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Abstract: Rivers are generally classified as either national or local rivers. Large-scale national rivers
are maintained through systematic maintenance and management, whereas many difficulties can
be encountered in the management of small-scale local rivers. Damage to embankments due to
illegal farming along rivers has resulted in collapses during torrential rainfall. Various fertilizers
and pesticides are applied along embankments, resulting in pollution of water and ecological spaces.
Controlling such activities along riversides is challenging given the inconvenience of checking
sites individually, the difficulty in checking the ease of site access, and the need to check a wide
area. Furthermore, considerable time and effort is required for site investigation. Addressing such
problems would require rapidly obtaining precise land data to understand the field status. This
study aimed to monitor time series data by applying artificial intelligence technology that can
read the cultivation status using drone-based images. With these images, the cultivated area along
the river was annotated, and data were trained using the YOLOv5 and DeepLabv3+ algorithms.
The performance index mAP@0.5 was used, targeting >85%. Both algorithms satisfied the target,
confirming that the status of cultivated land along a river can be read using drone-based time
series images.

Keywords: illegal cultivation; YOLOv5; DeepLabv3+; public land; time series

1. Introduction

In 2017, Asan City, South Korea suffered extensive flood damage due to the collapse
of an embankment. Accordingly, in 2018 and 2019, the local government studied the condi-
tions of the river sites and conducted intensive crackdowns on illegal cultivation at these
sites. These efforts led to the restoration of the river embankment that had been damaged
by illegal farming over several years. However, illegal farming cases have recently in-
creased again. Given that crackdowns across a wide range of areas are time consuming and
expensive, they become a burden on local governments. A more appropriate method would
be to implement monitoring strategies using drones for regular surveillance, which would
allow rapid targeted crackdowns. Given that cultivated lands along rivers are relatively
small in area but have a high level of plant species richness and diversity, establishing time
series learning data for plants and undertaking regular monitoring through an artificial
intelligence (AI) model is necessary.

Deep-learning-based methods have been demonstrated to be more accurate than pre-
vious techniques and use deep neural network analysis to detect weeds among crops based
on large-scale learning datasets and pre-trained models [1]. Li et al. [2] estimated crop yield
and biomass by calculating the vegetation index of three crops using hyperspectral images
and performing AI-based automatic machine learning. Drone-based images have become
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one of the main sources of geographical information system data that support decision-
making in various fields. GeoAI is a dataset used to train object detection- and semantic
segmentation-related models for geospatial data analysis [3]. Li and Hsu [4] analyzed
various images, such as satellite- and drone-based images, street view, and geoscience data,
and investigated the development of the GeoAI field through machine vision. Luis et al. [5]
proposed a road monitoring system capable of recognizing potholes through drone-based
images to detect road surface deterioration. By using pattern recognition technology, the
effect of reducing road safety accidents was confirmed [5].

The use of drones to automatically obtain images has shown a high level of effective-
ness in terms of time and cost [6–8]. Aerial image data are collected through a standard
remote-sensing technique, namely using a drone with a specific sensor [9,10]. Drones have
the advantage of being able to obtain high-resolution images at relatively low altitudes.
Hashim et al. [11] integrated vegetation indices and convolutional neural networks through
a hybrid vegetation detection framework. Vegetation inspection and monitoring using
drone images are time-consuming tasks. The vegetation index has been used to estimate
vegetation health and change [12] and has used AI learning data to overcome the limitations
of vegetation recognition techniques. Liao et al. [13] proposed a monitoring system that
detects beach and marine litter using drones in real time. Xu et al. [14] monitored oceans,
water quality, fish farms, coral reefs, and waves and algae using AI learning. Ullo and
Sinha [15] conducted research on various environmental monitoring systems for air quality,
water pollution, and radiation pollution. To detect litter using drones, researchers have
improved the YOLOv2 model [16,17], modified a loss function in YOLOv3, and created a
drone-based automated floating litter monitoring system [18,19]. Tsai et al. [20] presented a
convolutional neural network-based training model to estimate the actual distance between
people in consecutive images.

There has been considerable investment in AI machine learning and deep-learning
algorithms to maximize safety, cost, and optimization in modern industry [21]. Recently,
an AI technique was developed that can automatically identify magnetite in a mine using
a multi-spectral camera on a drone [22]. Detecting objects is a key step in understanding
images or videos collected from drones [23]. These state-of-the-art deep-learning detectors
have seen substantial innovations in recent years. Object detection methods mainly detect
a single category such as a person [24–26]. However, there have been numerous studies
on specific object detection. Regarding object detection using YOLOv5, Mantau et al. [27]
suggested YOLOv5 and a new transfer learning-based model for analysis of thermal
imaging data collected using a drone for monitoring systems. Liu et al. [28] applied the YOLO
architecture to detect small objects in drone image datasets, and the YOLO series [29–31]
played an important role in object and motion detection tasks [32]. The YOLO series
detection method [33] has been widely used for detecting objects from drone-based images
because of its excellent speed and high accuracy [34]. Existing detection methods are as
follows [35–39]: After exploring each image through pre-set sliding windows, features are
extracted, and then trained classifiers are used for categorization [38,39]. Wei et al. [40]
added the convolutional block attention module to distinguish buildings with different
heights from drone-based images. Additionally, to solve the problem of poor detection
performance for damaged roads in drone-based images, Liu et al. [41] proposed an M-
YOLO detection method.

In South Korea, analysis of farmland using drones is being actively conducted. Choi
et al. [42] targeted small farmlands using drone-based images and confirmed the ap-
plicability of cover classification with algorithms, such as DeepLabv3+, Fully Convolu-
tional DenseNets (FC-DenseNet), and Full-Resolution Residual Networks (FRRN-B). Kim
et al. [43] demonstrated the potential for effectively detecting farmland in a water storage
area through supervised classification based on the Gray Level Co-occurrence Matrix. Lee
et al. [44] studied a method for searching for occupied facilities being used without permis-
sion on national and public lands using high-resolution drone images. Chung et al. [45]
determined the optimal spatial resolution and image size for semantic segmentation model
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learning for overwintering crops and confirmed that the optimal resolution and image
size were different for each crop. Deep learning is widely used for object classification for
analyzing the status of land use [46]. Ongoing studies are investigating the use of YOLOv5
to detect offshore drifting waste [47] and marine litter [48], which have recently emerged
as key issues. These artificial intelligence learning models have been applied to various
fields, showing potential applications in studies on the safety evaluations of reservoirs [49]
as well as in studies predicting fine dust concentrations [50].

In this study, we constructed a dataset with a size of 1024 × 1024 pixels by regularly
filming the main riversides in Asan City using a drone. Drone shooting was performed at
different altitudes, angles, and directions to collect a diverse dataset. To monitor the time
series data, regular filming was performed from July to October. Using the data acquired
in this way, the cultivated land was annotated with a polygon to build AI learning data.
YOLOv5 and DeepLabv3+ algorithms were applied to the learning data that had been
periodically acquired, and the performance goal was mAP@0.5 with an index of 0.85.

2. Materials and Methods
2.1. YOLOv5

YOLO is an abbreviation of You Only Look Once, which means to detect an object by
looking at an image once [29]. This algorithm can detect objects at a speed closer to real
time with a deep-learning network structure that simultaneously processes object detection
and classification. YOLO can also divide input images into an N × N size grid and perform
a classifier on each cell. Based on this, the probability of the grid cell containing an object is
calculated, and the object is detected, as shown in Figure 1.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 3 of 17 
 

 

permission on national and public lands using high-resolution drone images. Chung et al. 
[45] determined the optimal spatial resolution and image size for semantic segmentation 
model learning for overwintering crops and confirmed that the optimal resolution and 
image size were different for each crop. Deep learning is widely used for object classifica-
tion for analyzing the status of land use [46]. Ongoing studies are investigating the use of 
YOLOv5 to detect offshore drifting waste [47] and marine litter [48], which have recently 
emerged as key issues. These artificial intelligence learning models have been applied to 
various fields, showing potential applications in studies on the safety evaluations of res-
ervoirs [49] as well as in studies predicting fine dust concentrations [50]. 

In this study, we constructed a dataset with a size of 1024 × 1024 pixels by regularly 
filming the main riversides in Asan City using a drone. Drone shooting was performed at 
different altitudes, angles, and directions to collect a diverse dataset. To monitor the time 
series data, regular filming was performed from July to October. Using the data acquired 
in this way, the cultivated land was annotated with a polygon to build AI learning data. 
YOLOv5 and DeepLabv3+ algorithms were applied to the learning data that had been 
periodically acquired, and the performance goal was mAP@0.5 with an index of 0.85. 

2. Materials and Methods 
2.1. YOLOv5  

YOLO is an abbreviation of You Only Look Once, which means to detect an object by 
looking at an image once [29]. This algorithm can detect objects at a speed closer to real 
time with a deep-learning network structure that simultaneously processes object detec-
tion and classification. YOLO can also divide input images into an N × N size grid and 
perform a classifier on each cell. Based on this, the probability of the grid cell containing 
an object is calculated, and the object is detected, as shown in Figure 1. 

 
Figure 1. YOLO detection system [29]. 

YOLO has an end-to-end integrated structure and obtains multiple bounding boxes 
and class probabilities at the same time by inferring images once with a Convolutional 
Neural Network (CNN). With these features, YOLO has several advantages. First, its mAP 
and speed are more than twice higher than those of other real-time systems; second, be-
cause it uses CNN rather than the sliding windows method, it is induced to contextual 
information, so the learning rate for each class is good; and third, it can learn the expres-
sion of generalized objects. As a result, it has a faster detection speed compared to that of 
Deformable Part Models (DPM) and Regions with Convolutional Neural Network (R-
CNN) [29]. Other object detection models use a combination of a preprocessing model 
and an artificial neural network. The network configuration of YOLO is relatively simple 
because it is processed by only one artificial neural network as shown in Figure 2.  

Figure 1. YOLO detection system [29].

YOLO has an end-to-end integrated structure and obtains multiple bounding boxes
and class probabilities at the same time by inferring images once with a Convolutional
Neural Network (CNN). With these features, YOLO has several advantages. First, its
mAP and speed are more than twice higher than those of other real-time systems; second,
because it uses CNN rather than the sliding windows method, it is induced to contextual
information, so the learning rate for each class is good; and third, it can learn the expression
of generalized objects. As a result, it has a faster detection speed compared to that of
Deformable Part Models (DPM) and Regions with Convolutional Neural Network (R-
CNN) [29]. Other object detection models use a combination of a preprocessing model
and an artificial neural network. The network configuration of YOLO is relatively simple
because it is processed by only one artificial neural network as shown in Figure 2.

YOLOv5 is implemented based on the PyTorch framework, unlike other versions that
are based on the Darknet framework, and has a similar structure to YOLOv4, except that it
uses a Cross Stage Partial Network to reduce the calculation time, and its inference time
is more rapid than that of YOLOv4. Therefore, YOLOv5 can be applied to small-scale
embedded and unmanned mobile systems [48].
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2.2. DeepLabv3+

The DeepLabv3+ model has an encoder-decoder structure. The addition of the decoder
has improved model performance compared to that of the previous model DeepLabv3 [51].
The encoder comprises a backbone network marked as a deep convolutional neural network
(DCNN) and Atrous Spatial Pyramid Pooling (ASPP). The backbone network is a general
convolutional neural network and is specialized for segmentation by applying atrous
convolution to some measurements. DeepLabv3+ uses either ResNet-101 [52] or Xception
as the backbone network.

ASPP enables more accurate segmentation by obtaining multi-scale features through
the convolution of various kernels. The segmentation map is generated by upsampling
the output feature maps of the decoder and encoder. To minimize the restoration loss that
occurs at this time, the feature map is reconstructed with two 3 × 3 convolutions after
connecting with the output feature map of the encoder, as shown in Figure 3.
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2.3. Mean Average Precision

Mean average precision (mAP) is a metric used to measure object detection accuracy
and is the mean of the average precision (AP) of all classes in the database [53]. To obtain
the AP, we must first understand the relationship between precision and recall, which can
be defined as shown in Figure 4.
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True positive is defined as a correct detection by predicting actual targets. False
positive is defined as a false detection/false positive by predicting an object that does
not exist. False negative is defined as a misdetection because it does not predict the real
object. True negative is defined as a correct detection by not predicting non-existent objects.
However, it is not used in object detection frameworks and is based on precision-recall.
Precision can be calculated as follows:

Precision =
TP

TP + FP
=

TP
all detection

. (1)

Precision is the performance of a model to only identify relevant objects and is the
percentage of correctly detected objects out of the detected objects. If the model detects
10 out of the 20 ground truths to be detected, but correctly detects seven objects, then the
precision is 0.7. Recall can be calculated with the following formula:

Recall =
TP

TP + FN
=

TP
all ground truths

. (2)
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Recall is the performance of a model to find all the correct answers and is the percentage
of correctly detected ground truths. In the example above, among the 20 ground truths
to be detected, if there are seven correctly detected objects, then the recall is 0.35. Using
this, a curve representing precision according to the change in recall can be displayed,
and the model performance can be evaluated with this curve. Given that recall values are
always between 0 and 1, mAP can be shown as the following formula using the all-point
interpolation method [53]:

APall = ∑n(Rn+1 − Rn)Pinterp(Rn+1), (3)

Pinterp(Rn+1) = max
R̃:R̃≥Rn+1

P
(

R̃
)

, (4)

mAP =
1
C

C

∑
i

APi. (5)

2.4. Research Methods

To conduct this study, drone images were obtained for each altitude, angle, and
direction for the cultivated area along the river. Filming data were collected regularly at
the same place for the time series analysis. To improve the learning and training quality,
the drone-based images collected were cut to a certain standard (1024 × 1024 pixels). A
refinement step was performed by visual inspection to delete poor-quality images such
as those with poor focus, poor color, and file damage. The drone images were taken at
a 2-cm spatial resolution, and the images were processed to construct a monthly dataset
for learning and training. The cultivated land was annotated with polygons in the refined
images, data processing was performed, and learning datasets were built through an
inspection process. The learning data were evaluated using YOLOv5 and DeepLapv3+
models. Figure 5 shows the overall flow from data collection to model learning.
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2.5. Study Area

This study targeted the main river areas of Asan City, Chungcheongnam-do, South
Korea. There were numerous cultivated areas from which data were collected in the vicinity
of the river. Drone flights and filming were relatively unrestricted in the target area. As
shown in Figure 6, we filmed the areas by dividing them into three parts, namely the
northern, central, and southern areas. Field crops were cultivated in B1, rice was cultivated
in B2, and crops mixed with natural vegetation were cultivated in B3. Through this, an area
that could be analyzed using crop patterns and time series data was selected.
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2.6. Construction of Experimental Data

We used a DJI Phantom 4 RTK drone for data collection. We collected learning data
from July, when crops are commonly grown, to October, when harvesting begins. A total
of 24 data collection flights were performed for the entire block by filming each target site
twice a month for four months. The number of data collection flights for each block are
shown in Table 1. To collect a diverse range of data, we combined shooting methods with
different altitudes, angles, and directions, as shown in Figure 7.

Table 1. Number of data collections.

Target Area No. of Collections
per Month Area Time of

Collection Collected Time Collection
Period

Total No. of
Collections

(a) 2 94,000 m2 10: 00~18: 00 8 h
4 months

8
(b) 2 170,000 m2 09: 00~19: 00 15 h 8
(c) 2 37,000 m2 11: 00~15: 00 4 h 8
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(c) photogrammetry per direction.

The data collected were visually inspected to ensure that they were of high quality.
During the inspection process, we removed images that were out of focus because of gas
vibrations due to air flows, images with noise due to a lack of light sources, and dark
images. Images that passed the quality inspection were divided to a 1024 × 1024 size
corresponding to a real area of 20 × 20 m using Adobe Photoshop. Images that did not
contain cultivated land or did not meet the standards were deleted, as shown in Figure 8.
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Figure 8. Image division.

The refined data were annotated with a polygon according to the shape of the culti-
vated land using an authoring tool (by Show Tech). For the consistency of the annotation
work, only the parts with a certain farming pattern were defined as farmland. In addition,
if farmland with different patterns was adjacent, it was separated and annotated as shown
in Figure 9. The amount of data collected in each block by collection period is shown in
Table 2, and it is classified as a training dataset, validation dataset, and test dataset, as
shown in Table 3.
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Figure 9. Annotation of cultivated land. (a) annotation normal appearance; (b) annotation error
(red polygon).

Table 2. Cumulative number of training data collected per block.

Data Collection No. of Accumulated
Data in B1

No. of Accumulated
Data in B2

No. of Accumulated
Data in B3 Sum

1st 8763 18,023 3214 30,000
2nd 18,072 35,117 6811 60,000
3rd 27,225 53,046 9729 90,000
4th 37,078 67,429 15,493 120,000

Table 3. Number of training dataset.

Block Name Data Collection Train Sets
(80%)

Validation Sets
(10%)

Test Sets
(10%)

B1

1st 7010 876 877
2nd 14,458 1807 1807
3rd 21,780 2722 2723
4th 29,662 3708 3708

B2

1st 14,418 1802 1803
2nd 28,094 3511 3512
3rd 42,437 5304 5305
4th 53,943 6743 6743

B3

1st 2571 321 322
2nd 5449 681 681
3rd 7783 973 973
4th 12,394 1549 1550

2.7. AI Model Accuracy Evaluation Method

To evaluate the accuracy of the learning model, the data were divided into training,
validation, and testing sets at a ratio of 8:1:1. The mAP index was used to compare the
YOLO and DeepLabv3+ models. mAP is a comprehensive evaluation index that considers
precision/recall. To calculate mAP, a value of AP@IoU ≥ 0.5 was set as a true positive. The
AP for cultivated land in each image was obtained, and the mAP was calculated using
Equation (5) [33].
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As was the case for the YOLO model, we could not train the polygon-processed data.
Therefore, we extracted the top, bottom, left, and right maximum values of the cultivated
land polygons. They were then converted into a bounding box to enable training, as shown
in Figure 10.
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2.8. Experimental Environments

The training device used in the study was a dual graphics processing unit (GPU) given
the amount of data to process and the speed needed. Details are provided in Table 4.

Table 4. Device environment for training.

Hardware Performance

CPU AMD Ryzen Threadripper Pro 5995WX (68 Core, 128 Threads)
GPU NVIDIA RTX A6000 D6 48GB 2-Way
RAM ECC 384GB

OS Ubuntu 20.04.5
Framework PyTorch

2.9. Parameter Setting

To compare the training results of each model, it is necessary to fix the number of train-
ing iterations of YOLOv5 and DeepLabv3+. Therefore, referring to previous research [45],
the number of iterations and batch size for YOLOv5 and DeepLabv3+ were determined as
shown in Table 5.

Table 5. Parameter settings for data training.

Parameter YOLOv5 DeepLabv3+

Epoch 50 50
Batch Size 128 8
Optimizer SGD Adamw
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2.10. Training and Evaluation

Cultivated land was searched using training data (80%) with 120,000 datasets, and the
precision and recall for each block are shown in Tables 6–8.

Table 6. Cultivated land search results for B1.

Data
Collection

Test Data
Sets

TP FP FN Recall Precision

YOLO DLv3+ YOLO DLv3+ YOLO DLv3+ YOLO DLv3+ YOLO DLv3+

1st 877 684 661 311 347 193 216 78 75 69 66
2nd 1807 1531 1558 337 298 276 249 85 86 82 84
3rd 2723 2336 2548 281 287 387 175 86 94 89 90
4th 3708 3371 3380 259 221 337 328 91 91 93 94

Table 7. Cultivated land search results for B2.

Data
Collection

Test Data
Sets

TP FP FN Recall Precision

YOLO DLv3+ YOLO DLv3+ YOLO DLv3+ YOLO DLv3+ YOLO DLv3+

1st 1803 1689 1680 248 211 114 123 94 93 87 89
2nd 3512 3321 3345 221 178 191 167 95 95 94 95
3rd 5305 5214 5238 192 154 91 67 98 99 96 97
4th 6743 6608 6698 124 89 135 45 98 99 98 99

Table 8. Cultivated land search results for B3.

Data
Collection

Test Data
Sets

TP FP FN Recall Precision

YOLO DLv3+ YOLO DLv3+ YOLO DLv3+ YOLO DLv3+ YOLO DLv3+

1st 322 147 231 84 97 175 91 46 72 64 70
2nd 681 340 488 113 128 341 193 50 72 75 79
3rd 973 762 811 282 198 211 162 78 83 73 80
4th 1550 1337 1470 348 334 213 80 86 95 79 81

As a result of the search, precision and recall were the highest for B2, which had many
training datasets and clearly differentiated cultivated land. In the case of B3, the number of
training datasets was relatively small, and the shape of the cultivated land was similar to
the surrounding natural vegetation. Therefore, the precision and recall of the primary data
were low. However, over time, as the cumulative number of training datasets increased
and the harvest season arrived, the distinction between arable land and natural vegetation
became clear, resulting in increased precision and recall.

3. Results
3.1. Training Results

Given that most of the cultivated land had a certain pattern, it could be confirmed that
both models accurately detected the pattern.

However, in the case of YOLOv5, it was necessary to convert the polygon to a bound-
ing box. A bounding box may include other objects such as native plants because cultivated
land is not standardized, as shown in Figure 11. Problems arose in some cases such as
some areas of the bounding box being lost during the conversion process or classes being
changed. Therefore, it was confirmed that DeepLabv3+, which does not require preprocess-
ing, provided more accurate identification in the case of cultivated land annotated with
a polygon.
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3.2. Analyses

In this study, a dataset of 120,000 farmland areas was constructed, 80% of which was
training data, 10% was validation data, and the remaining 10% was test data. mAP values
were calculated for each data acquisition period. As a result of calculating the mAP for
each block using the YOLOv5 and DeepLabv3+ models, it was found that both models
had the highest mAP values in B2. This had a substantial amount of training data, specific
patterns, and time series characteristics. In the case of B1, the mAP value was high due
to the difference between the pattern specific to field crops and the natural vegetation in
Table 9. The change in mAP value according to time series data was relatively small. In the
case of B2, the mAP value was relatively high due to the distinct pattern according to the
characteristics of the rice cultivation area in Table 10. However, it was confirmed that there
was little effect on the time series data.

Table 9. The mAP results of YOLOv5 and DeepLabv3+ by data collection period for B1.

Data
Collection

Training
Data Sets

YOLOv5 DeepLabv3+

mAP Training
Time (min) mAP Training

Time (h)

1st 7010 0.88 10 0.90 1
2nd 14,458 0.89 15 0.92 2
3rd 21,780 0.90 20 0.91 3
4th 29,662 0.90 25 0.91 4

Table 10. The mAP results of YOLOv5 and DeepLabv3+ by data collection period for B2.

Data
Collection

Training
Data Sets

YOLOv5 DeepLabv3+

mAP Training
Time (min) mAP Training

Time (h)

1st 14,418 0.91 15 0.94 2
2nd 28,094 0.92 20 0.96 4
3rd 42,437 0.93 30 0.96 5
4th 53,943 0.93 40 0.95 6
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In the case of B3, in Table 11, the mAP value was low at the beginning of data collection
because it was mixed with native plants. However, the mAP value increased through time
series data. Therefore, the reading rate of farmland along the river can be improved through
the diversity of training data.

Table 11. The mAP results of YOLOv5 and DeepLabv3+ by data collection period for B3.

Data
Collection

Training
Data Sets

YOLOv5 DeepLabv3+

mAP Training
Time (min) mAP Training

Time (h)

1st 2571 0.81 5 0.86 0.33
2nd 5449 0.84 8 0.88 0.67
3rd 7783 0.85 10 0.90 1
4th 12,394 0.86 15 0.90 2

4. Discussion

To efficiently classify the cropland in a reservoir area, Kim et al. [43] used the Gray
Level Co-occurrence Matrix (GLCM), which is a representative technique used for quan-
tifying texture information, along with Normalized Difference Water Index (NDWI) and
Normalized Difference Vegetation Index (NDVI), as additional features during the classi-
fication process. They analyzed the use of texture information according to window size
for generating GLCM and proposed a methodology for detecting croplands in the studied
reservoir area.

In this study, learning data was constructed to find illegal farming activities along
the river. As a result, illegal cultivation patterns were identified along the riverside. A
large amount of training data was used to exceed the target mAP value. Also, in the case
of YOLOv5, which is not suitable for annotation data with polygons, it was a satisfactory
achievement to obtain results close to DeepLabv3+. In order to find illegal farming, a large
amount of learning data and a high success rate are required. However, it was not analyzed
by applying various algorithms, and the analysis of various illegal activities on land other
than arable land was not made. Therefore, in the future, we plan to develop learning data
on the illegal behaviors of various waste accumulation patterns and conduct research to
discover appropriate algorithms by applying various learning algorithms.

5. Conclusions

For cultivated land, the shape differs depending on the crop growth period. Therefore,
if the data used is only from a certain moment, then the quality of learning can deteriorate.
When filming target sites with a drone, the shape or size may differ depending on the
altitude and angle. Therefore, a variety of time series learning data are required. Given
that cultivated land generally comprises only crops, it is only necessary to pay attention to
the crop growth condition. However, in the case of rivers, various plants other than crops
grow. Therefore, it is necessary to identify the characteristics of crops and then train the
relevant data. To identify these characteristics, a substantial amount of learning data was
collected by acquiring drone-based images at different altitudes, directions, and angles.

The YOLOv5 algorithm uses a bounding box as a basis, and in the case of DeepLabv3+,
an object is annotated with a polygon. Therefore, a direct comparison cannot be made.
However, in this study, we converted a polygon to a bounding box to use the YOLOv5
algorithm. As a result of the training data after annotating cultivated land with an irregular
shape, the mAP@0.5 values were 0.91 for YOLOv5 and 0.96 for DeepLabv3+. The learning
result using the YOLOv5 algorithm was confirmed to be similar to that using DeepLabv3+.
Both algorithms obtained values exceeding the target of 0.85. By comparing these two
algorithms using the time series learning data for cultivated land along a river, illegal
farming activities could potentially be detected along the riversides. Illegal cultivation
patterns along the riverside were identified. It was confirmed that there were various acts of
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accumulating waste (other than tillage) along the riverside without permission. Therefore,
in future, we plan to develop learning data for various patterns of waste accumulation
and conduct research to identify an appropriate algorithm by applying various additional
learning algorithms.
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