Association between Japanese Diet Adherence and Muscle Weakness in Japanese Adults Aged ≥50 Years: Findings from the JSTAR Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics and Informed Consent
2.3. Measurements
2.3.1. Dietary Survey Questionnaire
2.3.2. Evaluation of Japanese Dietary Pattern
2.3.3. Calculating the Overall Nutrient Adequacy Score
2.3.4. Assessment of Muscle Strength
2.3.5. Covariates
2.3.6. Outcome
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker for Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Manini, T.M.; Clark, B.C. Dynapenia and aging: An update. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef]
- Satake, S.; Arai, H. The revised Japanese version of the Cardiovascular Health Study criteria (revised J-CHS criteria). Geriatr. Gerontol. Int. 2020, 20, 992–993. [Google Scholar] [CrossRef]
- Cooper, R.; Kuh, D.; Hardy, R.; Mortality Review, G.; Falcon; Teams, H.A.S. Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, H.; Hata, J.; Ninomiya, T.; Nemeth, H.; Hirakawa, Y.; Yoshida, D.; Kumagai, S.; Kitazono, T.; Kiyohara, Y. Midlife and late-life handgrip strength and risk of cause-specific death in a general Japanese population: The Hisayama Study. J. Epidemiol. Community Health 2014, 68, 663–668. [Google Scholar] [CrossRef]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ 2018, 361, k1651. [Google Scholar] [CrossRef]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef]
- Metter, E.J.; Conwit, R.; Tobin, J.; Fozard, J.L. Age-associated loss of power and strength in the upper extremities in women and men. J. Gerontol. A Biol. Sci. Med. Sci. 1997, 52, B267–B276. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Dawson Hughes, B.; Scott, D.; Sanders, K.M.; Rizzoli, R. Nutritional strategies for maintaining muscle mass and strength from middle age to later life: A narrative review. Maturitas 2020, 132, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Akune, T.; Muraki, S.; Oka, H.; Tanaka, S.; Kawaguchi, H.; Nakamura, K.; Yoshimura, N. Exercise habits during middle age are associated with lower prevalence of sarcopenia: The ROAD study. Osteoporos. Int. 2014, 25, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Tak, Y.J.; Lee, J.G.; Yi, Y.H.; Kim, Y.J.; Lee, S.; Cho, B.M.; Cho, Y.H. Association of handgrip strength with dietary intake in the Korean population: Findings based on the seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016. Nutrients 2018, 10, 1180. [Google Scholar] [CrossRef]
- Mecocci, P.; Fano, G.; Fulle, S.; MacGarvey, U.; Shinobu, L.; Polidori, M.C.; Cherubini, A.; Vecchiet, J.; Senin, U.; Beal, M.F. Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic. Biol. Med. 1999, 26, 303–308. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef]
- Shimizu, A.; Okada, K.; Tomata, Y.; Uno, C.; Kawase, F.; Momosaki, R. Association of Japanese and Mediterranean Dietary Patterns with Muscle Weakness in Japanese Community-Dwelling Middle-Aged and Older Adults: Post Hoc Cross-Sectional Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12636. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Di Somma, C.; Tramontano, G.; De Luca, V.; Illario, M.; Colao, A.; Savastano, S. Association between Mediterranean diet and hand grip strength in older adult women. Clin. Nutr. 2019, 38, 721–729. [Google Scholar] [CrossRef]
- Vitale, M.; Masulli, M.; Calabrese, I.; Rivellese, A.A.; Bonora, E.; Signorini, S.; Perriello, G.; Squatrito, S.; Buzzetti, R.; Sartore, G.; et al. Impact of a Mediterranean Dietary Pattern and Its Components on Cardiovascular Risk Factors, Glucose Control, and Body Weight in People with Type 2 Diabetes: A Real-Life Study. Nutrients 2018, 10, 1067. [Google Scholar] [CrossRef]
- Matsuyama, S.; Shimazu, T.; Tomata, Y.; Zhang, S.; Abe, S.; Lu, Y.; Tsuji, I. Japanese Diet and Mortality, Disability, and Dementia: Evidence from the Ohsaki Cohort Study. Nutrients 2022, 14, 2034. [Google Scholar] [CrossRef]
- Zhang, S.; Tomata, Y.; Sugawara, Y.; Tsuduki, T.; Tsuji, I. The Japanese dietary pattern is associated with longer disability-free survival time in the general elderly population in the Ohsaki Cohort 2006 Study. J. Nutr. 2019, 149, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Sawada, N.; Tomata, Y.; Zhang, S.; Goto, A.; Yamaji, T.; Iwasaki, M.; Inoue, M.; Tsuji, I.; Tsugane, S.; et al. Association between adherence to the Japanese diet and all-cause and cause-specific mortality: The Japan Public Health Center-based Prospective Study. Eur. J. Nutr. 2021, 60, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Tomata, Y.; Zhang, S.; Kaiho, Y.; Tanji, F.; Sugawara, Y.; Tsuji, I. Nutritional characteristics of the Japanese diet: A cross-sectional study of the correlation between Japanese diet index and nutrient intake among community-based elderly Japanese. Nutrition 2019, 57, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Tanaka, S.; Iwamoto, Y.; Kawano, T.; Yamasaki, M.; Tanaka, R. Reductions in Muscle Strength and Range of Motion Cause Locomotion Disability via Locomotion-Related Functional Limitation in Japanese Older Adults: A Cross-Sectional Study. J. Aging Res. 2021, 2021, 6627767. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Hashimoto, H. Age threshold for recommending higher protein intake to prevent age-related muscle weakness: A cross-sectional study in Japan. PLoS ONE 2018, 13, e0208169. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef]
- Saji, N.; Tsuduki, T.; Murotani, K.; Hisada, T.; Sugimoto, T.; Kimura, A.; Niida, S.; Toba, K.; Sakurai, T. Relationship between the Japanese-style diet, gut microbiota, and dementia: A cross-sectional study. Nutrition 2022, 94, 111524. [Google Scholar] [CrossRef]
- Strandkvist, V.; Larsson, A.; Pauelsen, M.; Nyberg, L.; Vikman, I.; Lindberg, A.; Gustafsson, T.; Roijezon, U. Hand grip strength is strongly associated with lower limb strength but only weakly with postural control in community-dwelling older adults. Arch. Gerontol. Geriatr. 2021, 94, 104345. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Shinkai, S.; Kumagai, S.; Amano, H.; Yoshida, Y.; Yoshida, H.; Kim, H.; Suzuki, T.; Ishizaki, T.; Watanabe, S.; et al. Changes in TMIG-Index of Competence by subscale in Japanese urban and rural community older populations: Six years prospective study. Geriatr. Gerontol. Int. 2003, 3, S63–S68. [Google Scholar] [CrossRef]
- Zhang, X.M.; Jiao, J.; Zhu, C.; Guo, N.; Liu, Y.; Lv, D.; Wang, H.; Jin, J.; Wen, X.; Zhao, S.; et al. Association Between Low Handgrip Strength and 90-Day Mortality Among Older Chinese Inpatients: A National Multicenter Prospective Cohort Study. Front. Nutr. 2021, 8, 628628. [Google Scholar] [CrossRef] [PubMed]
- Manja, V.; AlBashir, S.; Guyatt, G. Criteria for use of composite end points for competing risks-a systematic survey of the literature with recommendations. J. Clin. Epidemiol. 2017, 82, 4–11. [Google Scholar] [CrossRef]
- Azur, M.J.; Stuart, E.A.; Frangakis, C.; Leaf, P.J. Multiple imputation by chained equations: What is it and how does it work? Int. J. Methods Psychiatr. Res. 2011, 20, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ho, M.; Chau, P.H. Prevalence, Incidence, and Associated Factors of Possible Sarcopenia in Community-Dwelling Chinese Older Adults: A Population-Based Longitudinal Study. Front. Med. 2021, 8, 769708. [Google Scholar] [CrossRef] [PubMed]
- Shahinfar, H.; Safabakhsh, M.; Babaei, N.; Ebaditabar, M.; Davarzani, S.; Amini, M.R.; Shab-Bidar, S. Association of major dietary patterns with muscle strength and muscle mass index in middle-aged men and women: Results from a cross-sectional study. Clin. Nutr. ESPEN 2020, 39, 215–221. [Google Scholar] [CrossRef]
- Suthuvoravut, U.; Takahashi, K.; Murayama, H.; Tanaka, T.; Akishita, M.; Iijima, K. Association between Traditional Japanese Diet Washoku and Sarcopenia in Community-Dwelling Older Adults: Findings from the Kashiwa Study. J. Nutr. Health Aging 2020, 24, 282–289. [Google Scholar] [CrossRef]
- Santo Andre, H.C.; Esteves, G.P.; Barreto, G.H.C.; Longhini, F.; Dolan, E.; Benatti, F.B. The Influence of n-3PUFA Supplementation on Muscle Strength, Mass, and Function: A Systematic Review and Meta-Analysis. Adv. Nutr. 2023, 14, 115–127. [Google Scholar] [CrossRef]
- Hashimoto, R.; Sakai, A.; Murayama, M.; Ochi, A.; Abe, T.; Hirasaka, K.; Ohno, A.; Teshima-Kondo, S.; Yanagawa, H.; Yasui, N.; et al. Effects of dietary soy protein on skeletal muscle volume and strength in humans with various physical activities. J. Med. Investig. 2015, 62, 177–183. [Google Scholar] [CrossRef]
- Shin, W.Y.; Kim, J.H. Age-Specific Association Between Handgrip Strength and Nutritional Quality in Korean Men: A Nationwide Cross-Sectional Study. Am. J. Mens. Health 2021, 15, 15579883211063339. [Google Scholar] [CrossRef]
- Ramadas, A.; Law, H.H.; Krishnamoorthy, R.; Ku, J.W.S.; Mohanty, P.; Lim, M.Z.C.; Shyam, S. Diet Quality and Measures of Sarcopenia in Developing Economies: A Systematic Review. Nutrients 2022, 14, 868. [Google Scholar] [CrossRef]
- Pischon, T.; Hankinson, S.E.; Hotamisligil, G.S.; Rifai, N.; Willett, W.C.; Rimm, E.B. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation 2003, 108, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Zhang, S.; Tomata, Y.; Tsuduki, T.; Sugawara, Y.; Tsuji, I. Japanese diet and survival time: The Ohsaki Cohort 1994 Study. Clin. Nutr. 2020, 39, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Veronese, N.; Baiamonte, E.; Guarrera, M.; Parisi, A.; Ruffolo, C.; Tagliaferri, F.; Barbagallo, M. Healthy Aging and Dietary Patterns. Nutrients 2022, 14, 889. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Japanese Diet Index Tertile | |||
---|---|---|---|---|
T1 (Low) | T2 | T3 (High) | p Value | |
Range of scores | 0–4 | 5–6 | 7–12 | |
Participants, n | 518 | 565 | 616 | |
Age, y, median (IQR) | 60.0 (56.0–67.0) | 62.0 (57.0–68.0) | 64.0 (58.0–69.2) | <0.001 |
Female, n (%) | 264 (51.0) | 273 (48.3) | 319 (51.8) | 0.468 |
Body mass index, kg/m2, median (IQR) | 23.5 (21.5–25.5) | 23.2 (21.5–25.4) | 22.9 (21.1–24.7) | 0.013 |
History of disease, n (%) | ||||
- Cerebrovascular diseases | 14 (2.7) | 16 (2.8) | 12 (1.9) | 0.498 |
- Coronary heart diseases | 49 (9.5) | 59 (10.4) | 63 (10.2) | 0.706 |
- Diabetes | 51 (9.8) | 45 (8.0) | 53 (8.6) | 0.465 |
- Cancer | 17 (3.3) | 22 (3.9) | 20 (3.2) | 0.646 |
Current smoker, n (%) | 134 (25.9) | 121 (21.4) | 100 (16.2) | 0.004 |
Current drinker, n (%) | 301 (58.1) | 357 (63.2) | 379 (61.5) | 0.156 |
Educational level ≥ 16 y, n (%) | 149 (28.8) | 140 (24.8) | 150 (24.4) | 0.141 |
Time spent walking ≥ 1 h/d, n (%) | 200 (38.6) | 241 (42.7) | 302 (49.0) | 0.022 |
Disability of instrumental activities of daily living, n (%) | 19 (3.7) | 23 (4.1) | 24 (3.9) | 0.943 |
Handgrip strength, kg, median (IQR) | 29.0 (24.0–36.0) | 30.0 (24.0–38.0) | 30.0 (23.0–38.0) | 0.261 |
Energy, kcal/d, median (IQR) | 1566 (1267–1866) | 1935 (1630–2300) | 2296 (1957–2742) | <0.001 |
Protein, g/d, median (IQR) | 55.5 (44.3–66.7) | 74.3 (59.6–87.5) | 91.9 (76.2–112.3) | <0.001 |
Total, n | Event | Odds Ratio (95% Confidence Interval) | p Value | |
---|---|---|---|---|
n (%) | ||||
Occurrence of muscle weakness or death (composite outcome) | ||||
T1 (low) | 518 | 67 (12.9) | 1.000 (reference) | |
T2 | 565 | 63 (11.2) | 0.810 (0.531–1.232) | 0.324 |
T3 (High) | 616 | 69 (9.7) | 0.636 (0.402–1.002) | 0.051 |
Death | ||||
T1 (low) | 518 | 10 (1.9) | 1.000 (reference) | |
T2 | 565 | 14 (2.5) | 1.072 (0.452–2.621) | 0.874 |
T3 (High) | 616 | 19 (3.1) | 1.479 (0.616–3.709) | 0.388 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, A.; Okada, K.; Tomata, Y.; Uno, C.; Kawase, F.; Momosaki, R. Association between Japanese Diet Adherence and Muscle Weakness in Japanese Adults Aged ≥50 Years: Findings from the JSTAR Cohort Study. Int. J. Environ. Res. Public Health 2023, 20, 7065. https://doi.org/10.3390/ijerph20227065
Shimizu A, Okada K, Tomata Y, Uno C, Kawase F, Momosaki R. Association between Japanese Diet Adherence and Muscle Weakness in Japanese Adults Aged ≥50 Years: Findings from the JSTAR Cohort Study. International Journal of Environmental Research and Public Health. 2023; 20(22):7065. https://doi.org/10.3390/ijerph20227065
Chicago/Turabian StyleShimizu, Akio, Kiwako Okada, Yasutake Tomata, Chiharu Uno, Fumiya Kawase, and Ryo Momosaki. 2023. "Association between Japanese Diet Adherence and Muscle Weakness in Japanese Adults Aged ≥50 Years: Findings from the JSTAR Cohort Study" International Journal of Environmental Research and Public Health 20, no. 22: 7065. https://doi.org/10.3390/ijerph20227065
APA StyleShimizu, A., Okada, K., Tomata, Y., Uno, C., Kawase, F., & Momosaki, R. (2023). Association between Japanese Diet Adherence and Muscle Weakness in Japanese Adults Aged ≥50 Years: Findings from the JSTAR Cohort Study. International Journal of Environmental Research and Public Health, 20(22), 7065. https://doi.org/10.3390/ijerph20227065