn Ando, K.; Ahn, J. Gemini-Mediated Self-Disinfecting Surfaces to Address the Contact Transmission of Infectious Diseases. Langmuir 2022, 38, 2162–2173. [Google Scholar] [CrossRef]
- Assadian, O.; Harbarth, S.; Vos, M.; Knobloch, J.K.; Asensio, A.; Widmer, A.F. Practical recommendations for routine cleaning and disinfection procedures in healthcare institutions: A narrative review. J. Hosp. Infect. 2021, 113, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.E.; Thomas, B.C.; Conly, J.; Lorenzetti, D. Cleaning and disinfecting surfaces in hospitals and long-term care facilities for reducing hospital- and facility-acquired bacterial and viral infections: A systematic review. J. Hosp. Infect. 2022, 122, 9–26. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Infect. Dis. Clin. N. Am. 2021, 35, 575–607. [Google Scholar] [CrossRef]
- Mitchell, B.G.; McGhie, A.; Whiteley, G.; Farrington, A.; Hall, L.; Halton, K.; White, N.M. Evaluating bio-burden of frequently touched surfaces using Adenosine Triphosphate bioluminescence (ATP): Results from the Researching Effective Approaches to Cleaning in Hospitals (REACH) trial. Infect. Dis. Health 2020, 25, 168–174. [Google Scholar] [CrossRef] [Green Version]
- van Arkel, A.; Willemsen, I.; Kilsdonk-Bode, L.; Vlamings-Wagenaars, S.; van Oudheusden, A.; Waegemaeker, P.; Leroux-Roels, I.; Verelst, M.; Maas, E.; van Oosten, A.; et al. ATP measurement as an objective method to measure environmental contamination in 9 hospitals in the Dutch/Belgian border area. Antimicrob. Resist. Infect. Control 2020, 9, 77. [Google Scholar] [CrossRef]
- Ling, M.L.; Apisarnthanarak, A.; Thule, T.A.; Villanueva, V.; Pandjaitan, C.; Yusof, M.Y. APSIC Guidelines for environmental cleaning and decontamination. Antimicrob. Resist. Infect. Control 2015, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronk, R.; Bartram, J. Environmental conditions in health care facilities in low- and middle-income countries: Coverage and inequalities. Int. J. Hyg. Environ Health 2018, 221, 409–422. [Google Scholar] [CrossRef]
- Raheem, D. Application of plastics and paper as food packaging materials? An overview. Emir. J. Food Agric. 2013, 25, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Lasfar, S.; Ilias, M.; Latrach, A.; Chergui, M.H.; Choukir, A.; Diab, A. Resistance of different materials used in sewers systems: Polyvinyl chloride (PVC), polypropylene (PP) and high density polyethylene (HDPE), to sulfuric acid and sodium sulfate attack. Int. J. Eng. Res. Appl. 2014, 4, 670–678. [Google Scholar]
- Herous, L.; Remadnia, M.; Kachi, M.; Nemamcha, M. Decay of Electrical Charges on Polyethylene Terephthalate Surface. J. Eng. Sci. Technol. Rev. 2009, 2, 87–90. [Google Scholar] [CrossRef]
- Schlicht, H.; Haugen, H.J.; Sabetrasekh, R.; Wintermantel, E. Fibroblastic response and surface characterization of O2-plasma-treated thermoplastic polyetherurethane. Biomed. Mater. 2010, 5, 25002. [Google Scholar] [CrossRef]
- Birkett, M.; Dover, L.; Cherian Lukose, C.; Wasy Zia, A.; Tambuwala, M.M.; Serrano-Aroca, Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int. J. Mol. Sci. 2022, 23, 1162. [Google Scholar] [CrossRef] [PubMed]
- Koscova, J.; Hurnikova, Z.; Pistl, J. Degree of Bacterial Contamination of Mobile Phone and Computer Keyboard Surfaces and Efficacy of Disinfection with Chlorhexidine Digluconate and Triclosan to Its Reduction. Int. J. Environ. Res. Public Health 2018, 15, 2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajouri, L.; Campos, M.; Olsen, M.; Lohning, A.; Jones, P.; Moloney, S.; Grimwood, K.; Ugail, H.; Mahboub, B.; Alawar, H.; et al. The role of mobile phones as a possible pathway for pathogen movement, a cross-sectional microbial analysis. Travel Med. Infect. Dis. 2021, 43, 102095. [Google Scholar] [CrossRef]
- Tahir, M.J.; Zaman, M.; Babar, S.; Imran, F.; Ajmal, A.N.; Malik, M.; Khan, J.K.; Ullah, I.; Asghar, M.S. Microbiological Impacts of Decontamination of Stethoscopes and Assessment of Disinfecting Practices among Physicians in Pakistan: A Quality Improvement Survey. Am. J. Trop. Med. Hyg. 2022, 107, 52–58. [Google Scholar] [CrossRef]
- Xie, C.; Zhao, H.; Li, K.; Zhang, Z.; Lu, X.; Peng, H.; Wang, D.; Chen, J.; Zhang, X.; Wu, D.; et al. The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health 2020, 20, 1202. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.Y.; Schwartz, J.; Chen, S.Y.; King, C.C.; Yang, G.Y.; Hsueh, P.R. Interrupting COVID-19 transmission by implementing enhanced traffic control bundling: Implications for global prevention and control efforts. J. Microbiol. Immunol. Infect. 2020, 53, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; White, E.; Monahan, L.G.; Jensen, S.O.; Chan, R.; van Hal, S.J. Defining the Role of the Environment in the Emergence and Persistence of vanA Vancomycin-Resistant Enterococcus (VRE) in an Intensive Care Unit: A Molecular Epidemiological Study. Infect. Control Hosp. Epidemiol. 2018, 39, 668–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amodio, E.; Cannova, L.; Villafrate, M.R.; Merendino, A.M.; Aprea, L.; Calamusa, G. Analytical performance issues: Comparison of ATP bioluminescence and aerobic bacterial count for evaluating surface cleanliness in an Italian hospital. J. Occup. Environ. Hyg. 2014, 11, D23–D27. [Google Scholar] [CrossRef]
- Sanna, T.; Dallolio, L.; Raggi, A.; Mazzetti, M.; Lorusso, G.; Zanni, A.; Farruggia, P.; Leoni, E. ATP bioluminescence assay for evaluating cleaning practices in operating theatres: Applicability and limitations. BMC Infect. Dis. 2018, 18, 583. [Google Scholar] [CrossRef]
- Xu, H.; Liang, J.; Wang, Y.; Wang, B.; Zhang, T.; Liu, X.; Gong, L. Evaluation of different detector types in measurement of ATP bioluminescence compared to colony counting method for measuring bacterial burden of hospital surfaces. PLoS ONE 2019, 14, e0221665. [Google Scholar] [CrossRef] [PubMed]
- van Arkel, A.; Willemsen, I.; Kluytmans, J. The correlation between ATP measurement and microbial contamination of inanimate surfaces. Antimicrob. Resist. Infect. Control. 2021, 10, 116. [Google Scholar] [CrossRef]
- Omidbakhsh, N.; Ahmadpour, F.; Kenny, N. How reliable are ATP bioluminscence meters in assessing decontamination of environmental surfaces in healthcare settings? PLoS ONE 2014, 9, e99951. [Google Scholar] [CrossRef] [Green Version]
- Azuma, K.; Yanagi, U.; Kagi, N.; Kim, H.; Ogata, M.; Hayashi, M. Environmental factors involved in SARS-CoV-2 transmission: Effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ. Health Prev. Med. 2020, 25, 66. [Google Scholar] [CrossRef]
- Nante, N.; Ceriale, E.; Messina, G.; Lenzi, D.; Manzi, P. Effectiveness of ATP bioluminescence to assess hospital cleaning: A review. J. Prev. Med. Hyg. 2017, 58, E177–E183. [Google Scholar]
ATP (RLU) | TPU Keyboard Cover (n = 36) (a) Mean ± SD | PET-EVA Laminating Film (n = 36) (b) | PVDC Wrap (n = 36) (c) | Null (n = 36) (d) | p | Post Hoc a |
---|---|---|---|---|---|---|
One hour | 700.0 ± 553.6 | 482.0 ± 275.7 | 180.0 ± 122.1 | 319.1 ± 205.7 | <0.001 | a > c ***, a > d **, b > c * |
Three hours | 726.7 ± 514.1 | 522.6 ± 320.0 | 265.8 ± 208.3 | 464.2 ± 306.4 | 0.073 |
ATP (RLU) | Door Close (n = 36) (a) Mean ± SD | Door Open (n = 36) (b) | First Floor (n = 36) (c) | Third Floor (n = 36) (d) | p | Post Hoc a |
---|---|---|---|---|---|---|
One hour | 620.7 ± 489.3 | 424.8 ± 223.7 | 404.8 ± 387.5 | 230.7 ± 277.6 | 0.024 | a > d * |
Three hours | 727.4 ± 482.3 | 505.9 ± 262.9 | 468.1 ± 356.8 | 277.8 ± 284.4 | <0.001 | a > c *, a > d *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, S.-H.; Liu, T.-Y.; Chen, T.-C.; Yang, C.-J.; Chen, Y.-H. Impact of Plastic-Wrap Properties and Cleaning Intervals on the Disinfection of Elevator Buttons. Int. J. Environ. Res. Public Health 2023, 20, 1649. https://doi.org/10.3390/ijerph20021649
Kuo S-H, Liu T-Y, Chen T-C, Yang C-J, Chen Y-H. Impact of Plastic-Wrap Properties and Cleaning Intervals on the Disinfection of Elevator Buttons. International Journal of Environmental Research and Public Health. 2023; 20(2):1649. https://doi.org/10.3390/ijerph20021649
Chicago/Turabian StyleKuo, Shin-Huei, Tzu-Yin Liu, Tun-Chieh Chen, Chih-Jen Yang, and Yen-Hsu Chen. 2023. "Impact of Plastic-Wrap Properties and Cleaning Intervals on the Disinfection of Elevator Buttons" International Journal of Environmental Research and Public Health 20, no. 2: 1649. https://doi.org/10.3390/ijerph20021649
APA StyleKuo, S. -H., Liu, T. -Y., Chen, T. -C., Yang, C. -J., & Chen, Y. -H. (2023). Impact of Plastic-Wrap Properties and Cleaning Intervals on the Disinfection of Elevator Buttons. International Journal of Environmental Research and Public Health, 20(2), 1649. https://doi.org/10.3390/ijerph20021649