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Abstract: Water contaminated with emerging pollutants has become a serious environmental issue
globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the
potential to be used as an integrated adsorptive material. Many studies have shown that biochar
is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the
water pollution problem. Here, we provided a dual perspective on removing emerging pollutants
from aquatic systems using biochar and analyzed the emerging pollutant removal efficiency from
the aspects of biochar types, pollutant types and coexistence with heavy metals, as well as the
associated mechanisms. The potential risks and future research directions of biochar utilization
are also presented. This review aims to assist researchers interested in using biochar for emerging
pollutants remediation in aquatic systems and facilitate research on emerging pollutants removal,
thereby reducing their environmental risk.

Keywords: biochar; microplastics; organic pollutants; endocrine disrupting chemicals; pharmaceutical
and personal care products; water pollution

1. Introduction

Rapid industrialization, urbanization and the excessive use of agrochemicals resulted
in a significant reduction in surface water quality [1,2]. Thus, water pollution is now a
serious environmental issue for humans [3]; emerging pollutants are the most common and
non-negligible due to lack of monitoring [4–6]. Emerging pollutants commonly originate
from the release of hospital and factory wastewater, residential sewage and agricultural
runoff (see Figure 1) and include endocrine-disrupting chemicals (EDCs), microplastics
(MPs), pesticides, flame retardants, nanomaterials, pharmaceutical and personal care
products (PPCPs). The pollution poses a serious threat to drinking water quality. Some
emerging pollutants are persistent organic pollutants that are not easily degraded and
have a long-term presence in the aquatic environment, presenting a “pseudo-persistent
existence” state and causing many adverse effects on the environment [4]. The treatment of
these pollutants has increasingly become a big challenge in recent years [7]. Therefore, it
is imperative to develop proper methods to treat emerging pollutants in water [8] for the
benefit of the environment, public health and economic activities.

Many chemical, physical and biological methods, such as membrane filtration, coagu-
lation, adsorption, photocatalytic degradation, aerobic bioreactors and activated sludge
have been used to remediate polluted waters [9]. The type of process that is involved

Int. J. Environ. Res. Public Health 2023, 20, 1679. https://doi.org/10.3390/ijerph20031679 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph20031679
https://doi.org/10.3390/ijerph20031679
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph20031679
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20031679?type=check_update&version=1


Int. J. Environ. Res. Public Health 2023, 20, 1679 2 of 18

in each method usually depends on the pollutant nature and the environmental condi-
tions [10]. In recent decades, biochar, which is a carbon-rich material derived from the
pyrolysis of biomass [11–13], has been shown to be efficient in adsorbing pollutants of
wastewater [14,15]. The application of biochar in the environmental field has also been
a hot research topic in recent years. This is mainly due to biochar as an adsorbent, is an
environmentally friendly material and has excellent removal efficiency for pollutants. Thus,
the purpose of this review article is to deliver a balanced view of the current practices
on various aspects of biochar utilization for emerging pollutants removal from aquatic
systems. In this paper, we reviewed the latest studies on the application of biochar for
the remediation of different emerging pollutants in aquatic systems. Factors affecting the
adsorption performance of biochar and the adsorption mechanisms of different types of
emerging contaminants were summarized. Finally, future research directions associated
with biochar use in polluted water remediation were discussed.
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2. Removal of Emerging Pollutants by Biochar

It has been reported that wastewater containing amounts of emerging pollutants
displayed detrimental effects on human and ecosystem health [16]. For example, EDCs,
a major component of medical wastewater, are suspected to be harmful to humans and
wildlife. Previous studies demonstrated that MPs and PPCPs can directly or indirectly cause
risk to the ecosystem and people’s health [17,18]. It is crucial to remove these pollutants
from aquatic ecosystems. In this paper, we have reviewed the studies on the removal
of three typical emerging pollutants by biochar. Numerous investigations have been
conducted to study biochar’s adsorptive capacity for these emerging pollutants in aquatic
environments [3,5,6] and these studies have been discussed in the following sections.

2.1. Removal of Endocrine Disrupting Chemicals (EDCs)

EDCs are a subclass of compounds that mimic the actions of hormones and disturb
the endocrine system’s normal functions, resulting in malignant tumors, birth deformi-
ties and developmental disorders [19]. Previous studies have revealed that biochar can
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remove EDCs from aquatic systems and significantly reduce their environmental risk. The
sorption of EDCs by biochar is largely determined by its specific surface area and the
functional groups which are strongly affected by the raw material and the pyrolysis tem-
perature [20,21]. In addition, raw agricultural by-products without pyrolysis might leach
pollutants and contribute to secondary pollution, but pyrolysis to biochar can completely
decompose most organic pollutants and avoid this problem [22,23]. As shown in Table 1,
biochar produced from different feedstocks and pyrolysis temperatures usually had a high
adsorptive potential for EDCs. For example, Sun et al. [24] reported that peanut shell
biochar had a strong adsorption capacity of all six endocrine-disrupting phenols which can
be attributed to the abundant aromatic carbon, aliphatic structures and functional groups
of biochar surface.

The temperature at which biochar is pyrolyzed will significantly alter its characteristics,
thereby affecting its adsorption capacity on the pollutants. Generally, high pyrolysis
temperature will decrease the biochar surface functional groups and increase its aromaticity
and specific surface area. For example, biochar obtained at low temperatures (e.g., lower
than 400 ◦C) will form more functional groups and have stronger adsorptive capacities for
pollutants [25]. Other research found that higher-temperature biochar had a significantly
higher adsorption capacity for diethyl phthalate (DEP) than lower-temperature biochar,
which reflected the increased aromaticity and probable dominance of the π-π electron
donor-acceptor (EDA) interaction [26]. Sun et al. [27] investigated the ability of different
biochars to absorb three phthalic acid esters (PAEs) in water. They reported that the
adsorption follows an order: torrified plant material biochar (200 ◦C) < turbostratic biochar
(600–700 ◦C) = composite biochar (500–600 ◦C) < transition biochar (300 ◦C) < amorphous
biochar (400 ◦C). This most likely occurred because low-temperature biochars have a more
amorphous structure and include significant amounts of “soft” aliphatic domains, making
them an efficient medium for hydrophobic organic molecules partitioning [28].

Table 1. Representative studies on the removal of endocrine-disrupting chemicals from aquatic
systems by biochar.

Feedstocks Production
Temperature Pollutants Results References

Eucalyptus
globulus 400 ◦C and 600 ◦C

Estrone (E1), 17β-estradiol
(E2), estriol (E3),
17α-ethynylestradiol (EE2),
bisphenol A (BPA) and
4-tert-butylphenol

The sorption capacities of
biochar for different chemicals
followed the order E1 > E2 ≥
EE2 > BPA > 4tBP > E3.

[29]

Spent mushroom
substrate

250 ◦C, 450 ◦C and
600 ◦C EE2 and progesterone

The addition of biochar
removed 80% of both
endocrine disruptors.

[30]

Grapefruit peel 400 ◦C BPA
Biochar strongly enhanced the
removal rate of BPA through
adsorption.

[31]

Red algae 300–900 ◦C 4-Nonylphenol

Algal-derived biochar can be a
sustainable material for the
decomposition of
4-Nonylphenol.

[32]

Peanut shells 400 ◦C

BPA, diethylstilbestrol,
hexafluorobisphenol,
4,4-sulfonyldiphenol,
4,4-methylenebisphenol
and 4-cumylphenol

Biochar is capable to remove
EDCs from aqueous. [24]
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Table 1. Cont.

Feedstocks Production
Temperature Pollutants Results References

Oil palm fibre 200 ◦C, 350 ◦C, 500 ◦C
and 700 ◦C Ethylparaben

Ethylparaben was able to bind
to biochar at an adsorption
capacity of 349.65 mg/g.

[33]

Walnut shell 400 ◦C, 500 ◦C, 600 ◦C
and 700 ◦C Estrone

700 ◦C-Biochar at pH 4 with a
dosage of 0.1 mg/mL showed
the maximum surface
assimilation of estrogens.

[34]

Sawdust 500 ◦C E2

The result indicated that
graphene-like magnetic
biochar had the highest
removal rate of E2.

[35]

Bagasse 400 ◦C, 600 ◦C and
800 ◦C E2

Magnetic biochar
nanoparticles can strongly
adsorb E2 which makes them
potential adsorbents for E2
removal.

[36]

Corn straw 700 ◦C Perfluorooctane sulfonate
(PFOS) and EE2

The concentration of PFOS
significantly reduced after the
addition of biochar.

[37]

Rice husk 300 ◦C Propylparaben (PP)
The addition of biochar greatly
promoted propylparaben
degradation.

[38]

2.2. Removal of Microplastics (MPs)

An alarming increase in plastics in the aquatic environment has gradually raised
scientists’ concerns about their potential risk to the environment in recent years [37]. Plastic
waste can slowly degrade to a large number of small plastic pieces (MPs) as a result of
biogeochemical processes [38]. MPs contamination in aquatic systems is a developing
problem worldwide [39]. The additives in plastics (e.g., PAEs, flame retardants, alkyl
phenol, azodicarbonamide) may enter the aquatic environment through aging processes
and threaten aquatic ecosystems. Similarly, these MPs may threaten human health by
entering the human body through the food chain. Furthermore, MPs can serve as a
sink for different types of pollutants (e.g., PCBs, nonylphenol, and metals) [40,41] in the
environment and further enhance the toxicity of MPs. Biochar has a high surface area
and micropores that can adsorb MPs in water (see representative studies summarized
in Table 2). For example, Ganie et al. [42] used bagasse biochar pyrolysis at 350, 550
and 750 ◦C to remove MPs from aquatic systems; 750 ◦C biochar had the highest MPs
removal rate due to its porous structure and high surface area. Wang et al. [43] also
reported that biochar produced at high temperatures displayed an enhanced removal and
immobilization capacity for MPs (>95%). They further demonstrated that the presence of
abundant honeycomb structures in thin chips prepared at 500 ◦C biochar contributed to
their high adsorption capacity for MPs. Wang et al. [44] showed that magnetic biochar
can remove up to 94.81% of the polystyrene (PS) microspheres from an aqueous solution.
Iron-modified biochar has magnetic extractability to easily and quickly remove MPs [45].
Similarly, oxidized corncob biochar showed a relatively higher removal rate of polystyrene
MPs (>90%) than normal biochar due to it having more hydroxyl groups [46].

In addition, environmental conditions will also affect biochar performance for MPs
removal. Kumar et al. [47] reported that higher pH, dissolved organic matter and nutrient
content may reduce biochar adsorption capabilities for MPs; however, an increase in the
aquatic system’s temperature promotes MPs adsorption by biochar.
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Table 2. Representative research on biochar’s ability to remove microplastics from aquatic environ-
ments.

Feedstocks Production
Temperature Pollutants Results References

Cellulose 400 ◦C Microplastics (MPs)
Biochar reduced the transit and
increased the deposition of plastic
particles.

[48]

Livestock manure 500 ◦C Polyhydroxyalkanoate
microplastics (PHA-MPs)

Biochar accelerated PHA-MPs
biodegradation (degradation rate of
22–31%).

[49]

Prosopis juliflora 550 ◦C and 850 ◦C MPs
Both biochars produced from the two
temperatures can effectively remove
the MPs (>200 mg/g).

[45]

Pine and spruce
bark 475 ◦C and 800 ◦C Spherical polyethylene

(PE)
The steam-activated biochar was an
excellent adsorbent for removing MPs. [50]

Sawdust 550 ◦C Polystyrene Modified biochar showed high MPs
removal efficiency (>94.8%). [51]

Cellulose 400 ◦C Polystyrene Transport of plastic particles hindered
by biochar added. [52]

Sugarcane bagasse 350 ◦C, 550 ◦C and
750 ◦C Polystyrene-based latex

Biochar prepared at 750 ◦C showed a
higher MPs removal rate (>99%)
compared with the lower temperature
biochar.

[43]

Corn straw,
hardwood

300 ◦C, 400 ◦C and
500 ◦C MPs

Both 500 ◦C corn straw and hardwood
biochar had higher removal and
immobilization capacity of MPs than
low-temperature biochar.

[42]

2.3. Removal of Pharmaceutical and Personal Care Products (PPCPs)

PPCPs may release harmful chemicals into aquatic systems and have adverse effects
on aquatic life due to their widespread use and persistence when they are improperly
disposed of [53]. Generally, PPCPs in water mainly originate from sewage treatment plants
and landfills. Detectable concentrations can be found in drinking waters around the world
and may pose a potential risk to ecosystems [54]. Although the long-term effects of PPCPs
on living organisms are not clear [55], the removal and reduction of PPCPs are still required
due to their potential risk. Biochar as a sorbent has been shown to be effective in removing
PPCPs from aquatic environments (Table 3) [54]. For example, Liang et al. [56] reported
700 ◦C biochar exhibited a high adsorption capability for norfoxacin (NOR). It has also
been shown that the modification of biochar can improve its adsorption capacity for PPCPs.
Ahmad et al. [57] found that nano zero-valent iron-modified biochar (nZVI-DBC) could
effectively remove 98% of chlortetracycline from aqueous solutions, which was significantly
higher than zeolite-modified biochar (Z-DBC), silica modified biochar (S-DBC) and non-
modified biochar. This is due to that after the oxidation of Fe0, the chlortetracycline’s
amino group may have created Fe-N covalent connections with Fe3+ and Fe2+. In addition,
after ball milling, hickory chip biochar (pyrolyzed at 700 ◦C) significantly adsorbs more
emerging pollutants from water [32].

Some PPCPs can be removed through the specific properties of biochar. For example,
the calcium present in the biochar produced from milk sludge can be used as a complexing
precipitant for fluoride adsorption and removal [58]. In addition, PPCPs removal can also
be enhanced via microbial degradation catalyzed by microbes colonizing the surface of
biochar. The microbial activities are enhanced since biochar may serve as both an electron
donor and acceptor for PPCPs mineralization [59]. According to the discussion above,
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biochar and modified biochar can effectively remove PPCPs from aquatic systems which
may reduce the environmental risk of these emerging pollutants.

The adsorption capacities for various adsorbents tested for different emerging pollu-
tants removal are summarized in Tables 1–3. However, due to the inconsistency of data in
the literature, it is difficult to provide a direct comparison of the adsorption capacities of
different biochars on any particular pollutant or pollutant groups. The adsorption capaci-
ties of different biochars for a range of pollutants have been reported in the literature under
varied conditions (different solution pH, pyrolysis temperatures, pollutant concentrations,
biochar types, as well as the biochar addition doses). Additionally, the biochars used in
the adsorption studies under controlled laboratory settings with aquatic systems had the
purpose of obtaining datasets to simulate the conditions under realistic field situations
such as industrial wastewater, mining wastewater, and agricultural wastewater. No two
experiments that were conducted by the different authors had a similar experimental
protocol. Furthermore, the isotherm models used to derive the sorption parameters also
varied among the studies and the findings often do not match thus making the comparison
unrealistic.

Table 3. Representative studies on the removal of PPCPs from aquatic systems by biochar.

Feedstocks Production
Temperature Pollutants Results References

Straw 300 ◦C and 600 ◦C Sulfamethazine (SMT)

SMT sorption to biochar at 300 ◦C
and 600 ◦C display their highest
concentrations of 5.75 mg/g and
4.32 mg/g, respectively.

[60]

Poplar wood chips 700 ◦C, 800 ◦C and
900 ◦C Norfoxacin (NOR)

The obtained 700 ◦C biochar
exhibited a superior NOR
adsorption capability (up to
38.77 mg/g).

[61]

Bagasse, bamboo,
hickory chips

300 ◦C, 450 ◦C and
600 ◦C

Sulfamethoxazole (SMX),
sulfapyridine (SPY)

The highest amounts of SMX and
SPY that biochar could adsorb
were 25.7 mg/g and 58.6 mg/g,
respectively.

[32]

Cassava waste
residues 500 ◦C

NOR, sulfamerazine
(SMR), oxytetracycline
(OTC)

Mono- and competitive sorption of
three antibiotics to raw and NH4+-
modified cassava biochar followed
a similar order: OTC > NOR >
SMR.

[62]

Bagasse 500 ◦C
SMX, thiazole,
methylpyrimidine,
dimethylpyrimidine

Great adsorption performance was
demonstrated in the adsorption
process of the four sulfonamide
antibiotics under ideal
circumstances, pH 4 and 35 ◦C.

[63]

Bamboo 500◦C Enrofloxacin andofloxacin

When the initial concentration of
enrofloxacin or ofloxacin was
increased from 1 to 200 mg/L, the
adsorption capacity of bamboo
biochar increased sharply and
then began to flatten out with a
further increase in the initial
concentration.

[64]

Palm fruit empty
bunch

250 ◦C, 450 ◦C and
750 ◦C

Methyl paraben (MPB),
carbamazepine (CZP),
ibuprofen (IBP), and
triclosan (TCS)

450 ◦C-Biochar can remove more
than 75% of the three organic
pollutants.

[53]
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Table 3. Cont.

Feedstocks Production
Temperature Pollutants Results References

Sewage sludge 600 ◦C Tetracycline (TC), SMX,
amoxicillin (AMC)

Biochar could adsorb TC, SMX,
and AMC to maximum levels of
123.35, 99.01, and 109.89 mg/g,
respectively.

[65]

Cornstalk, orange
peel, peanut hull

300 ◦C, 500 ◦C and
700 ◦C TC

The three different biochars’
ability to adsorb TC was greatly
improved by the KMnO4
treatment.

[66]

Douglas fifer 900 ◦C and 600 ◦C Fluoride
Both nitrate and fluoride
adsorption on biochar remained
high over a pH range from 2 to 10.

[67]

Food waste 300 ◦C, 450 ◦C and
600 ◦C Fluoride

Excellent adsorption ability (91.4%
removal) has been shown by the
aluminum-modified biochar in the
pH range of 5–11.

[68]

3. Factors Affect the Performance of Biochar for Emerging Pollutants Removal
3.1. Types of Biochar

Biochar with diverse properties may result in different performances when used for
the remediation of contaminated water. It has been reported that biochar properties may
be affected by preparation processes, raw material types, modification and aging methods,
which lead to different surface functional groups, pH and specific surface area [51,69,70].

It was observed that the specific surface area and pore volume of coconut shell biochar
obtained by supercritical water gasification were increased by 78 times and 43 times, respec-
tively, as compared to those obtained by pyrolysis [51]. In addition, high temperatures may
decrease biochar’s polarity and hydrophilicity, while the aromaticity and specific surface
area gradually increased [71]. Moreover, the temperature during production can also alter
biochar pH. For instance, the pH of four different kinds of biochar increased and the pH
increase rate gradually slowed down with the increase in pyrolysis temperature [72]. This
may be due to the decomposition of cellulose, hemicellulose and lignin in the raw material.
Furthermore, the release of volatile substances resulted in pore structure opening and the
increase in the specific surface area, which can significantly improve the biochar adsorption
capability for organic pollutants [73]. Additionally, the retention time of pyrolysis signifi-
cantly affects the biochar surface area which further affected the ability of biochar to adsorb
phenol [74].

Some environmental factors, i.e., “aging” may also change the properties and struc-
ture of biochar. For example, rainfall or freezing and thawing will lead to mechanical
cracking, surface oxidation, dissolved organic matter release and mineral dissolution of
biochar [74–77]. Previous research showed that the surface oxidation of biochar through the
aging process would increase nutrient mineralization and soil microbial activities, reducing
the unstable biochar content [74,78,79]. However, the aging process would increase the
acidic functional groups of biochar and reduce its adsorption performance [80]. In addition,
long-term aging processes promote the polarity and hydrophilicity of biochar, which may
increase the bioavailability of PAHs [81]. Zhang et al. [82] reported that aging significantly
reduces the adsorption capacity of biochar for PAEs, mainly due to the clogging of its pores
by dissolved organic carbon in the environment.

Modified biochar has gradually attracted researchers’ attention which is due to its
higher adsorption capacity for pollutants compared to normal biochar [64,83]. For example,
manganese dioxide-modified biochar (Mn-BC) obtained higher specific surface area, total
pore volume and pore diameter and showed higher sorption capacity of organic pollutants
compared to the original biochar [84]. Modification methods significantly affect the surface
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functional groups of biochar, which further affects the adsorption capacity of biochar to
the targeted pollutants. It has been observed that MnCeOx-modified tea waste biochar
(MnCeOx/TBC) not only improved the agglomeration of bimetallic oxides but also pro-
vided surface functional groups, which could synergistically adsorb pollutants in water and
promote tetracycline surface oxidation [85]. When the biochar is modified by pretreating
feedstock with sulfamic acid, it can be used as an electron donor and combine with an
electron acceptor-TC molecule conjugated ketene structure through a π-π interaction [86].

3.2. Types of Emerging Pollutants

The type of emerging pollutants or their coexistence with other pollutants may be an-
other factor affecting the removal capacity of biochar. The properties of organic pollutants,
including molecular structure, hydrophobicity, aromaticity, and polarity, are the key factors
affecting biochar removal capacity [87–89]. For example, pollutants with large kinetic diam-
eters can be rapidly adsorbed into large pores and be easily blocked out by micropores and
nanopores [90,91]. This results in different mobility between the different pollutants and
biochar, which leads to differences in adsorption performance [92]. In addition, pollutants
with higher hydrophobicity can be more easily removed by biochar, due to the better affinity
of pollutants with hydrophobic biochar [93,94]. Besides, the π-π EDA interaction between
the sorbent and biochar can be dominated by the aromaticity of organic pollutants, which
may directly affect biochar removal capacity for pollutants [95]. The aromaticity of TC is
higher than sulfadiazine; therefore, TC has more pronounced π-π interactions and higher
adsorption affinity for biochar [96,97]. The polarity of aromatic rings on organic pollutants
is closely related to the adsorption of biochar. The π-π interaction tends to be strongest
between aromatic hydrocarbons with opposite polarity and weakest between aromatic
hydrocarbons with the same polarity, which indicates that the polarization direction of
different organic pollutants significantly affects the adsorption process [95]. However, the
potential effect of polarization on the removal of organic pollutants by biochar has not been
fully investigated.

However, the pollutants in the actual environment are often complex and diverse. The
biochar adsorption capacities of specific pollutants may be various under the synergistic
or competitive effect of multiple organic pollutants. For example, Luo et al. [62] found
that biochar exhibited stronger adsorption capacity for NOR and oxytetracycline (OTC)
but weaker adsorption capacity for sulfamerazine (SMR) in ternary solutions compared
to single solutions, which was attributed to the electrostatic repulsion between the an-
tibiotics in the accelerated adsorption phase. When the adsorption sites on biochar are
occupied by antibiotics, these antibiotics adsorb more ions through electrostatic interaction
of opposite charges, while electrostatic interactions inhibit the ability of SMR to compete
for the adsorption sites on biochar [60]. However, in complex multicomponent systems,
synergistic and competitive interactions of the different solutes do not necessarily exist si-
multaneously. It has been found that under competitive conditions where TC, sulfadiazine,
NOR, erythromycin, and chloramphenicol were present simultaneously, all antibiotics
exhibited competitive adsorption, which reduced the adsorption of biochar on individual
pollutants [98]. The limited external and internal pores and spatial site resistance near
the micropore adsorption domains are responsible for the weak adsorption affinity of the
multi-solute system [99].

3.3. pH

The pH of the solution largely controls the adsorption effect of biochar on emerging
pollutants. It has been reported that pH changes alter the physicochemical behavior of the
functional groups on the surface of biochar [100]. When the solution pH is lower than the
zero point charge (PZC), the functional groups on the surface of biochar protonate to obtain
H+, which will compete with the positive organic pollutants on the surface for adsorption
thus weakening the adsorption capacity of biochar [100]. However, the protonation of
functional groups facilitates the adsorption of negative pollutants [101,102]. On the contrary,
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when the solution pH is higher than PZC, the loss of protonation occurs on the surface of
biochar to reopen the adsorption sites occupied by H+, thus improving the adsorption of
organic pollutants [103]. Taking TC as an example, under low pH conditions, positively
charged contaminants, such as TCH3

+, compete with H+ on the surface of biochar thereby
reducing the amount of contaminants adsorbed by biochar [100]. However, under high
pH conditions, negatively charged contaminants (e.g., TCH− and TC2

−) showed a lower
affinity for the negatively charged biochar surface due to electrostatic repulsion [104].

3.4. Initial Emerging Pollutant Concentration

The initial concentration of emerging pollutants is one of the important parameters
affecting the adsorption performance of biochar. At low initial concentrations, biochar
can rapidly adsorb pollutants through adsorption sites because there are enough active
sites to achieve low levels of emerging pollutant removal, which promotes high removal
efficiency [105]. As the initial concentration increases, the removal efficiency of biochar
gradually plateaus until saturation [31,50,106,107]. For instance, as the concentration of
ofloxacin increased from 1 g/L to 4 g/L, the adsorption capacity of biochar decreased
from 11 mg/L to 4 mg/L. As the initial concentration continued to increase to 5 g/L and
6 g/L, the adsorption capacity of biochar remained constant which is due to the transfer of
emerging contaminants being limited by the low availability of binding sites on biochar
at higher concentrations [108]. However, for the removal of emerging contaminants at
high concentrations, an increasing dose of biochar can be considered [109], which will be
discussed in the section below.

3.5. Biochar Dose

Generally, at high pollutant concentration conditions, the increase in the dosage of
biochar can significantly improve the removal of emerging pollutants [110]. This is due
to the high dosage of biochar providing more binding sites and a larger specific surface
area, which allowed more contaminant molecules to be immobilized [48,111,112]. However,
biochar above a certain concentration may cause an agglomeration effect, which reduces the
total specific surface area of the biochar and inhibits the exposure of binding sites, so that
the adsorption capacity of the biochar is weakened [113]. It has been reported that when
the amount of biochar was increased from 2 g/L to 20 g/L, the adsorption of diclofenac by
biochar decreased from 107% to 25% [114]. However, the agglomeration capacity of biochar
was more dependent on the raw material. Biochar prepared from raw materials with high
lignin content was more prone to agglomeration than biochar produced from raw materials
with low lignin content [115]. This may be due to the inherent high adhesive capacity of
lignin and the incomplete decomposition by pyrolysis [116]. Therefore, the optimal biochar
dosage is an important parameter to ensure the adsorption efficiency of biochar as well as
the cost-effectiveness of its use [83,117,118].

3.6. Coexistence of Heavy Metals and Emerging Pollutants

Wastewater from electroplating, leather tanning, textile and dyeing industries contains
heavy metals and organic pollutants [119]. Due to unique physicochemical properties,
biochar can adsorb pollutants from water systems, but the adsorption mechanism of
organic pollutants is not the same as that of heavy metals, and the remediation effect of
biochar varied when they coexisted [120,121]. Heavy metals and organic pollutants may
compete for the adsorption sites of biochar in the aqueous phase [122,123]. For example,
both Chromium (Cr) and Cuprum (Cu) noticeably inhibited naphthalene adsorption by
biochar in aqueous solutions [124]. Chemical adsorption and ion exchange were the main
adsorption mechanisms of biochar for heavy metals while physical adsorption was the
mechanism for organic pollutants. The coexistence of heavy metals weakens the physical
adsorption of organic pollutants by biochar [125]. However, there also exist opposing
opinions. For example, the presence of a low concentration of Cu in solutions positively
enhanced the adsorption of TC on biochar [126]. Cu can act as a bridge between biochar
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and TC, while the complexes of Cu and TC exhibited a stronger affinity for biochar [127].
Similar results were also reported when Cadmium (Cd) coexisted with sulfamethoxazole
(SMX) [128]. Besides the “bridge” explanation of Cd, Cd adsorbed on biochar could mitigate
the negative surface charge of biochar surface, then slow down the electrostatic repulsion
between the biochar and the anion SMX [129]. The Cd-SMX complex has a higher affinity
for biochar than SMX, thus accelerating SMX transfer efficiency to biochar [130]. In addition,
Cd slows down the competition between SMX and water for adsorption sites by reducing
the surrounding hydrophobicity [131].

4. Remediation Mechanisms of Emerging Pollutants by Biochar

Biochar serves as a powerful adsorbent for a range of emerging pollutants, thereby
playing a crucial role in governing the fate, transport, and subsequent risk associated
with pollutants [132–135]. The mechanisms for emerging pollutants removal by biochar
will be discussed in detail in this section. Studies have shown that biochar’s sorption
is controlled by the relative carbonized and non-carbonized fractions as well as their
surface area and bulk properties [136,137]. For example, Zhu et al. [138] indicated that
aromatic contaminants’ adsorption to wood chars was assisted by π-electron interactions,
while proposing a pore-filling mechanism contributing to the sorption process for organic
pollutants onto biochar. It has been also demonstrated that biochar can also serve as
a catalyst for the degradation of some emerging pollutants. A recent study has found
that biochar could not only be used as an adsorbent but also accelerate the reduction of
nitrobenzene [139].

Usually, the organic pollutants adsorption process by biochar involves a combination
of different interactions [140]. Figure 2 shows the conceptual illustration of organic pol-
lutants’ adsorption mechanisms onto biochar, including (1) The π-π interactions between
pollutants molecules and graphene layers of biochar; (2) the mechanisms of the direct
electrostatic attraction/repulsion; (3) the inter-molecular hydrogen bonding; (4) hydropho-
bic interaction; (5) pore filling; (6) as a catalyst for the degradation of the pollutants (e.g.,
accelerates nitrobenzene reduction) [140].
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The π-π EDA interactions typically occur in the sorption of aromatic compounds dom-
inated by biochar on the graphene structure surface [141,142]. π-π EDA interactions are an
important class of non-covalent interactions that contribute to the structure of biomolecules,
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chemical bonding, and the structure and properties of π-conjugated materials with aro-
matic rings, such as biochar [143]. During pyrolysis, irregular charge sharing between
the aromatic rings of biochar leads to an increase or decrease in the electron density of
biochar, forming a π-electron enriched or π-electron deficient medium [144]. When biochar
is prepared below 500 ◦C, the π aromatic system acts as an electron acceptor because of the
greater abundance of highly polar functional groups, while when pyrolyzed at tempera-
tures above 500 ◦C, the biochar is used as an electron donor by binding escaped electron
molecules [27,145,146]. Graphene-like structure in biochar expands with increasing pyroly-
sis temperature, thus increasing the π-π interaction [145]. It has been reported that pollutant
molecules containing nitro groups can reduce the heterocyclic ring electron density and
thus enhance the π-electron deficiency which resulted in stronger π-π interactions [147].

Electrostatic interaction is a vital system for the adsorption of ionizable and ionic
organic chemicals on biochar. The pH largely determines the effect of electrostatic in-
teraction in the adsorption process [148]. The interaction of biochar with pollutants at
different pH conditions has been discussed in Section 3.3. In addition, the ionic strength
has a great influence on the magnitude of the electrostatic force in the adsorption [148].
Organic pollutants with high electronegativity can be bonded to polar hydrogen bonds on
the surface of biochar [149]. For example, the adsorption of dibutyl phthalate by modified
sludge mass biochar is mainly through hydrogen bonding between the hydrogen atoms on
the biochar and the oxygen atoms of the ester group on dibutyl phthalate [150].

The rise of pyrolysis temperature reduces the quantity of polar functional groups on
the biochar surface, thus increasing its hydrophobicity. Its hydrophobic surface can adsorb
non-polar organic molecules through hydrophobic interaction. Therefore, hydrophobic
interaction is an important system for different hydrophobic organic compounds to adsorb
on the biochar graphene-like surface [151]. Hydrophobic adsorption is accompanied by
the partitioning mechanism of some organic molecules. In the partitioning process, the
adsorbed organic compounds diffuse in the biochar pores or the organic matter in the
noncarbonized part and then dissolve in the organic matter matrix [152]. Due to the com-
petition between non-polar molecules and water molecules, the hydration energy required
for hydrophobic interaction is usually lower than that for partition interaction [153].

The abundance of pores on biochar, as well as its huge specific surface area, determines
the importance of the pore-filling mechanism in organic pollutant adsorption. Usually,
organic compound molecules with small particle sizes are prone to be adsorbed through the
pore-filling mechanism, the biochar pores are mainly micropores (<2 nm) and mesopores
(2–50 nm) [134,154,155]; however, organic molecules with large pore size are difficult to
be adsorbed by biochar because of size exclusion effect [97]. Studies have shown that
the porous structure of the biochar surface has a dual effect on microbial degradation of
organic pollutants: (1) organic pollutants enter the porous structure of biochar and cannot
be directly used by microorganisms, reducing the degradation rate of organic pollutants
by microorganisms, (2) porous structure is a good habitat for microorganisms such as
algae, bacteria and fungi, improving microorganisms abundance and activity, and alter the
microbial community structure under the pollutant stress [155].

In addition, the partially easily decomposed carbon sources and nitrogen sources on
the biochar’s surface are beneficial to increase the abundance and activity of microorgan-
isms. Meanwhile, the porous structure of biochar can store water and nutrients, becoming
a microenvironment for microbes, and providing a shelter for the growth of special taxa of
microorganisms, thus promoting the degradation of the organic pollutants [156–158].

5. Conclusions

Biochar, as an effective adsorbent, plays an important role in the management of
emerging pollutants in aquatic systems. However, one type of biochar may not be appro-
priate for the removal of all types of emerging pollutants. Previous studies have shown
promising results that biochar is an effective adsorbent and that the absorption performance
of biochar is affected by parameters such as adsorbent dosage, adsorption time, adsorption
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temperature, types of pollutants and pH. Though biochar is effective in removing a variety
of emerging pollutants from water, there are still some risks, problems and shortcomings
for biochar in practical application and future research, which are listed as follows:

It can be concluded that the single production or modification method of biochar
sometimes cannot meet the specific application conditions. In addition, some modification
methods may reduce the stability of biochar in the environment, making it easier to be
degraded, resulting in the release of endogenous pollutants from biochar. Therefore,
multiple production or modification methods need to be explored in the future to solve
complex environmental problems.

Although biochar can adsorb pollutants in aquatic systems, the pollutants are only
transferred from the liquid phase to the adsorbent surface, without removal from the
environment. Biochar application can lead to the accumulation of contaminant residues in
the biochar itself. Whether these pollutants will release into the water bodies again is still
unknown, and a question that needs to be addressed. In future research, it is necessary to
systematically study the ecological and health risk effects of biochar in real applications, so
as to serve the safe and effective use of biochar.

So far, studies mostly focus on the removal of a single emerging pollutant; however,
the wastewater usually contains various emerging pollutants. More studies are needed to
focus on sorption behavior in multi-solute systems.
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