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Abstract: This study aims to analyze the agreement of cardiopulmonary variables between a car-
diopulmonary exercise test with elastic resistance (CPxEL) and high-intensity interval exercise with
elastic resistance (EL-HIIE). Methods: Twenty-two physically independent participants were re-
cruited. Visit one consisted of conducting a health survey and anthropometric assessment. On visit
two, the participants performed CPxEL. After seven days, on visit three, the participants performed
EL-HIIE. The CPxEL was carried out on a rubber mat demarcated by lines representing eight stages.
The test consisted of alternating back and forth steps against elastic resistance. The increments were
performed at a rate of one stage per minute, following a cadence controlled by a metronome calibrated
by beats per minute (bpm). The EL-HIIE was performed at the stage corresponding to an intensity of
~85% VO2max, as determined by CPxEL. The EL-HIIE consisted of 10 × 1 min (work):1 min (passive
rest), with a cadence of 200 bpm. Cardiopulmonary parameters, heart rate (HR), and oxygen con-
sumption (VO2) were measured during exercise. Bland–Altman was applied to analyze the agreement
between the HR and VO2 found in EL-HIIE and the values prescribed by CPxEL (~85–90% VO2max).
Results: The HRpeak and VO2peak in the EL-HIIE showed good agreement with the VO2CPxEL and
HRCPxEL values, showing an average difference of (−1.7 mL·kg−1·min−1) and (0.3 bpm). Conclu-
sions: The results of the present study demonstrate the agreement of cardiopulmonary variables
between the CPxEL and the EL-HIIE. Therefore, for a more specific prescription of EL-HIIE intensity,
CPxEL can be used.

Keywords: cardiopulmonary exercise testing; high-intensity interval training; oxygen consumption

1. Introduction

High-intensity interval training (HIIT) was initially developed for middle- and long-
distance (track) runners with the aim of training at intensities close to competition speed
and enhancing aerobic and anaerobic fitness [1]. High-intensity interval training (HIIT) is
defined as ‘near maximal’ efforts generally performed at an intensity that elicits at least
80% of the maximum oxygen consumption (VO2max) or 90% of the maximum heart rate
(HRmax), separated by periods of passive or active rest [2,3]. There is a growing consensus
concerning the metabolic responses and physiological adaptations to HIIT. For instance,
increased activity of mitochondrial enzymes is evident, and there is enhanced fat oxidation
in the skeletal muscle [4]. As a result, this training modality has gained popularity, also
reaching individuals who exercise for health purposes and seek an activity with a good
time–efficiency ratio.
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There are HIIT protocols that manipulate the effort–pause relationship and that are
performed in different formats (e.g., running in the sand, jumping, and body work) to
facilitate the involvement in exercise, as opposed to the restrictions of the traditional
ergometers, for example, on treadmills and bicycles [5,6]. Furthermore, a recent study used
elastic resistance in HIIT and demonstrated that this modality can be potentially favorable
for the development of cardiorespiratory fitness [7]. Although elastic resistance can be
used to perform HIIT, the ideal dimensions for prescribing HIIT using elastic resistance
(i.e., prescription of intensity) remain unknown. In order to understand the prescription
of HIIT using elastic resistance (EL-HIIE), it is necessary to better understand the acute
cardiopulmonary responses to this exercise modality.

Researchers point out that rest intervals, intensity, and duration of work are variables
that can be manipulated to prescribe different HIIT sessions [8,9]. Intensity can be con-
trolled and individualized by specific running speed, percentage of HRmax, percentage of
VO2max, and rate of perceived exertion scale (RPE) [8]. However, cardiopulmonary indica-
tors should result from a cardiopulmonary exercise test (CPx) performed on a treadmill or
cycle ergometer due to their objectivity, precision, and effectiveness in determining these
physiological parameters for exercise prescription [8]. The CPx is a gold-standard method
that allows the determination of maximum physiological parameters (e.g., VO2max, HRmax,
maximum velocity, vVO2max, and respiratory exchange ratio) and submaximal (e.g., venti-
latory thresholds one and two) which are used in the determination of exercise intensity.

The VO2max is dependent on the ergometer used due to the specificity of the move-
ment [10,11]; in that regard, for a more accurate prescription of the intensity in the EL-HIIE,
the cardiopulmonary test of exercise with elastic resistance can be used (CPxEL). The
CPxEL has good reproducibility in evaluating maximal and submaximal cardiopulmonary
parameters [12]; however, it is important to check whether the cardiopulmonary parameters
of the prescription are really equivalent to those found in the EL-HIIE session. Therefore,
this study aims to evaluate the agreement between the cardiopulmonary parameters of the
exercise session and the prescription parameters, based on a new proposal for a maximum
incremental test, the CPxEL.

2. Materials and Methods
2.1. Subjects

The sample size was calculated using the G Power software program (version 3.1.4),
by which a total number of 19 individuals was suggested, with statistical power (1-β) of
0.95 for the t test between two dependent means (corresponding pair), with an α-type
error of 0.05 and a large effect size of 0.8. Twenty-two participants, including ten women
and twelve men, participated in all experimental procedures (Table 1). The procedures
were approved by the Human Research Ethics Committee of the Federal University of
Espírito Santo (CAAE 09109319200005542). The participants were required to read and
sign an online informed-consent form containing all information about the study pro-
cedures, risks, and benefits. This study adopted as inclusion criteria a BMI (≥18 and
≤25 kg·m−2), an age between 18 and 35 years, and physical independence (physical activ-
ity ≥150 min/week). Participants were excluded when there was cardiometabolic disease,
use of dietary supplements or anabolic steroids, or suspected respiratory tract infections
(for example, COVID-19). Participant characteristics are presented in Tables 1 and 2.
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Table 1. Characteristics of the participants men (n = 12).

Age (years) 27.2 ± 3.7
Height (m) 1.76 ± 0.08
Body Mass (kg) 71.9 ± 10.2
BMI (kg·m−2) 23.1 ± 2.2
VO2max (mL·kg−1·min−1) 43.7 ± 3.5
HRmax (bpm) 185 ± 12.2

Values are presented as the mean and standard deviation. BMI: body mass index; HR: heart rate; VO2max: maximal
oxygen uptake.

Table 2. Characteristics of the participants women (n = 10).

Age (years) 27.2 ± 5.0
Height (m) 1.63 ± 0.05
Body Mass (kg) 59.1 ± 5.2
BMI (kg·m−2) 22.1 ± 2.3
VO2max (mL·kg−1·min−1) 36.5 ± 2.9
HRmax (bpm) 188 ± 8.6

Values are presented as the mean and standard deviation. BMI: body mass index; HR: heart rate; VO2max: maximal
oxygen uptake.

2.2. Study Design

Participants visited the laboratory three times, with each visit separated by an interval
of seven days, during morning hours (7:00 a.m. and 10:30 a.m.). Medical and anthropo-
metric assessment were performed on the first visit. On the second visit, all participants
performed the CPxEL until exhaustion to assess the maximal oxygen consumption and
prescribed intensity of EL-HIIE. On the third visit, participants performed the EL-HIIE
session (Figure 1).
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2.3. Cardiopulmonary Exercise Test with Elastic Resistance (CPxEL)

The CPxEL followed the protocol Gasparini Neto et al. (2022) validated; additional de-
tails are available in that source [12]. The CPxEL was carried out to evaluate the maximum
parameters and define the stage for the performance of the EL-HIIE. The test consisted
of performing alternating steps back and forth against elastic resistance (Thera-band®

Tubing, Kuala Lumpur, Malaysia). The elastic resistance was attached to a polyamide
military tactical belt (5 cm × 140 cm) inserted at the hip. Furthermore, the elastic resistance
was attached to a load cell for force monitoring (200 kg; EMG System of Brazil, SP Ltd.,
Sao Paulo, Brazil). Force signals were collected by software (EMG Lab, version 1.03) at
a sampling frequency of 1000 Hz. Data were analyzed using MatLab (MatLab; R2015a®,
MathWorks, Natick, MA, USA). The results of the strength values were represented by the
average strength in kilograms (kg) in the last 30 s of each stage.

Initially, the participants performed a brief familiarization with the protocol. Then, the
silicone face mask for gas collection and the T31 coded™ heart rate sensor (Polar Electro Oy,
Kempele, Finland) were adjusted. The movements in the CPxEL stages were performed
until the participant reached the stage that corresponded to his maximum. A 3-min warm-
up was performed, from line zero to line 2, at a cadence of 180 bpm (beats per minute).
Afterward, the protocol consisted of increments of 1 stage per minute, following a cadence
of 200 bpm on an 8-stage rubber mat (Figure 2). Participants were encouraged to follow a
rhythm of 180 bpm (~90 steps/min) during the warm-up and 200 bpm (~100 steps/min)
during the stages, following sounds emitted by a metronome app (Cifraclub®, Belo Hor-
izonte, Brazil) plugged into a speaker. Constant verbal encouragement was applied to
maintain the rhythm during stages. If the participant reached the last stage, an increase of
10 (ten) bpm was incrementally added every minute until exhaustion.
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The ventilatory variables, oxygen consumption (VO2), and carbon dioxide output
(VCO2) were collected using a metabolic gas analyzer (model: Cortex Metamax 3B, Ger-
many), and measured breath-by-breath and analyzed at 20 s averages by Metasoft™. Heart
rate was monitored continuously and collected using the T31 coded™ heart-rate sensor
(Polar Electro Oy, Kempele, Finland). Afterward, 20 s averages were extracted using the
Metasoft program.

The criteria for defining the maximum test were voluntary exhaustion, reaching at
least 90% of the maximum heart rate predicted by the formula (220-age), RER above 1.05,
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or BORG-CR10 rate of perceived exertion scale (RPE) value at the ‘very difficult’ intensity
(7 onwards) [13].

The ventilatory threshold 2 (VT2) was determined to verify how close the EL-HIIE
session was to this intensity. Visual criteria were used, based on the response of ventila-
tory equivalents (VE/VO2 and VE/VCO2) and carbon dioxide tension (PETCO2). Three
evaluators independently and blindly evaluated the results, and the study employs the
limit of agreement of at least two evaluators (ICC, 0.93). Identification of VT2 was based on
the following criterion: the moment of the lowest point of the VE/VCO2 with subsequent
elevation beyond the moment of the gradual decline of the end-tidal carbon dioxide tension
(PETCO2) was considered [14].

2.4. High-Intensity Interval Exercise with Elastic Resistance (EL-HIIE)

The session was prescribed at the stage corresponding to an intensity of 85–90%
of the VO2max, as determined by the CPxEL. In EL-HIIE, the following were performed:
10 × 1 min (work):1 min (passive rest) (60 s protocol—adapted from Little et al. (2011)). The
series consisted of alternating forward and backward movements against elastic resistance
(Theraband® Tubing, Malaysia) at a cadence of 200 bpm, monitored by a metronome app
(Cifraclub®, Brazil). Participants, as in the CPxEL, used the belt attached to the elastic tube
(Silver tube, Thera-band® Tubing, Malaysia), the silicone face mask, and the T31 coded™
heart rate sensor (Polar Electro Oy, Kempele, Finland). Ventilatory variables (VO2 and
VCO2) were collected using a metabolic gas analyzer (model Cortex Metamax 3B, Weil am
Rhein, Germany) and measured breath-by-breath. Afterward, VO2peak (average of the last
10 s for each bout) and VO2average (average of the 60 s for each bout) were calculated.

Heart rate was monitored continuously by the T31 coded™ heart rate sensor (Polar
Electro Oy, Kempele, Finland). Then, the HRpeak (average of the last 10 s for each bout) and
HRaverage (average of the 60 s for each bout) were calculated.

2.5. Statistical Analysis

Data were expressed as mean and standard deviation (SD) and analyzed for normality
(Shapiro–Wilk test) using the GraphPad Prism 9 software. To compare and evaluate the
agreement between the cardiopulmonary responses (VO2 and HR) elicited by EL-HIIE and
those prescribed by CPxEL, we employed the paired t-test and Bland–Altman analysis. One-
way repeated-measures ANOVA and Tukey’s multiple comparison tests were employed
to ascertain the distinctions between the peak and average values of VO2 and HR during
EL-HIIE, compared with the corresponding values obtained from the prescription provided
by CPxEL. The p values were exact, and statistical significance was defined as p < 0.05.
Cohen’s d effect size from an arbitrary scale was calculated and classified as trivial (0–0.19),
small (0.20–0.49), moderate (0.50–0.79), or large (≥0.8) to determine the magnitude of
differences [15].

3. Results
3.1. CPxEL vs. EL-HIIE (Peak Values)

Prescription values for the CPxEL and peak values for the EL-HIIE are shown in
Table 3. The average stage performed during the EL-HIIE was stage 3, with an external
load applied through elastic force averaging 66.6 ± 3.2% of the maximum load determined
in the CPxEL. There was a statistical difference between the VO2CPxEL and the VO2session,
with a small effect size (ES). The VO2session was 5% higher than the VO2CPxEL. Over the
10 min bout in the EL-HIIE, VO2 remained at 147.6 s (2.46 min) in the prescription target
range (≥85% VO2max), in the following proportions: bout 1, 5.4 s; bout 2, 14.0 s; bout 3,
15.4 s; bout 4, 18.1 s; bout 5, 15.5 s; bout 6, 15.9 s; bout 7, 15.4 s; bout 8, 15.4 s; bout 9, 16.3 s;
and bout 10, 17.2 s.
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Table 3. CPxEL and EL-HIIE (peak values) (n = 22).

Physiological
Parameters CPxEL EL-HIIE Peak p Cohen’s d

VO2 (mL·kg−1·min−1) 35.8 ± 4.9 37.6 ± 5.4 0.02 0.3 S

%VO2max 88.1 ± 5.8 92.6 ± 3.8 - -
HRmax (bpm) 171.3 ± 14.4 171.6 ± 15.7 0.86 0.0 T

%HRmax 91.9 ± 35 92.1 ± 48.1 - -
CPxEL: cardiopulmonary test with elastic resistance; EL-HIIE: high-intensity interval exercise with elastic resis-
tance; VO2: oxygen consumption; %VO2max: percentage of VO2max; HR: heart rate; %HR: percentage of maximum
heart rate; S: small; T: trivial; Cohen’s d: effect size—trivial (0–0.19), small (0.20–0.49), moderate (0.50–0.79), and
large (≥0.8). p < 0.05.

There was no statistical difference between the HR value of the prescription and that
of the EL-HIIE. Over the 10 min bout in the EL-HIIE, HR remained at 125.3 s (2.08 min) in
the prescription target range (≥85% VO2max), in the following proportions: bout 1, 2.2 s;
bout 2, 5.4 s; bout 3, 10.0 s; bout 4, 12.7 s; bout 5, 14.3 s; bout 6, 15.9 s; bout 7, 17.7 s; bout 8,
18.6 s; bout 9, 19.0 s; and bout 10, 22.2 s.

In EL-HIIE, two participants reached a VO2 of VT2 as determined by CPxEL, six were
5.7% above VT2, and fourteen were 8.3% below VT2. In addition, one participant reached
the HR of VT2 determined by CPxEL, seventeen were 6.8% below VT2, and four were 1.7%
above VT2.

3.2. CPxEL vs. EL-HIIE (Average Values)

Prescription values of CpxEL and average values of 60 s EL-HIIE are shown in Table 4.
The VO2 of the EL-HIIE average value was 30.4 ± 4.4 mL·kg−1·min−1, 74.8 ± 15.3% of the
VO2max. The VO2session was 15% less than the VO2CpxEL. There was a propensity of VO2
stabilization from bout 3 onward.

Table 4. CpxEL vs. EL-HIIE (average values) (n = 22).

Physiological
Parameters CpxEL EL-HIIE

Average p Cohen’s d

VO2 (mL·kg−1·min−1) 35.8 ± 4.9 30.4 ± 4.4 0.00 1.1 L

%VO2max 88.1 ± 5.8 74.8 ± 15.3 - -
HRmax (bpm) 171.3 ± 14.4 156.9 ± 16.3 0.00 1.0 L

%HRmax 91.9 ± 35 84 ± 53.7 - -
CpxEL: cardiopulmonary test with elastic resistance; EL-HIIE: high-intensity interval exercise with elastic resis-
tance; VO2: oxygen consumption; %VO2max: percentage of VO2max; HR: heart rate; %HR: percentage of maximum
heart rate; L: large; Cohen’s d: effect size—trivial (0–0.19), small (0.20–0.49), moderate (0.50–0.79), and large (≥0.8).
p < 0.05.

The average HR of the session was 157 ± 16 bpm, 84 ± 53.7% of HRmax. The HRsession
was 8.4% less than the HRCpxEL. From bout 3, the average HR of the session showed a
percentage of 82.3% of HRmax, increasing at the end of bout 10 to 89% of HRmax.

3.3. Bland–Altman Analysis

The mean (peak) difference between VO2session and VO2CpxEL was −1.7 mL·kg−1·min−1

with concordance limits of +4.8 to −8.3 mL·kg−1. The mean (average) difference between
VO2CpxEL and VO2session was 5.4 mL·kg−1·min−1 with concordance limits of +11.8 to
−0.9 mL·kg−1·min−1 (Figure 3).
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Figure 3. Bland–Altman plot: Y axis—upper generated line (indicates upper limit +2SD), a line drawn
in the center (indicates the difference between means), and lower generated line (indicates lower
limit -2SD). VO2: oxygen consumption; HR: heart rate. (A) Limits of agreement of the Bland–Altman
technique between the VO2CpxEL and VO2session (peak). (B) Limits of agreement of the Bland–Altman
technique between the VO2CpxEL and the VO2session (average). (C) Limits of agreement of the
Bland–Altman technique between the HRCpxEL and the HRsession (peak). (D) Limits of agreement of
the Bland–Altman technique between the HRCpxEL and the HRsession (average).

The mean (peak) difference between HRCpxEL and HRsession was 0.3 bpm with concor-
dance limits of +16.3 to −16.9 bpm. The mean (average) difference between HRCpxEL and
HRsession was 14.4 bpm with concordance limits of +33.1 to −4.1 bpm (Figure 3).

3.4. Difference between Prescription Parameters and Exercise Session Parameters

The VO2CpxEL represented 88.1% of VO2max, the VO2session (peak), 92.6% of VO2max,
and the VO2session (average), 74.8% of VO2max. The distinction between the VO2CPxEL
and the VO2session (peak) was −1.7 mL·kg−1·min−1, p = 0.47. The distinction between
VO2CPxEL and VO2session (average) was 5.4 mL·kg−1·min−1, p = 0.00. The distinction
between VO2session (peak) and VO2session (average) was 7.1 mL·kg−1·min−1, p = 0.00
(Figure 4).
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The HRCPxEL represented 91.9% of HRmax, the HRsession (peak), 92.1% of HRmax, and
HRsession (average), 78.4% of HRmax. The distinction between HRCPxEL and HRsession (peak)
was −0.3 bpm, p = 0.99. The distinction between HRCPxEL and HRsession (average) was
14.4 bpm, p = 0.005. The distinction between HRsession (peak) and HRsession (average) was
14.7 bpm, p = 0.00 (Figure 5).
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4. Discussion

The present study aimed to assess the agreement between the cardiopulmonary vari-
ables of the EL-HIIE and the values used in a prescription based on the CPxEL. The
significance of movement specificity in prescribing exercise intensity is well-recognized, as
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the measurement of VO2 relies on factors such as the type of equipment (treadmill, cycle
ergometer), the protocol employed, and the nature of effort exerted during the testing [10].

Our main findings demonstrated a good agreement between the cardiopulmonary
parameters of the EL-HIIE and the prescription parameters determined by the CPxEL.
CPxEL was initially proposed to determine VO2max and ventilatory thresholds in healthy
individuals, and our results highlight the importance of its use in prescribing correctly a
10 × 1:1 min protocol in the EL-HIIE at an intensity of 88.1 ± 5.8% of VO2max.

This study defined the exercise intensity prescription parameter according to the
reference already used in the literature (≥85% of VO2max) [16,17]. In these previously
mentioned studies, the individuals exercised within a workload corresponding to the
submaximal fraction of the VO2max, while the HR, lactate production, speed, power, and
classification of the perceived exertion during the execution of the exercise were monitored.
Given the few data sources available in the literature, our study directly monitored VO2 in
EL-HIIE. Therefore, it was possible to confirm the good agreement between the VO2session
(peak) of EL-HIIE and the VO2 prescribed by CPxEL.

The present study, in addition, monitored HR during EL-HIIE. In sports practice, the
use of this metric is frequent, although the literature points out that there may be limitations,
mainly due to the delay in changes in the heart rate at the beginning of the exercise [18].
Our findings demonstrated good agreement between the HRsession (peak) of the exercise
session and the HR CPxEL prescription. Therefore, this evidence points out that monitoring
HRsession (peak) in EL-HIIE ensured that participants were at an intensity equivalent to the
specific test prescription (CPxEL).

Although the main focus of prescribing and monitoring in the EL-HIIE was not the
external load, it was possible to identify the average load used during the exercise execution
(66.6% of the peak force reached in the CPxEL), as continuously measured via a load cell.
The load used in the EL-HIIE is similar to the prescription parameters established in the
literature. In the study by Hood et al. (2011), a HIIT exercise session was performed on a
cycle ergometer, prescribed at ∼60% of the peak power reached during the VO2peak test.
The bouts in this study provoked a cardiopulmonary effort corresponding to ∼80% to 95%
of HR reserve [19]. The cardiopulmonary results found in EL-HIIE (∼84% to 92% HRmax),
from 66.6% of peak force, confirm that the exercise protocol of our study was performed at
high intensity.

Our findings, moreover, indicated lower values of HR and VO2 in the average values
compared to the peak values. This result was expected, since lower average values of HR
and VO2 can be attributed to the passive recovery interval of our protocol. The present
study agrees with a previous study that observed higher average values of HR and VO2 in
active intervals in HIIT with an effort–pause ratio of 1:1 [20].

In EL-HIIE, participants remained for approximately 24.6% of the total exercise time
within the prescription target zone (≥85% VO2max). Comparing our results with the
literature is difficult, since the intensity and duration of HIIT exercise differ significantly.
In addition, few studies show how long participants remain in the prescription target
zone. Furthermore, to the best of our knowledge, this was the first study to investigate the
agreement between the CPxEL prescription’s cardiopulmonary parameters and the EL-HIIE
session’s parameters. On the other hand, future research with EL-HIIE can manipulate the
duration of bouts and recovery intervals, such as the high-intensity decreasing interval
training (HIDIT) protocol performed by cyclists [21]. This protocol is characterized by
bout intervals varying between long and short, starting with 3 min and ending with 30 s.
The HIDIT performed in cyclists showed a longer time of high-intensity exercise, which
could be a strategy for EL-HIIE. The 60 s:60 s protocol performed in the present study
was a strategy to ensure an exercise intervention capable of being performed by healthy
individuals and clinical populations [22].

Some limitations need to be pointed out: our study evaluated only healthy and
eutrophic young individuals, and these findings cannot represent the behavior of subjects
with different levels of physical conditioning, like obese and sedentary individuals. Another



Int. J. Environ. Res. Public Health 2023, 20, 7097 11 of 12

limitation was the mixed sample (men and women), because men and women can have
up to a 30% difference for VO2max, but another side of the question is that a mixed sample
increases the ecological validity of results. Despite these limitations, it is essential to
highlight that our proposal was safe and presented good agreement between CPxEL and
EL-HIIE. Thus, we encourage studies to apply our protocol to different populations and
on a large scale to understand the better application of these findings in daily life and in
longitudinal exercise prescription of physical exercise in different intensity domains.

Although it is not the primary outcome of this research, there is interest in the scientific
literature on multicomponent training modalities. This modality offers a combination of
physical capabilities (muscle strength, cardiorespiratory endurance, balance, and flexibility)
in the same exercise session [23,24]. Considering that EL-HIIE can be a potential stimulus
for developing cardiorespiratory fitness and lower-limb strength in young, active individu-
als [7], future research may investigate whether EL-HIIE can be a multicomponent exercise
strategy applied in different populations.

5. Conclusions

The study shows good agreement between CPxEL and EL-HIIE for cardiopulmonary
variables (HR and VO2). These findings highlight the importance of specificity of move-
ment for an adequate prescription of exercise intensity. For health and performance
purposes, correctly prescribed exercise intensities allow for increased predictability of
adaptive responses.
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