Differences in Clinical Tests for Assessing Lateral Epicondylitis Elbow in Adults Concerning Their Physical Activity Level: Test Reliability, Accuracy of Ultrasound Imaging, and Relationship with Energy Expenditure
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shillito, M.; Soong, M.; Martin, N. Radiographic and clinical analysis of lateral epicondylitis. J. Hand Surg. 2017, 42, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.; Butler, S.; Eriksson, M.; Svärdsudd, K. A randomized contolled trial of exercise versus wait-list in chronic tennis elbow. Ups. J. Med. Sci. 2011, 116, 269–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brummel, J.; Baker, C.L.; Hopkins, R.; Baker, C.L., Jr. Epicondylitis: Lateral. Sport. Med. Arthrosc. Rev. 2014, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wassen, M.; Nuhmani, S.; Ram, C.S.; Sachin, Y. Lateral epicondylitis: A review of the literature. J. Back Musculoskelet. Rehabil. 2012, 25, 131–142. [Google Scholar]
- Muller, A.; Spies, C.K.; Unglaub, F.; Bruckner, T.; Potzl, W. Chronic lateral epicondylitis: The Nirschl procedure. Oper. Orthop. Traumatol. 2015, 27, 525–535. [Google Scholar]
- Vaquero-Picado, A.; Barco, R.; Antuña, S.A. Lateral epicondylitis of the elbow. EFORT Open Rev. 2017, 1, 391–397. [Google Scholar] [CrossRef]
- Nirschl, R.P.; Ashman, E.S. Tennis elbow tendinosis (epicondylitis). Instr. Course Lect. 2004, 53, 587–598. [Google Scholar]
- De Smedt, T.; de Jong, A.; Van Leemput, W.; Lieven, D.; Van Glabbeek, F. Lateral epicondylitis in tennis: Update on aetiology, biomechanics and treatment. Br. J. Sport. Med. 2007, 41, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Gruchow, H.W.; Pelletier, D.W. An epidemiologic study of tennis elbow. Am. J. Sport. Med. 1979, 7, 234–238. [Google Scholar] [CrossRef]
- Fan, Z.J.; Silverstein, B.A.; Bao, S.; Bonauto, D.K.; Howard, N.L.; Smith, C.K. The association between combination of hand force and forearm posture and incidence of lateral epicondylitis in a working population. Hum. Factors 2014, 56, 151–165. [Google Scholar] [CrossRef]
- Sayampanathan, A.A.; Basha, M.; Mitra, A.K. Risk factors of lateral epicondylitis: A meta-analysis. Surgeon 2019, 18, 122–128. [Google Scholar] [CrossRef]
- Descatha, A.; Dale, A.M.; Jaegers, L.; Herquelot, E.; Evanoff, B. Self-reported physical exposure association with medial and lateral epicondylitis incidence in a large longitudinal study. Occup. Environ. Med. 2013, 70, 670–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haahr, J.P.; Andersen, J.H. Prognostic factors in lateral epicondylitis: A randomized trial with one-year follow-up in 266 new cases treated with minimal occupational intervention or the usual approach in general practice. Rheumatology 2003, 42, 1216–1225. [Google Scholar] [CrossRef]
- Duncan, J.; Duncan, R.; Bansal, S.; Davenport, D.; Hacker, A. Lateral epicondylitis: The condition and current management strategies. Br. J. Hosp. Med. 2019, 80, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Siddiqui, N.; Malik, S.S.; Abdus-Samee, M.; Tytherleigh-Strong, G.; Rushton, N. Lateral epicondylitis: A review of pathology and management. Bone Jt. J. 2013, 95, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Boyer, M.I.; Hastings, H. Lateral tennis elbow: “Is there any science out there?”. J. Shoulder Elb. Surg. 1999, 8, 481–491. [Google Scholar] [CrossRef] [PubMed]
- MacDermid, J.C.; Michlovitz, S.L. Examination of the elbow: Linking diagnosis, prognosis, and outcomes as a framework for maximizing therapy intervention. J. Hand Ther. 2006, 19, 82–97. [Google Scholar] [CrossRef]
- Valdes, K.; LaStayo, P. The value of provocative tests for the wrist and elbow: A literature review. J. Hand Ther. 2013, 26, 32–43. [Google Scholar] [CrossRef]
- Zwerus, E.L.; Somford, M.P.; Maissan, F.; Heisen, J.; Eygendaal, D.; van den Bekerom, M.P. Physical examination of the elbow, what is the evidence? A systematic literature review. Br. J. Sport. Med. 2018, 52, 1253–1260. [Google Scholar] [CrossRef]
- Baeza, E.V.; Alonso, J.J.R.; Fuentes, A.T. Diagnóstico y tratamiento de la epicondilitis en atención primaria. FMC 2008, 15, 314–321. [Google Scholar]
- Sellards, R.; Kuebrich, C. The elbow: Diagnosis and treatment of common injuries. Prim. Care. 2005, 32, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Saroja, G.; Asser, P.A.L.; Venkata Sai, P.M. Diagnostic accuracy of provocative tests in lateral epicondylitis. Int. J. Physiother. Res. 2014, 2, 815–823. [Google Scholar] [CrossRef]
- Connell, D.; Burke, F.; Coombes, P.; McNealy, S.; Freeman, D.; Pryde, D.; Hoy, G. Sonographic examination of lateral epicondylitis. AJR Am. J. Roentgenol. 2001, 176, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.T.; Shapiro, M.A.; Schultz, E.; Kalish, P.E. Comparison of sonography and MRI for diagnosing epicondylitis. J. Clin. Ultrasound. 2002, 30, 193–202. [Google Scholar] [CrossRef]
- Garg, A.; Kapellusch, J.M.; Hegmann, K.T.; These, M.S.; Merryweather, A.S.; Wang, Y.C.; Malloy, E.J. The strain index and TLV for HAL: Risk of lateral epicondylitis in a prospective cohort. Am. J. Ind. Med. 2014, 57, 286–302. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C. Measuring pain—Visual analog scale versus numeric pain scale: What is the difference? J. Chiropr. Med. 2005, 4, 43–44. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.; Motta Filho, G.R. Elbow lateral epicondylitis. Rev. Bras. Ortop. 2012, 47, 414–420. [Google Scholar] [CrossRef]
- Ma, K.L.; Wang, H.Q. Management of lateral epicondylitis: A narrative literature review. Pain Res. Manag. 2020, 2020, 6965381. [Google Scholar] [CrossRef]
- Nirschl, R.P. Elbow tendinosis/tennis elbow. Clin. Sport. Med. 1992, 11, 851–870. [Google Scholar] [CrossRef]
- Tosti, R.; Jennings, J.; Sewards, J.M. Lateral epicondylitis of the elbow. Am. J. Med. 2013, 126, 357. [Google Scholar] [CrossRef] [PubMed]
- Dones, V.C.; Grimmer, K.; Thoirs, K.; Suarez, C.G.; Luker, J. The diagnostic validity of musculoskeletal ultrasound in lateral epicondylalgia: A systematic review. BMC Med. Imaging 2014, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lew, H.L.; Chen, C.P.; Wang, T.G.; Chew, K.T. Introduction to musculoskeletal diagnostic ultrasound: Examination of the upper limb. Am. J. Phys. Med. Rehabil. 2007, 86, 310–321. [Google Scholar] [CrossRef]
- Valera-Garrido, F.; Minaya-Muñoz, F.; Medina-Mirapeix, F. Ultrasound-guided percutaneous needle electrolysis in chronic lateral epicondylitis: Short-term and long-term results. Acupunct. Med. 2014, 32, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Landesa-Piñeiro, L.; Leirós-Rodríguez, R. Physiotherapy treatment of lateral epicondylitis: A systematic review. J. Back. Musculoskelet Rehabil. 2022, 35, 463–477. [Google Scholar] [CrossRef]
- Lenoir, H.; Mares, O.; Carlier, Y. Management of lateral epicondylitis. Orthop Traumatol Surg Res. 2019, 105, S241–S246. [Google Scholar] [CrossRef]
- Herquelot, E.; Guéguen, A.; Roquelaure, Y.; Bodin, J.; Sérazin, C.; Ha, C.; Leclerc, A.; Goldberg, M.; Zins, M.; Descatha, A. Work-related risk factors for incidence of lateral epicondylitis in a large working population. Scand. J. Work Environ. Health 2013, 39, 578–588. [Google Scholar] [CrossRef] [Green Version]
- Kemp, V.L.; Piber, L.S.; Ribeiro, A.P. Can physical activity levels and relationships with energy expenditure change the clinical aspects of sarcopenia and perceptions of falls among elderly women? Observational cross-sectional study. Sao Paulo Med. J. 2021, 139, 285–292. [Google Scholar] [CrossRef]
- Edwards, M.; Loprinzi, P. Systemic inflammation as a function of the individual and combined associations of sedentary behaviour, physical activity and cardiorespiratory fitness. Clin. Physiol. Funct. Imaging 2018, 38, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Nimmo, M.A.; Leggate, M.; Viana, J.L.; King, J.A. The effect of physical activity on mediators of inflammation. Diabetes Obes. Metab. 2013, 15, 51–60. [Google Scholar] [CrossRef]
- Parsons, T.J.; Sartini, C.; Welsh, P.; Sattar, N.; Ash, S.; Lennon, L.T.; Wannamethee, S.G.; Lee, I.M.; Whincup, P.H.; Jefferis, B.J. Physical activity, sedentary behavior, and inflammatory and hemostatic markers in men. Med. Sci. Sport. Exerc. 2017, 49, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, C.M.; Dillon, C.B.; Perry, I.J. Does replacing sedentary behaviour with light or moderate to vigorous physical activity modulate inflammatory status in adults? Int. J. Behav. Nutr. Phys. Act. 2017, 14, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karanasios, S.; Korakakis, V.; Moutzouri, M.; Drakonaki, E.; Koci, K.; Pantazopoulou, V.; Tsepis, E.; Gioftsos, G. Diagnostic accuracy of examination tests for lateral elbow tendinopathy (LET)—A systematic review. J. Hand Ther. 2021, 35, 3. [Google Scholar] [CrossRef]
- Ikeda, K.; Ogawa, T.; Ikumi, A.; Yoshii, Y.; Kohyama, S.; Ikeda, R.; Yamazaki, M. Individual evaluation of the common extensor tendon and lateral collateral ligament improves the severity diagnostic accuracy of magnetic resonance imaging for lateral epicondylitis. Diagnostics 2022, 12, 1871. [Google Scholar] [CrossRef] [PubMed]
Variables (Anthropometric and Clinical) | Low PA (n = 19) | Moderate PA (n = 42) | High PA (n = 41) | p |
---|---|---|---|---|
Age (years) | 47.1 ± 7.3 | 45.1 ± 8.6 | 45.9 ± 8.1 | 0.779 |
Height (m) | 1.6 ± 0.6 | 1.6 ± 0.8 | 1.6 ± 0.9 | 0.530 |
Body mass (kg) | 71.6 ± 14.8 | 74.7 ± 17.6 | 75.1 ± 12.5 | 0.123 |
Body Mass Index (kg/m2) | 22.1 ± 4.0 | 22.9 ± 5.1 | 22.6 ± 3.5 | 0.739 |
Gender (F/M) | 15 (F) 4 (M) | 30 (F) 12 (M) | 24 (F) 17 (M) | 0.286 |
Disease time (years) | 7.3 ± 4.9 | 8.0 ± 5.3 | 9.4 ± 5.6 | 0.188 |
PA practice time (months) | 20.4 ± 9.7 | 25.5 ± 9.8 | 41.0 ± 9.3 | 0.010 * |
Clinical Tests | Low PA | Moderate PA | High PA |
---|---|---|---|
Cozen (cm) | 5.9 ± 2.5 | 6.5 ± 2.2 | 6.3 ± 2.6 |
Mill (cm) | 8.2 ± 1.5 | 8.3 ± 1.4 | 7.7 ± 1.8 |
p | 0.002 * | <0.001 | <0.001 |
Physical Activity Level (PA) | Cozen (cm) | Mill (cm) | ICC | SEM | IC 95% | p |
---|---|---|---|---|---|---|
Low PA | 5.9 ± 2.5 | 8.2 ± 1.5 | 0.14 | 0.64 | 0.12/0.17 | 0.037 |
Moderate PA | 6.5 ± 2.2 | 8.3 ± 1.4 | 0.48 | 0.38 | 0.22/0.58 | <0.001 * |
High PA | 6.3 ± 2.6 | 7.7 ± 1.8 | 0.44 | 0.44 | 0.39/0.69 | 0.024 |
Ultrasound Examination Lateral Epicondylitis | Physical Activity Level (PA) | Cozen’s Test (n/%) | Mill’s Test (n/%) |
---|---|---|---|
Positive ultrasound | Low | 15/78% | 19/100% |
Negative ultrasound | 04/21% | 0.0/0.0% | |
Kappa * | 0.80 | 1.0 | |
p value | 0.042 | 0.997 | |
Bland–Altman * | 0.17 | 0.0 | |
Positive ultrasound | Moderate | 36/85.7% | 38/90,4% |
Negative ultrasound | 06/14.2% | 04/21% | |
Kappa * | 0.74 | 0.82 | |
p value | 0.037 | 0.235 | |
Bland–Altman * | 0.14 | 0.11 | |
Positive ultrasound | High | 35/85.3% | 40/97.5% |
Negative ultrasound | 06/14.6% | 1/0.0% | |
Kappa * | 0.73 | 0.99 | |
p value | 0.012 | 0.323 | |
Bland–Altman * | 0.14 | 0.02 |
Physical Activity Level (PA) | Pain Cozen (cm) | R | R2 | T | p * |
---|---|---|---|---|---|
Low PA (MET/s) | 5.9 ± 2.5 | 0.32 | 0.10 | −0.95 | 0.354 |
Moderate PA (MET/s) | 6.5 ± 2.2 | 0.18 | 0.03 | 1.12 | 0.268 |
High PA (MET/s) | 6.3 ± 2.6 | 0.21 | 0.04 | −0.05 | 0.962 |
Pain Mill (cm) | R | R2 | T | p | |
Low PA (MET/s) | 8.2 ± 1.5 | 0.31 | 0.10 | −0.92 | 0.371 |
Moderate PA (MET/s) | 8.3 ± 1.4 | 0.02 | 0.01 | −0.07 | 0.932 |
High PA (MET/s) | 7.7 ± 1.8 | 0.26 | 0.07 | −0.89 | 0.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, M.M.; Souza, P.C.; Ribeiro, A.P. Differences in Clinical Tests for Assessing Lateral Epicondylitis Elbow in Adults Concerning Their Physical Activity Level: Test Reliability, Accuracy of Ultrasound Imaging, and Relationship with Energy Expenditure. Int. J. Environ. Res. Public Health 2023, 20, 1794. https://doi.org/10.3390/ijerph20031794
Soares MM, Souza PC, Ribeiro AP. Differences in Clinical Tests for Assessing Lateral Epicondylitis Elbow in Adults Concerning Their Physical Activity Level: Test Reliability, Accuracy of Ultrasound Imaging, and Relationship with Energy Expenditure. International Journal of Environmental Research and Public Health. 2023; 20(3):1794. https://doi.org/10.3390/ijerph20031794
Chicago/Turabian StyleSoares, Marcos Martins, Patrícia Colombo Souza, and Ana Paula Ribeiro. 2023. "Differences in Clinical Tests for Assessing Lateral Epicondylitis Elbow in Adults Concerning Their Physical Activity Level: Test Reliability, Accuracy of Ultrasound Imaging, and Relationship with Energy Expenditure" International Journal of Environmental Research and Public Health 20, no. 3: 1794. https://doi.org/10.3390/ijerph20031794
APA StyleSoares, M. M., Souza, P. C., & Ribeiro, A. P. (2023). Differences in Clinical Tests for Assessing Lateral Epicondylitis Elbow in Adults Concerning Their Physical Activity Level: Test Reliability, Accuracy of Ultrasound Imaging, and Relationship with Energy Expenditure. International Journal of Environmental Research and Public Health, 20(3), 1794. https://doi.org/10.3390/ijerph20031794