Understanding the Relationships between Landscape Eco-Security and Multifunctionality in Cropland: Implications for Supporting Cropland Management Decisions
Abstract
:1. Introduction
2. Study Area, Data Sources, and Framework
2.1. Study Area
2.2. Data Sources
2.3. Research Framework
3. Methods
3.1. Constructing the CLES Index
3.2. Assessment of Cropland Functions
3.3. Identification of Cropland Multifunctionality
3.4. Coupling Coordination Analysis of CLES and CM
3.5. Geodetector
4. Results
4.1. Spatial and Temporal Evolution Characteristics of CLES in Karst Trough Valley Area
4.2. Temporal Evolution and Spatial Distribution of CM
4.3. Coupling Coordination Degree of the CLES and CM
4.4. Factor Detection Analysis
5. Discussion
5.1. The Evolution of CLES with CM of Multiple Types
5.2. Taking Regional Variability and Multiple Factors into Account in Cropland Landscape Management
5.3. Contributions and Policy Implications
5.4. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Assessment of Cropland Functions
Appendix A.1. Soil Retention
Appendix A.2. Habitat Quality
Appendix A.3. Habitat Connection
Appendix A.4. Grain Supply
Appendix A.5. Population-Carrying Capacity
Appendix A.6. Landscape Aesthetics
Appendix A.7. Data Standardization
Appendix B. Geostatistical Trend Analysis
Appendix B.1. Geostatistical Trend Analysis
Appendix C. The Spatial Distributions of 16 Influencing Factors in the Study Area
Appendix D. Abbreviation List
Glossary Name | Abbreviation |
---|---|
Annual average temperature | TEM |
Annual average precipitation | PRE |
Anticlinorium Folds | AF |
Cropland landscape ecological security | CLES |
Cropland multifunctionality | CM |
Cropland coupling coordination degree | CCCD |
Distance to country location | DTCL |
Distance to main highways | DTMH |
Distance to main railways | DTMR |
Distance to rivers | DTR |
Elevation | DEM |
Ejective Folds | EF |
Gross national product | GDP |
Grain Supply | GS |
Hydrothermal vegetation Conditions | HVC |
Habitat Quality | HQ |
Habitat Connection | HC |
Landscape Aesthetics | LA |
Natural background | NB |
Normalized difference vegetation index | NDVI |
Neighborhood enrichment | NE |
Night lights | NL |
Production Neighborhood environment | PNE |
Population Carrying | PC |
Slope | SL |
Soil Retention | SR |
Soil type | ST |
Soil organic matter | SOM |
Soil erosion intensity | SEI |
Socio-economic environment | SE |
Tight Folds | TF |
Trough-Like Folds | TLF |
Topographic relief | TR |
References
- Ma, L.; Long, H.; Tu, S.; Zhang, Y.; Zheng, Y. Farmland transition in China and its policy implications. Land Use Policy 2020, 92, 104470. [Google Scholar] [CrossRef]
- Song, B.; Robinson, G.M. Multifunctional agriculture: Policies and implementation in China. Geography Compass 2020, 14, e12538. [Google Scholar] [CrossRef]
- Marshall, E.; Moonen, A. Field margins in northern Europe: Their functions and interactions with agriculture. Agric. Ecosyst. Environ. 2002, 89, 5–21. [Google Scholar] [CrossRef]
- Granvik, M.; Lindberg, G.; Stigzelius, K.-A.; Fahlbeck, E.; Surry, Y. Prospects of multifunctional agriculture as a facilitator of sustainable rural development: Swedish experience of Pillar 2 of the Common Agricultural Policy (CAP). Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2012, 66, 155–166. [Google Scholar] [CrossRef]
- Tanentzap, A.J.; Lamb, A.; Walker, S.; Farmer, A. Resolving conflicts between agriculture and the natural environment. PLoS Biol. 2015, 13, e1002242. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, J.; Yang, Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
- Teferra, T.F. The cost of postharvest losses in Ethiopia: Economic and food security implications. Heliyon 2022, 8, e09077. [Google Scholar] [CrossRef]
- Amjath-Babu, T.; Kaechele, H. Agricultural system transitions in selected Indian states: What do the related indicators say about the underlying biodiversity changes and economic trade-offs? Ecol. Indic. 2015, 57, 171–181. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y.; Ran, C.; Li, M.; Zhang, H. Study on the transformed farmland landscape in rural areas of southwest China: A case study of Chongqing. J. Rural. Stud. 2020, 76, 272–285. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, F. Correlation between land use spatial and functional transition: A case study of Shaanxi Province, China. Land Use Policy 2022, 119, 106194. [Google Scholar] [CrossRef]
- Wezel, A.; Soboksa, G.; McClelland, S.; Delespesse, F.; Boissau, A. The blurred boundaries of ecological, sustainable, and agroecological intensification: A review. Agron. Sustain. Dev. 2015, 35, 1283–1295. [Google Scholar] [CrossRef]
- Renwick, A.; Jansson, T.; Verburg, P.H.; Revoredo-Giha, C.; Britz, W.; Gocht, A.; McCracken, D. Policy reform and agricultural land abandonment in the EU. Land Use Policy 2013, 30, 446–457. [Google Scholar] [CrossRef]
- Jiang, P.; Li, M.; Sheng, Y. Spatial regulation design of farmland landscape around cities in China: A case study of Changzhou City. Cities 2020, 97, 102504. [Google Scholar] [CrossRef]
- Déjeant-Pons, M. The European landscape convention. Landsc. Res. 2006, 31, 363–384. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Jiao, X.-Q.; Mongol, N.; Zhang, F.-S. The transformation of agriculture in China: Looking back and looking forward. J. Integr. Agric. 2018, 17, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Ahern, J.; Yeh, C.-T. Ecosystem services in peri-urban landscapes: The effects of agricultural landscape change on ecosystem services in Taiwan’s western coastal plain. Landsc. Urban Plan. 2015, 139, 137–148. [Google Scholar] [CrossRef]
- Li, P.; Chen, Y.; Hu, W.; Li, X.; Yu, Z.; Liu, Y. Possibilities and requirements for introducing agri-environment measures in land consolidation projects in China, evidence from ecosystem services and farmers’ attitudes. Sci. Total Environ. 2019, 650, 3145–3155. [Google Scholar] [CrossRef]
- Cai, H.; Ma, K.; Luo, Y. Geographical Modeling of Spatial Interaction between Built-Up Land Sprawl and Cultivated Landscape Eco-Security under Urbanization Gradient. Sustainability 2019, 11, 5513. [Google Scholar] [CrossRef]
- Müller, D.; Leitão, P.J.; Sikor, T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agric. Syst. 2013, 117, 66–77. [Google Scholar] [CrossRef]
- Zheng, Y.; Long, H.; Chen, K. Spatio-temporal patterns and driving mechanism of farmland fragmentation in the Huang-Huai-Hai Plain. J. Geogr. Sci. 2022, 32, 1020–1038. [Google Scholar] [CrossRef]
- Aspinall, R.; Staiano, M. Ecosystem services as the products of land system dynamics: Lessons from a longitudinal study of coupled human–environment systems. Landsc. Ecol. 2019, 34, 1503–1524. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Cheng, W.; Wang, N.; Liu, Q.; Ma, T.; Chen, Y.; Zhou, C. Spatio-temporal distribution and transformation of cropland in geomorphologic regions of China during 1990–2015. J. Geogr. Sci. 2019, 29, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Baude, M.; Meyer, B.C.; Schindewolf, M. Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Sci. Total Environ. 2019, 659, 1526–1536. [Google Scholar] [CrossRef]
- Huber, L.; Schirpke, U.; Marsoner, T.; Tasser, E.; Leitinger, G. Does socioeconomic diversification enhance multifunctionality of mountain landscapes? Ecosyst. Serv. 2020, 44, 101122. [Google Scholar] [CrossRef]
- Hölting, L.; Beckmann, M.; Volk, M.; Cord, A.F. Multifunctionality assessments–More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecol. Indic. 2019, 103, 226–235. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.; Li, X.; Zhang, C.; Qian, C.; Li, J.; Zhang, A. Why are the Longji Terraces in Southwest China maintained well? A conservation mechanism for agricultural landscapes based on agricultural multi-functions developed by multi-stakeholders. Land Use Policy 2019, 85, 42–51. [Google Scholar] [CrossRef]
- Legaz, B.V.; De Souza, D.M.; Teixeira, R.; Antón, A.; Putman, B.; Sala, S. Soil quality, properties, and functions in life cycle assessment: An evaluation of models. J. Clean. Prod. 2017, 140, 502–515. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, M.; Qu, Y.; Zhou, D.; Ma, W. Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework. Land Use Policy 2020, 99, 104982. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Liu, Z.; Yang, Y. Mapping spatial non-stationarity of human-natural factors associated with agricultural landscape multifunctionality in Beijing–Tianjin–Hebei region, China. Agric. Ecosyst. Environ. 2017, 246, 221–233. [Google Scholar] [CrossRef]
- Rallings, A.M.; Smukler, S.M.; Gergel, S.E.; Mullinix, K. Towards multifunctional land use in an agricultural landscape: A trade-off and synergy analysis in the Lower Fraser Valley, Canada. Landsc. Urban Plan. 2019, 184, 88–100. [Google Scholar] [CrossRef]
- Qian, F.; Chi, Y.; Lal, R. Spatiotemporal characteristics analysis of multifunctional cultivated land: A case-study in Shenyang, Northeast China. Land Degrad. Dev. 2020, 31, 1812–1822. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, W.; Li, M.; Guo, Z.; Wang, L.; Wu, L. Multiscale research on spatial supply-demand mismatches and synergic strategies of multifunctional cultivated land. J. Environ. Manag. 2021, 299, 113605. [Google Scholar] [CrossRef]
- Liang, Y.; Song, W. Integrating potential ecosystem services losses into ecological risk assessment of land use changes: A case study on the Qinghai-Tibet Plateau. J. Environ. Manag. 2022, 318, 115607. [Google Scholar] [CrossRef]
- Wei, L.; Luo, Y.; Wang, M.; Su, S.; Pi, J.; Li, G. Essential fragmentation metrics for agricultural policies: Linking landscape pattern, ecosystem service and land use management in urbanizing China. Agric. Syst. 2020, 182, 102833. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, X.; Yang, J.; Yuan, J.; Zhang, Z. Linking landscape pattern, ecosystem service value, and human well-being in Xishuangbanna, southwest China: Insights from a coupling coordination model. Glob. Ecol. Conserv. 2021, 27, e01583. [Google Scholar] [CrossRef]
- Zang, Z.; Zou, X.; Zuo, P.; Song, Q.; Wang, C.; Wang, J. Impact of landscape patterns on ecological vulnerability and ecosystem service values: An empirical analysis of Yancheng Nature Reserve in China. Ecol. Indic. 2017, 72, 142–152. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Coupling Coordination Analysis and Prediction of Landscape Ecological Risks and Ecosystem Services in the Min River Basin. Land 2022, 11, 222. [Google Scholar] [CrossRef]
- Song, W.; Zhang, H.; Zhao, R.; Wu, K.; Li, X.; Niu, B.; Li, J. Study on cultivated land quality evaluation from the perspective of farmland ecosystems. Ecol. Indic. 2022, 139, 108959. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, Z.; Wu, X.; Xiang, X.; Sun, W.; Bai, Q.; Zhou, Y. Co-ordination of land exploitation, exploitable farmland reserves and national planning in China. Land Use Policy 2016, 57, 682–693. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Yang, X.; Xu, W.; Lin, J.; Zhou, Y. Exploring cultivated land evolution in mountainous areas of Southwest China, an empirical study of developments since the 1980s. Land Degrad. Dev. 2021, 32, 546–558. [Google Scholar] [CrossRef]
- Qiu, S.; Peng, J.; Zheng, H.; Xu, Z.; Meersmans, J. How can massive ecological restoration programs interplay with social-ecological systems? A review of research in the South China karst region. Sci. Total Environ. 2022, 807, 150723. [Google Scholar] [CrossRef]
- Uchida, E.; Xu, J.; Rozelle, S. Grain for green: Cost-effectiveness and sustainability of China’s conservation set-aside program. Land Econ. 2005, 81, 247–264. [Google Scholar] [CrossRef]
- Brandt, M.; Yue, Y.; Wigneron, J.P.; Tong, X.; Tian, F.; Jepsen, M.R.; Xiao, X.; Verger, A.; Mialon, A.; Al-Yaari, A. Satellite-observed major greening and biomass increase in south China karst during recent decade. Earth’s Future 2018, 6, 1017–1028. [Google Scholar] [CrossRef]
- Qiao, Y.; Jiang, Y.; Zhang, C. Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecol. Indic. 2021, 121, 107081. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Wang, Y. Spatiotemporal evolution of cultivated land non-agriculturalization and its drivers in typical areas of southwest China from 2000 to 2020. Remote Sens. 2022, 14, 3211. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Hou, D.; Meng, F.; Prishchepov, A.V. How is urbanization shaping agricultural land-use? Unraveling the nexus between farmland abandonment and urbanization in China. Landsc. Urban Plan. 2021, 214, 104170. [Google Scholar] [CrossRef]
- Wang, L.; Anna, H.; Zhang, L.; Xiao, Y.; Wang, Y.; Xiao, Y.; Liu, J.; Ouyang, Z. Spatial and temporal changes of arable land driven by urbanization and ecological restoration in China. Chin. Geogr. Sci. 2019, 29, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Riechers, M.; Loos, J.; Martin-Lopez, B.; Temperton, V.M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. 2021, 36, 20–28. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Jiang, J.; Chen, L.; Hu, W.; Jiang, Y. Elaborate simulation and predication of the tunnel drainage effect on karst groundwater field and discharge based on Visual MODFLOW. J. Hydrol. 2022, 612, 128023. [Google Scholar] [CrossRef]
- Lv, Y.; Jiang, Y.; Wang, Z.; Hu, W. Review on the hydrology and the ecological and environmental effects of tunnel construction in the karst valley of Southwest China. Acta Ecol. Sin. 2020, 40, 1851–1864. [Google Scholar]
- Lv, Y. Variation and Control Mechanism of the Groundwater Flow Field Caused by Tunnel Excavation in Typical Karst trough Valley in Southwest China; Southwest University: Chongqing, China, 2022. [Google Scholar]
- Pei, H.; Wei, Y.; Wang, X.; Qin, Z.; Hou, C. Method of cultivated land landscape ecological security evaluation and its application. Trans. Chin. Soc. Agric. Eng. 2014, 30, 212–219. [Google Scholar]
- Peng, W.; Shu, Y. Analysis of landscape ecological security and cultivated land evolution in the Karst mountain area. Acta Ecol. Sinc 2018, 38, 852–865. [Google Scholar]
- Hu, Z.; Wang, S.; Bai, X.; Luo, G.; Li, Q.; Wu, L.; Yang, Y.; Tian, S.; Li, C.; Deng, Y. Changes in ecosystem service values in karst areas of China. Agric. Ecosyst. Environ. 2020, 301, 107026. [Google Scholar] [CrossRef]
- Hermann, A.; Kuttner, M.; Hainz-Renetzeder, C.; Konkoly-Gyuró, É.; Tirászi, Á.; Brandenburg, C.; Allex, B.; Ziener, K.; Wrbka, T. Assessment framework for landscape services in European cultural landscapes: An Austrian Hungarian case study. Ecol. Indic. 2014, 37, 229–240. [Google Scholar] [CrossRef]
- Wu, W.; Peng, J.; Liu, Y.; Hu, Y. Tradeoffs and synergies between ecosystem services in Ordos City. Prog. Geogr. 2017, 36, 1571–1581. [Google Scholar]
- Scherr, S.J.; McNeely, J.A. Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘ecoagriculture’landscapes. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 477–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity is a vital element of landscape structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef]
- Crist, M.R.; Wilmer, B.; Aplet, G.H. Assessing the value of roadless areas in a conservation reserve strategy: Biodiversity and landscape connectivity in the northern Rockies. J. Appl. Ecol. 2005, 42, 181–191. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, H.; Xu, W.; Zhang, L.; Ouyang, Z. Temporal changes in multiple ecosystem services and their bundles responding to urbanization and ecological restoration in the Beijing–Tianjin–Hebei Metropolitan Area. Sustainability 2019, 11, 2079. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, W.; Shang, L. Spatial and temporal pattern of cultivated land productivity in Shandong province from 2000 to 2015. J. China Agric. Univ. 2020, 25, 128–138. [Google Scholar]
- Larson, K.L.; Nelson, K.C.; Samples, S.; Hall, S.J.; Bettez, N.; Cavender-Bares, J.; Groffman, P.M.; Grove, M.; Heffernan, J.B.; Hobbie, S.E. Ecosystem services in managing residential landscapes: Priorities, value dimensions, and cross-regional patterns. Urban Ecosyst. 2016, 19, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Liu, Z.; Liu, Y.; Chen, X.; Zhao, H. Assessment of farmland landscape multifunctionality at country level in Beijing Tianjin-Hebei area. Acta Ecol. Sin. 2016, 36, 2274–2285. [Google Scholar]
- Wang, Y.; Wang, S.; Zhang, X.; Xu, M. Research progress of landscape aesthetics from the perspective of ecosystem service. Ecol. Sci. 2022, 41, 262. [Google Scholar]
- Du, T. Spatial-Temporal Pattern and Zoning of Cultivated Land Functions in Shandong Province; Shandong Agricultural University: Shandong, China, 2019. [Google Scholar]
- Wu, J. Landscape of Culture and Culture of Landscape: Does Landscape Ecology Need Culture? Landsc. Ecol. 2010, 25, 1147–1150. [Google Scholar] [CrossRef]
- Willemen, L.; Hein, L.; van Mensvoort, M.E.; Verburg, P.H. Space for people, plants, and livestock? Quantifying interactions among multiple landscape functions in a Dutch rural region. Ecol. Indic. 2010, 10, 62–73. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Dong, S. Ecological Security Assessment of Yuan River Watershed Based on Landscape Pattern and Soil Erosion. Procedia Environ. Sci. 2010, 2, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Wu, K.; Yun, W.; Wei, H.; Liu, L.; Song, Y.; Gao, X. Analysis on temporal and spatial variation of landscape ecological security in modern agricultural area. Trans. Chin. Soc. Agric. Eng. 2016, 32, 253–259. [Google Scholar]
- Lindemann-Matthies, P.; Briegel, R.; Schüpbach, B.; Junge, X. Aesthetic preference for a Swiss alpine landscape: The impact of different agricultural land-use with different biodiversity. Landsc. Urban Plan. 2010, 98, 99–109. [Google Scholar] [CrossRef]
- Jia, X.; Fu, B.; Feng, X.; Hou, G.; Liu, Y.; Wang, X. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecol. Indic. 2014, 43, 103–113. [Google Scholar] [CrossRef]
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Government Printing: Washington, DC, USA, 1997. [Google Scholar]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Saura, S.; Pascual-Hortal, L. Conefor Sensinode 2.2 User’s Manual: Software for Quantifying the Importance of Habitat Patches for Maintaining Landscape Connectivity through Graphs and Habitat Availability Indices; University of Lleida: Lleida, Spain, 2007. [Google Scholar]
- Miko, L.; Storch, D. Biodiversity conservation under energy limitation: Possible consequences of human productivity appropriation for species richness, ecosystem functioning, and food production. Ecosyst. Serv. 2015, 16, 146–149. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, Y.; Yang, Y.; Zhang, D. Relief degree of land surface and its influence on population distribution in China. J. Geogr. Sci. 2008, 18, 237–246. [Google Scholar] [CrossRef]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Systems and Science; John Wiley & Sons: Barcelona, Spain, 2005. [Google Scholar]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Miller, H.J.; Shaw, S.-L. Geographic Information Systems for Transportation: Principles and Applications; Oxford University Press on Demand: New York, NY, USA, 2001. [Google Scholar]
Indicator Types | Data Names and Abbreviations | Data Sources | Spatial Resolution |
---|---|---|---|
Natural background (NB) | Elevation (DEM) | Geospatial data cloud (http://www.gscloud.cn/ (accessed on 12 February 2022)) | 30 m |
Slope (SL) | Calculated from DEM data | ||
Topographic relief (TR) | |||
Hydrothermal vegetation Conditions (HVC) | Annual average precipitation (PRE) | Resource and environment data cloud platform (http://www.resdc.cn/ (accessed on 15 February 2022)) | 1 km |
Annual average temperature (TEM) | |||
Normalized difference vegetation index (NDVI) | United States Geological Survey (http://lpdaac.usgs.gov (accessed on 15 February 2022)) | ||
Production Neighborhood environment (PNE) | Neighborhood enrichment (NE) | Calculated from LULC data | 30 m |
Soil type (ST) | Harmonized World Soil Database (http://westdc.westgis.ac.cn/ (accessed on 18 February 2022)) | 1 km | |
Soil organic matter (SOM) | |||
Soil erosion intensity (SEI) | Resource and environment science and data center (http://www.resdc.cn (accessed on 18 February 2022)) | ||
Distance to rivers (DTR) | National Earth System Science Data Center (http://www.geodata.cn (accessed on 18 February 2022)) | 1:4,000,000 | |
Socio-economic environment (SE) | Gross national product (GDP) | Resource and Environment Science and Data Center http://www.resdc.cn (accessed on 1 June 2022) | 1 km |
Distance to country location (DTCL) | National Geomatics Center of China (http://www.webmap.cn/ (accessed on 5 January 2022)) | 1:4,000,000 | |
Distance to main highways (DTMH) | |||
Distance to main railways (DTMR) | |||
Night lights (NL) | National Oceanic and Atmospheric Administration (http://www.ngdc.noaa.gov/dmsp (accessed on 18 February 2022)) | 1 km | |
- | Net Primary Production | United States Geological Survey http://www.usgs.gov/ (accessed on 15 February 2022) | 500 m |
- | LULC data | Resource and Environment Science and Data Center http://www.resdc.cn/ (accessed on 20 February 2022) | 30 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Li, Y.; Liu, X.; Huang, J.; Zhang, Y.; Xu, Q. Understanding the Relationships between Landscape Eco-Security and Multifunctionality in Cropland: Implications for Supporting Cropland Management Decisions. Int. J. Environ. Res. Public Health 2023, 20, 1938. https://doi.org/10.3390/ijerph20031938
Tang F, Li Y, Liu X, Huang J, Zhang Y, Xu Q. Understanding the Relationships between Landscape Eco-Security and Multifunctionality in Cropland: Implications for Supporting Cropland Management Decisions. International Journal of Environmental Research and Public Health. 2023; 20(3):1938. https://doi.org/10.3390/ijerph20031938
Chicago/Turabian StyleTang, Fang, Yangbing Li, Xiuming Liu, Juan Huang, Yiyi Zhang, and Qian Xu. 2023. "Understanding the Relationships between Landscape Eco-Security and Multifunctionality in Cropland: Implications for Supporting Cropland Management Decisions" International Journal of Environmental Research and Public Health 20, no. 3: 1938. https://doi.org/10.3390/ijerph20031938
APA StyleTang, F., Li, Y., Liu, X., Huang, J., Zhang, Y., & Xu, Q. (2023). Understanding the Relationships between Landscape Eco-Security and Multifunctionality in Cropland: Implications for Supporting Cropland Management Decisions. International Journal of Environmental Research and Public Health, 20(3), 1938. https://doi.org/10.3390/ijerph20031938