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Abstract: Coronavirus Disease 2019 (COVID-19) has been a global public health concern for almost
three years, and the transmission characteristics vary among different virus variants. Previous studies
have investigated the relationship between air pollutants and COVID-19 infection caused by the
original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, it is
unclear whether individuals might be more susceptible to COVID-19 due to exposure to air pollutants,
with the SARS-CoV-2 mutating faster and faster. This study aimed to explore the relationship between
air pollutants and COVID-19 infection caused by three major SARS-CoV-2 strains (the original
strain, Delta variant, and Omicron variant) in China. A generalized additive model was applied to
investigate the associations of COVID-19 infection with six air pollutants (PM2.5, PM10, SO2, CO,
NO2, and O3). A positive correlation might be indicated between air pollutants (PM2.5, PM10, and
NO2) and confirmed cases of COVID-19 caused by different SARS-CoV-2 strains. It also suggested
that the mutant variants appear to be more closely associated with air pollutants than the original
strain. This study could provide valuable insight into control strategies that limit the concentration
of air pollutants at lower levels and would better control the spread of COVID-19 even as the virus
continues to mutate.
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1. Introduction

Since December 2019, the Coronavirus Disease 2019 (COVID-19) epidemic has become
a global health concern. It has been a pandemic because of high transmission capability
of the virus, as well as high mobility and mortality for almost three years [1]. Several
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have appeared in
the past, such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (p.1), Delta (B.1.617.2), Omicron
(B.1.1.529), and other variants, which made the pandemic harder to restrain worldwide.
Delta (B.1.617.2) and Omicron (B.1.1.529) were listed as currently circulating variants of con-
cern (VOCs) by the World Health Organization (WHO) (https://www.who.int/activities/
tracking-SARS-CoV-2-variants, accessed on 15 June 2022). With the virus mutating faster
and faster, the activities and stabilities of SARS-CoV-2 in the environment and their trans-
mission and infection characteristics changed markedly. It is known that the transmissibility
of the Omicron variant increased sharply [2], with a longer duration of infectiousness and
higher rates of breakthrough infection and reinfection, resulting in it rapidly becoming
the current globally dominant variant [3]. Although the Omicron variant in many coun-
tries has replaced the Delta variant, some researchers have proposed the possibility of
recirculating the Delta variant [4] and even co-circulation in the future. Previous studies
found that the Delta variant has stronger infectivity, a shorter incubation period, and a
higher viral load [5–7]. It was reported that Delta-infected individuals had an increased
risk of hospitalization or emergency care attendance compared to individuals with the
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Omicron variant [8]. Meanwhile, the vaccine’s effectiveness might be decreased due to the
immune evasion caused by the Delta and Omicron variants [9]. Despite vaccination and
drug treatment, the pandemic has not been well controlled, and with the mutation of the
virus, the possibility of a COVID-19 outbreak still exists.

Several studies showed that there was a significant association between COVID-19
infection with the air pollution indicators all around the world, such as in China [10],
the United States [11], the United Kingdom [12], Italy [13], and Austria [14], which was
similar to other typical respiratory diseases [15,16]. It could indicate a potential risk of
air pollutants on respiratory infectious diseases, including COVID-19. Although various
studies have suggested a potential link between COVID-19 infection and exposure to
air pollutants, almost all these studies were based on the original strain of SARS-CoV-2.
However, few studies have been conducted focusing on the link between air pollutants and
infection caused by different variants of SARS-CoV-2, which might be an indispensable
part of the COVID-19 epidemiological study.

In our study, we focused on the outbreaks of COVID-19 in three cities in China. In these
three outbreaks, the dominant virus strains were different and uncontrolled transmission
occurred along with covert community transmission. Then, the strict city-wide lockdown
policy was adopted and it was exempted only when the epidemic situation was under
control. Thus, we aimed to explore the relationship between air pollutants and SARS-CoV-2
infection according to the different dominant virus variants in order to give some new sight
into COVID-19 prevention and control.

2. Materials and Methods
2.1. Study Area and Data Collection

In this study, three typical outbreaks dominated by different SARS-CoV-2 strains were
chosen, including the first outbreak generated by the original SARS-CoV-2 strain in Wuhan
in December 2019, the Delta (B.1.617.2) variant in Xi’an at the end of 2021 and Omicron
(B.1.1.529) variant in Shanghai in the spring in 2022 that dominated the second and third
outbreaks, respectively.

Over the past three years, many cities in China experienced the invasion of COVID-19.
However, these three periods have some common characteristics. First, a concentrated
outbreak occurred followed by a quick spread through the population. Then, an extremely
strict city-wide lockdown for a relatively long period was implemented. In addition,
Wuhan, Xi’an, and Shanghai are first-tier cities in China, and such extremely strict city-wide
lockdowns are rare. To control the spread of COVID-19 and protect public health, the
above-mentioned restriction policies include stay-at-home orders, traffic control, online
teaching, homeworking, and closing stores and restaurants, which greatly affected people’s
regular lives. The Chinese government will not easily allow a similar city-wide lockdown
for such a long time to ensure normal socio-economic order.

Wuhan is located in central China (Figure 1) and is a transportation hub; it is also
where the first COVID-19 confirmed case was reported publicly. On 12 February 2020,
the number of new cases in a single day reached 13,436. In order to prevent the further
spread of COVID-19, the government imposed a rare lockdown in Wuhan, which lasted
from 23 January to 8 April in 2020.



Int. J. Environ. Res. Public Health 2023, 20, 1943 3 of 17

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 3 of 17 
 

 

Shanghai is the economic and financial center of China. Similarly, in March 2022, an 

epidemic led by the Omicron variant attacked Shanghai. In a short period, the number of 

new asymptomatic infections increased dramatically, even up to 27,719 new cases on 13 

April 2022. To prevent the further spread of the epidemic, the government of Shanghai 

also implemented a lockdown policy on 28 March 2022, and the lockdown state lasted for 

more than two months to contain the transmission of SARS-CoV-2. By 1 June 2022, there 

were a total of 649,379 confirmed cases caused by the Omicron variant in Shanghai. 

 

Figure 1. The geographical distribution of the study area in China includes Wuhan, Xi’an, and 

Shanghai. 

The concentrations of air pollutants (PM2.5, PM10, NO2, SO2, CO, and O3) and daily 

COVID-19 confirmed cases in the three outbreaks of the epidemic are shown in Figure 2. 

The data on the first outbreak were collected from 16 January to 17 March in 2020 in Wu-

han, the data on the second outbreak were collected from 9 December 2021 to 15 January 

2022, in Xi’an; the data on the third outbreak were collected from 1 March to 1 June in 2022 

in Shanghai. The three phases involved in the study all implemented a lockdown policy 

when the spread of the epidemic reached an accelerated stage, on 23 January 2020, 24 

December 2021, and 28 March 2022, respectively.  

Daily new confirmed cases were reported by the National Health Commission of the 

People’s Republic of China (http://www.nhc.gov.cn/, accessed on 15 June 2022). Air pol-

lutants include particles with diameters ≤ 2.5 μm (PM2.5), particles with diameters ≤ 10 μm 

(PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide 

(CO). Daily data on these six air pollutants were obtained from the national city air quality 

real-time release platform (https://air.cnemc.cn:18007/, accessed on 15 June 2022)). Daily 

meteorological data were obtained from the National Meteorological Information Center 

Figure 1. The geographical distribution of the study area in China includes Wuhan, Xi’an,
and Shanghai.

Xi’an is the largest city in northwest China (Figure 1) and an important transportation
junction. At the end of 2021, an outbreak of COVID-19 caused by the Delta (B.1.617.2)
variant occurred in Xi’an. The consequences of this epidemic were severe, and a strict
lockdown policy was adopted in Xi’an for more than a month. By 15 January 2022, there
were 2044 confirmed cases in Xi’an. It should be noted that Xi’an was also the first city
under lockdown because of the spread of the Delta (B.1.617.2) variant in China, especially
after the nation-wide lockdown during the spring of 2021.

Shanghai is the economic and financial center of China. Similarly, in March 2022, an
epidemic led by the Omicron variant attacked Shanghai. In a short period, the number
of new asymptomatic infections increased dramatically, even up to 27,719 new cases on
13 April 2022. To prevent the further spread of the epidemic, the government of Shanghai
also implemented a lockdown policy on 28 March 2022, and the lockdown state lasted for
more than two months to contain the transmission of SARS-CoV-2. By 1 June 2022, there
were a total of 649,379 confirmed cases caused by the Omicron variant in Shanghai.

The concentrations of air pollutants (PM2.5, PM10, NO2, SO2, CO, and O3) and daily
COVID-19 confirmed cases in the three outbreaks of the epidemic are shown in Figure 2.
The data on the first outbreak were collected from 16 January to 17 March in 2020 in Wuhan,
the data on the second outbreak were collected from 9 December 2021 to 15 January 2022,
in Xi’an; the data on the third outbreak were collected from 1 March to 1 June in 2022 in
Shanghai. The three phases involved in the study all implemented a lockdown policy when
the spread of the epidemic reached an accelerated stage, on 23 January 2020, 24 December
2021, and 28 March 2022, respectively.
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Figure 2. The number of daily confirmed cases in the three outbreaks and changes in the concentration
of six air pollutants (PM2.5, PM10, NO2, SO2, CO, and O3). The vertical dot–dash lines in the figure
refer to the time when the lockdown policy was implemented in the city. Note: (a) the first outbreak
in Wuhan; (b) the second outbreak in Xi’an; (c) the third outbreak in Shanghai.

Daily new confirmed cases were reported by the National Health Commission of the
People’s Republic of China (http://www.nhc.gov.cn/, accessed on 15 June 2022). Air pollu-
tants include particles with diameters ≤ 2.5 µm (PM2.5), particles with diameters ≤ 10 µm
(PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide
(CO). Daily data on these six air pollutants were obtained from the national city air quality
real-time release platform (https://air.cnemc.cn:18007/, accessed on 15 June 2022)). Daily
meteorological data were obtained from the National Meteorological Information Center
(http://data.cma.cn, accessed on 15 June 2022)), including daily average temperature,
relative humidity, precipitation, and wind speed.

2.2. Statistical Analysis

As the temporal and spatial distribution characteristics of air pollutants might be
influenced by climate, season, and geographic region, the relationship between COVID-19
infection and exposure to air pollutants might be fuzzy and unclear; it is difficult to use a
general parametric model to fit. Therefore, the flexible generalized additive model (GAM)
could be a proper method [17] and applied in the research. Recently, various studies have
used GAM to investigate the relationship between air pollution, meteorological factors,
and COVID-19 infection [10,18–20]. GAM is a non-parametric regression model that uses a
connection function to establish the relationship between response variables (COVID-19
confirmed cases) and non-parametric variables (air pollutants and meteorological fac-
tors), which could be better applied in the study to illustrate how air pollutants affect the
transmission of COVID-19 [21].

The moving average method could be used to show the development direction and
trend of events and then analyze the long-term trend of the prediction sequence, which

http://www.nhc.gov.cn/
https://air.cnemc.cn:18007/
http://data.cma.cn
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was a helpful tool for analyzing time series. There is an incubation period in the process of
virus infection. The incubation period is the time from infection occurring to the onset of
symptoms [22], which is a crucial epidemiological parameter. The distribution of the incu-
bation period was used in estimating the epidemic transmission potential [23]. Different
SARS-CoV-2 strains showed a wide range of incubation times, ranging from 2.87 days [24]
to 17.6 days [25]. It was shown that the mean incubation period was 6.4 days (95% CI:
5.6–7.7) for confirmed cases caused by the original strain [23] and 5.8 days (95% CI: 5.2–6.4)
for the Delta variant [26], which was estimated by fitting the Weibull distribution with the
Bayesian approach. The incubation period had a median of 3 days for both variants (Delta
variant and Omicron variant) and the interquartile range was shorter for Omicron [27]. It
was indicated that the weighted pooled mean incubation period of COVID-19 was 6.5 days
(95% CI: 5.9–7.1) in a meta-analysis [22]. Therefore, the moving average method was
adopted for air pollutants, which could solve the contradiction that the predicted value lags
behind the actual observed value and better explains the relationship between air pollution
exposure and COVID-19 infection. Concerning the potential lag effect of air pollution
in affecting COVID-19 infection, several combinations of moving average concentrations
of air pollutants (lag0, lag3, lag7) were calculated in this study. Here, lag0 indicates the
same day, lag3 would then be the average over the same and previous 2 days (lag 0 to
2 days) and lag7 would then represent the average of the same and previous 6 days (lag 0
to 6 days). Furthermore, smoothing spline functions were used to flexibly fit independent
variables into smooth curves to capture the influence of non-linear factors on dependent
variables as much as possible. Modifying the model and finding a better degree of freedom
in smoothing spline functions for the meteorological parameters in common is to benefit
from the Akaike information criterion (AIC).

Spearman correlation analysis was performed to assess the correlation between air
pollutants and meteorological factors so that the most significant correlated factors could
be found via the correlation coefficients. p < 0.05 was considered statistically significant. To
reduce the co-linearity, since some air pollutants were highly correlated, single pollutant
models were used individually for the six air pollutants mentioned above [28].

In detail, the GAM with the Poisson regression family was applied to estimate the
association between exposure to air pollutants and daily COVID-19 confirmed cases. The
single air pollutant model was formulated as follows:

log(yt) = Zi + s(tem) + s(rh) + s(prcp) + s(win) + DOW + dayt

In this single air pollutant model, log(yt) represents the log-transformed numbers of
daily COVID-19 confirmed cases reported on day t. Zi is the moving average concentrations
of different air pollutants, including 0-day moving average (lag0), 3-day moving average
(lag3), and 7-day moving average (lag7), respectively. The meteorological factors include
average temperature (tem), relative humidity (rh), precipitation (prcp), and wind speed
(win). S (.) means the smoothing spline to control for the non-linear relationship, and
meteorological parameters were fitted and expressed in the model as s(tem), s(rh), s(prcp),
and s(win). The day of the week (DOW) was included in the models and coded as a dummy
variable. In addition, dayt is considered the effect of different control measures (lockdown
or un-lockdown).

In this study, R Statistical software, Version 3.6.1 (R Foundation for Statistical Comput-
ing, Vienna, Austria) with the “mgcv” package (version 1.8–28) was used to perform data
analysis. Spearman correlation analysis was performed by SPSS Statistics for Windows,
Version 23.0 (IBM SPSS Inc., Armonk, NY, USA).

3. Results
3.1. Descriptive Analysis

As shown in Figure 2a, during the COVID-19 lockdown in mainland China in early
2020, the concentrations of five air pollutants (SO2, PM2.5, PM10, NO2, and CO) showed a
decreasing trend, while O3 increased [29]. However, the sharp reduction in air pollutant
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concentrations might result from the quarantine order, traffic, and non-guaranteed industry
restriction [30–32], which could only be maintained for a short period and would still return
to normal levels in the long term [33].

The descriptive analysis of daily new confirmed cases of COVID-19, concentrations of
air pollutants, and meteorological factors in three cities are shown in Table 1. Detailed data
can be found in Tables S1–S3.

Table 1. Descriptive statistics of daily COVID-19 confirmed cases, air pollutant concentrations, and
meteorological factors during three epidemic outbreaks (Wuhan: 16 January to 17 March in 2020;
Xi’an: 9 December 2021, to 15 January 2022; Shanghai: 1 March to 1 June in 2022).

Wuhan (68 Days) Xi’an (44 Days) Shanghai (99 Days)

Max Min Average Median Max Min Average Median Max Min Average Median

Daily confirmed
cases 3910 0 543.2 131 175 0 46.6 14 27,719 0 6559.4 1487

Relative humidity
(%) 94.3 42.7 73.1 75.0 86.5 28.0 52.5 49.5 95.3 8.9 60.9 63

Precipitation
(mm) 36.3 0 2.4 0 2.8 0 0.1 0 82.9 0 9.4 0

Wind speed (m/s) 5.6 1.1 2.4 2.2 3.3 0.8 1.8 1.85 4.4 0.7 2.5 2.5
Average

temperature (◦C) 21.5 0.7 9.1 8.6 8 −2.3 3.7 3.4 25.5 7.5 17.3 18.3

PM2.5 (µg/m3) 108 9 46.1 43 224 19 87.3 80 86.8 2.7 25.9 22.7
PM10 (µg/m3) 122 12 58.1 57 276 43 124.0 120.5 125.8 5.1 42.9 34.7
SO2 (µg/m3) 17 5 7.7 7 16 6 8.9 8 24.8 2.2 7.9 7.1
NO2 (µg/m3) 76 10 25.3 22 87 26 53.3 57 61.7 4.3 19.5 15.5
O3 (µg/m3) 135 28 77.5 78 113 4 63.4 60.5 142.5 38.9 87.7 88.8

CO (mg/m3) 1.4 0.5 0.9 0.9 1.6 0.1 0.8 0.8 1.3 0.1 0.9 0.9

In the first outbreak in Wuhan, the daily average temperature, relative humidity, pre-
cipitation, and wind speed on average were 9.1 ◦C, 73.1%, 2.4 mm, and 2.4 m/s, respectively.
In the second outbreak in Xi’an, the daily average temperature, relative humidity, precipita-
tion, and wind speed on average were 3.7 ◦C, 52.5%, 0.1 mm, and 1.8 m/s, respectively. In
the third outbreak in Shanghai, the daily average temperature, relative humidity, precipita-
tion, and wind speed on average were 17.3 ◦C, 60.9%, 9.4 mm, and 2.5 m/s, respectively.
It could be seen that the average value of the meteorological factors in the first outbreak
(Wuhan) and the third outbreak (Shanghai) were much higher than those in the second
outbreak (Xi’an). This might be due to different time–geographical characteristics. Shang-
hai and Wuhan are located at about the same latitude with a subtropical monsoon climate
pattern, unlike the continental temperate monsoon climate of Xi’an. The first (Wuhan) and
second (Xi’an) outbreaks of the epidemic occurred in winter and early spring, and the third
outbreak (Shanghai) happened in the spring.

The average concentrations of PM2.5, PM10, SO2, and NO2 were 46.1 µg/m3, 58.1 µg/m3,
7.7 µg/m3, and 25.3 µg/m3 in the first outbreak (Wuhan), respectively; in the second
outbreak (Xi’an), they were 87.3 µg/m3, 124.0 µg/m3, 8.9 µg/m3, and 53.3 µg/m3, respec-
tively, and in the third outbreak (Shanghai), were 25.9 µg/m3, 42.9 µg/m3, 7.9 µg/m3, and
19.5 µg/m3, respectively. Noticeably, the O3 concentration in the third outbreak (Shang-
hai) was 87.7 µg/m3, higher than the 77.5 µg/m3 in the first outbreak (Wuhan) and the
63.4 µg/m3 in the second outbreak (Xi’an). The CO concentrations on average for both
the first (Wuhan) and third (Shanghai) outbreaks were 0.9 mg/m3, higher than that in the
second outbreak (Xi’an), which was 0.8 mg/m3. By comparing the pollutant concentra-
tions during the three outbreaks, all concentrations of air pollutants in the second (Xi’an)
outbreak, except for O3 and CO, were higher than those in the first (Wuhan) and third
(Shanghai) outbreaks. As Xi’an is located in the Guanzhong basin in the northwestern part
of China, there was a heating season in winter lasting for 4 months. During the heating
season, fuel combustion and the meteorological and terrain conditions all played essential
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roles in the contribution of PM and other gaseous pollutant concentrations [34]. The meteo-
rological conditions in winter were relatively stable. Moreover, the terrain of Xi’an was not
conducive to the dispersal of air pollutants.

Air pollution significantly increases risk of disease, hospitalization, morbidity, and
mortality worldwide [35]. Figure 3 shows the correlation coefficients of Spearman correla-
tion analysis between daily confirmed cases and air pollutants in three outbreaks caused
by different SARS-CoV-2 strains. The values of the Spearman correlation coefficients sug-
gested how close the relationships might be between the concentration of air pollutants
and COVID-19 infection, with the p value representing the level of significance for the
coefficient (p < 0.05 was marked in the figure using *). In three outbreaks, confirmed cases
were correlated with all air pollutants, but only a few pollutants and confirmed cases
had significant linear correlations (as seen for existence of * in the first row of Figure 3).
It indicated that the correlation between COVID-19 daily new confirmed cases and air
pollutants were diverse. Consequently, a linear fit might not be sufficient to better fit
the relationship between these factors. A GAM model that allows the fitting of complex
nonlinear relationships might be more appropriate [36].
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(a) Spearman correlation analysis in the first outbreak in Wuhan; (b) Spearman correlation analysis in
the second outbreak in Xi’an; (c) Spearman correlation analysis in the third outbreak in Shanghai.

In the three outbreaks, most of these air pollutants showed significant correlations
with each other. It can be found in Figure 3 that the strongest correlation exists between
PM2.5 and PM10. It also indicated that SO2 was correlated with other pollutants, except
O3 in the second outbreak and NO2 in the third outbreak. Co-linearity between many air
pollutants was shown in this study. It also provides a basis for selecting variables in the
GAM analysis. Therefore, to minimize the existence of co-linearity among the elements in
the model, single pollutant models were conducted individually for the six air pollutants.

3.2. Relationship between Air Pollutants and COVID-19 Daily Confirmed Cases

The result of GAM fitting is plotted in Figure 4. Among the selected three outbreaks,
the longest epidemic season and the highest accumulated cases were found in Shanghai.
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Figure 4. Percentage change (%) and 95% CI of daily COVID-19 confirmed cases associated with
a unit increase in pollutant concentrations using single-pollutant models in three outbreaks of an
epidemic caused by different SARS-CoV-2 variants (i.e., 1 µg/m3 increase in PM2.5, PM10, NO2, and
O3, 0.1 µg/m3 increase in SO2 or 0.01 mg/m3 increase in CO). Note: confirmed cases in Wuhan were
caused by the SARS-CoV-2 original virus in the first outbreak of the epidemic; confirmed cases in
Xi’an were caused by the Delta variant in the second outbreak of the epidemic; confirmed cases in
Shanghai were caused by the Omicron variant in the third outbreak of epidemic.

In the first outbreak (Wuhan), for the original virus strain transmission, positive
associations between PM2.5, PM10, NO2, SO2, and COVID-19 confirmed cases, and negative
associations between CO, O3, and COVID-19 confirmed cases were shown. It could be
observed in Figure 4d that each one unit increase in PM2.5, PM10, NO2, and SO2 led to a
1.13% (95% CI: 1.01–1.24%), 0.36% (95% CI: 0.24–0.48%), 3.74% (95% CI: 3.33–4.15%) and
0.21% (95% CI: 0.18–0.23%) increase in daily confirmed cases, respectively. Meanwhile, a
unit increase in CO and O3 was associated with a decrease of 1.67% (95% CI: 1.29–2.04%)
and 0.83% (95% CI: 0.79–0.85%) in daily confirmed cases, respectively.

In the second outbreak (Xi’an), for the Delta variant transmission, positive associations
between PM2.5, PM10, NO2, SO2, CO, and COVID-19 confirmed cases and negative associa-
tions between O3 and COVID-19 confirmed cases were indicated. It could be observed in
Figure 4e that each one unit increase in PM2.5, PM10, NO2, SO2, and CO led to a 5.57% (95%
CI: 3.34–7.85%), 5.18% (95% CI: 3.09–7.31%), 8.10% (95% CI: 3.79–9.98%), 0.52% (95% CI:
0.18–0.88%) and 6.09% (95% CI: 3.17–9.11%) increase in daily confirmed cases, respectively.
Meanwhile, a 1 µg/m3 increase in O3 was associated with a 0.52% (95% CI: 0.01–1.03%)
decrease in daily confirmed cases.

In the third outbreak (Shanghai), for the Omicron variant transmission, positive
associations between PM2.5, PM10, NO2, SO2, and COVID-19 confirmed cases and negative
associations between CO, O3, and COVID-19 confirmed cases which were found to be
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similar to that of the first one in Wuhan. It could be observed in Figure 4f that each one unit
increase in PM2.5, PM10, NO2, and SO2 led to a 4.18% (95% CI: 4.12–4.23%), 8.80% (95% CI:
8.74–8.86%), 8.06% (95% CI: 8.00–8.13%) and 0.51% (95% CI: 0.50–0.51%) increase in daily
confirmed cases, respectively. Meanwhile, a unit increase in CO and O3 was associated with
a 3.59% (95% CI: 3.57–3.61%) and 0.18% (95% CI: 0.17–0.19%) decrease in daily confirmed
cases, respectively.

By comparing the percentage change of daily confirmed cases due to exposure to per
unit increase in the concentration of air pollutants, a general positive correlation could be
found between most air pollutants and confirmed cases of COVID-19 caused by different
SARS-CoV-2 strains, with the strongest correlation for PM2.5, PM10, and NO2. CO was
positively associated with confirmed cases only in the second outbreak (Xi’an). In addition,
different from other pollutants, there was a non-significant negative correlation between
exposure to ozone and COVID-19 infection caused by different strains in three periods. It
can be seen in Figure 4 that exposure to O3 has no clear effect size pattern with changing
lags. It could be observed that the association between air pollutant concentrations in
7 days moving average (lag7) was more obvious than those in 3 days moving average (lag3)
and lag0 in the second (Xi’an) and third (Shanghai) outbreak caused by Delta variant and
Omicron variant, respectively. However, this trend seems to be not so applicable in the first
outbreak (Wuhan) caused by the original strain.

To better illustrate the possible relationship between the COVID-19 infections caused
by different strains and exposure to air pollutants, the percentage change in the number of
confirmed cases due to exposure to the increased unit concentrations of PM2.5, PM10, and
NO2 were compared together in Figure 5. It could be noted that the mutant variants appear
to be more strongly associated with air pollutants (PM2.5, PM10, NO2) than the original
strain. From Figure 5a,b, by comparing the percentage change of new cases (lag0 and lag3)
for PM2.5 and PM10 with increased unit concentrations of exposure, it could be speculated
that the sensitivity of the SARS-CoV-2 virus strain to particulate air pollutants is omicron >
delta > original.
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Figure 5. Percentage change (%) and 95% CI of daily COVID-19 confirmed cases due to exposure
to increased unit concentrations of PM2.5, PM10, and NO2 in three outbreaks caused by different
SARS-CoV-2 strains (i.e., 1 µg/m3 increase in PM2.5, PM10, and NO2).

4. Discussion

Air pollution was the fifth major source of increased disease risk, hospitalization,
morbidity, and mortality worldwide. The respiratory tract was a primary target of potential
concurrent exposure to both air pollutants and airborne pathogens, including viruses [37].
Much research has been conducted concerning the relationship between air pollutants and
COVID-19 infection caused by the original strain using the GAM fitting in different geo-
graphic regions [19,38,39]. However, our study focused on the link between concentrations
of air pollutants and COVID-19 infection caused by different SARS-CoV-2 strains. The
previous results indicated that short-term exposures to air pollution might be important
aggravating factors for SARS-CoV-2 transmission and COVID-19 severity through multiple
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mechanisms [40]. Our results shown in Figure 5 suggested that people might be much
more vulnerable to COVID-19 infection caused by the mutated variants of the SARS-CoV-2
virus (i.e., the Delta and Omicron in our study) with the exposure of air pollutants (i.e.,
PM2.5, PM10, NO2 in our study) than caused by the original strain. It might provide new
insight into the current prevention and control of the COVID-19 pandemic.

It could be seen in Figure 4 that positive associations between exposure to most
air pollutants (PM2.5, PM10, NO2, SO2) and COVID-19 confirmed cases were caused by
different SARS-CoV-2 strains. It might indicate that exposure to air pollutants enhances
individual susceptibility to COVID-19 [41]. According to the World Health Organization,
environmental factors have a role in 35% of infectious disorders involving the lower
respiratory tract, and SARS-CoV-2 infections were no exception [42]. Some studies found
that there was a relationship between exposure to air pollutants (PM2.5, PM10, NO2, O3, SO2)
and the increased prevalence of chronic obstructive pulmonary disease (COPD) [43] and the
weakening of pulmonary function [44]. A study in the United States found that an increase
of 1 µg/m3 in PM2.5 was associated with an 8% increase in the COVID-19 death rate (95%
CI: 2–15%) [45]. Another study conducted in China showed that an increase of 10 mg/m3

PM2.5 and PM10 resulted in a 2.24% (95% CI: 1.02–3.46%), 1.76% (95% CI: 0.89–2.63%)
increase in the daily counts of confirmed cases, respectively. Similar results could be found
in Figure 4d. It could be found in Figure 4 that exposure to O3 has no clear effect size
pattern with changing lags. The potential reason is that exposure to O3 has an acute and
immediate influence and stimulates the symptoms of infected people, and the impacts
gradually fade away during longer lagged periods [11]. The strong oxidizing and virucidal
features of O3 may have been related to the non-significant negative correlation between
short-term exposure to O3 and COVID-19 infection [46]. These data could demonstrate that
environmental pollution increases individual susceptibility to COVID-19 on a global scale.

Among the six pollutants, exposure to PM2.5, PM10, and NO2 might significantly con-
tribute to the susceptibility to COVID-19. Particle matter (PM), as a complex and variable
mixture of particles and droplets suspended in the air, might initiate lung inflammation [47]
and exposure to PM might enhance the susceptibility and severity of COVID-19 [48]. PM2.5
has been shown to be a vital transmission vector of pathogenic respiratory infections to the
human alveolar epithelium [49]. Furthermore, PM2.5 provides a larger specific surface area
for adsorption toxic chemical substances and pathogens [50]. Some studies confirmed the
presence of the SARS-CoV-2 virus in atmospheric PM [51] and that individuals might be
more susceptible to respiratory diseases due to inhalation and deposition of PM2.5 loaded
with the virus [52]. Specifically, smaller particles such as PM1 were strongly associated with
a higher incidence of COVID-19 than the effects of PM2.5 and PM10 under the experimental
condition [18]. Therefore, the proportion of particles smaller than PM2.5 in the total particu-
late matter, as well as their composition, could not be neglected as well. It might explain
our study’s positive percentage change of confirmed cases in exposure to PM2.5 and PM10.
NO2 is a gaseous air pollutant generated mainly by vehicles, industrial production, and
other combustion processes. Previous research indicated that NO2 as an airway irritant
is potentially related to the immune system and might cause respiratory tract infections,
promote lung inflammation [53], and sometimes even leads to mortality [54]. Recently,
a study conducted based on the county scale in the United States showed a significant
relationship between long-term exposure to NO2 and COVID-19 mortality [55]. In addition,
exposure to NO2 affects the vulnerability of individuals to infectious diseases, including
COVID-19. According to the available data, COVID-19 patients might have developed lym-
phopenia before the viral infection, which is strongly associated with short-term exposure
to NO2 [56]. Moreover, the synergistic combination of ambient meteorological parameters
(temperature and RH) and air quality (the toxicity of PM) might have a significant effect
on the vitality and transmission of aerosol biological constituents [57]. Combining these
chemicals and pathogens together, air pollution made it easier to cause human respiratory
illnesses. Therefore, reducing the environmental burden of air pollutants might be seen as
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an important primary preventative intervention for reducing individual vulnerability to
SARS-CoV-2 infection and COVID-19-related mortality.

It could be noted from Figure 5 that the mutant SARS-CoV-2 variants appear to be more
closely associated with air pollutants (PM2.5, PM10, NO2) than the original strain. Different
mutant variants existed in the environment [58]. Mutations found in VOCs were associated
with increased transmissibility [2] and antibody escape [59]. Based on the evolution path of
the virus, the dominant virus variants usually possess much stronger infectivity and are
better adapted to the human immune system [60]. The R0 (average number of people that
one sick person will infect) of the Delta variant was 5.08 [61], whereas the R0 of the Omicron
variant raised to 11.88 [62], both much higher than the R0 of the original virus, which was
2.79 [63]. The transmissibility of the Delta variant was reported to have increased by 97%
compared with the original virus [64], and the spread of the Omicron variant was even
faster than the Delta variant [65]. Infection with the Delta variant markedly increased the
risk of disease progression [6]. However, the clinical data suggested that the possibility of
Omicron-infected individuals turning into severe cases was significantly reduced compared
with individuals infected earlier with the Delta variant [66]. It might be caused by exposure
to past variants, the effect of vaccine protection [60], and the behavioral habit of keeping
a certain social distance. At the same time, there was a large number of asymptomatic
cases, which might lead to the possibility of the virus spreading in a silent state without the
patient being aware.

Recently, it was reported that there was an apparent trend toward increasing the
positive electrostatic potential from the original virus strain through the Delta variant up
to the Omicron variant [67]. Such change might be easier for the SARS-CoV-2 to bind to
angiotensin-converting enzyme 2 (ACE2) [68], which has negative electrostatic surface
potential patches [69]. Based on the interactions between positive and negative electrical
charges, it indicated that the presence of aerosol particles could affect the atmospheric
electrical conductivity in the near-ground layer [70], presumably leading to the above-
mentioned easier binding. Furthermore, ACE2 would generate an anti-inflammatory
peptide, and then the peptide might be over-expressed in the case of inflammation from
PM exposure, thus increasing the probability of COVID-19 entering the cells [48]. There-
fore, further research is needed to continue exploring the role of air pollution from this
point of view. The neutralizing activity against SARS-CoV-2 variants was found to be
significantly enhanced in those who had been fully vaccinated during the recovery phase
after infection [71]. It implies that even if the virus was mutating, vaccination remains the
most effective countermeasure to stop the disease from severity. Moreover, although it
was reported that the pathogenicity of the Omicron variant has decreased, in developing
countries, such as China, the number of medical beds per 1000 people was only 4.67 in
2020 [72]. Therefore, prevention and control of COVID-19 infection still need to be taken
into consideration.

Many researchers have investigated the relationship between meteorological parame-
ters, such as temperature and humidity, and virus survival under laboratory conditions [73]
or in the real world [20,74]. Due to the temporal limitations of the three periods selected,
such as the study period almost being in the same season, the temperature variation is very
small therefore it may be difficult to observe a more pronounced trend within the limiting
temperature period. The smoothing spline function was applied for the meteorological fac-
tors in the study, while lag structures analysis of average temperature and relative humidity
were not included in the study which would make the results not robust enough. Since the
contribution of meteorological parameters is not the focus of this study, the results are not
presented in detail. The specific contribution of meteorological parameters to COVID-19
infection is not conclusive yet and should be focused on in future research.

Our study still has several limitations. First, COVID-19 as an infectious disease, and
daily infection data tend to show a pronounced autocorrelation. The high autocorrelation
of infectious diseases may lead to some biases in statistical inference, which makes the
relationship between infectious diseases and other factors not robust enough. It is still
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necessary to find a more efficient approach and conduct more detailed studies on the
lag structure to explore the influence of external factors on infectious diseases for the
future. Second, an epidemic dominated by one virus strain involved only one outbreak,
and perhaps the pool of data was not sufficient, and similar studies in other regions
will be needed to further explore the relationship between mutant SARS-CoV-2 strains
and air pollution. Simultaneously, for personal privacy reasons, there was no access to
patient information to carry out subgroup analysis by gender and age to examine sensitive
populations. Third, community and secondary transmission was a critical route of COVID-
19 spread, and these often occur over very short distances, with an unclear relationship
with weather conditions and air pollution. At last, our understanding of the potential
role of air pollution in SARS-CoV-2 transmission was limited by the knowledge gap in
some aspects, such as the resistance characteristics of the virus in the environment and the
combined effect of multiple air pollutants with pathogens.

5. Conclusions

A statistical correlation between the percentage change in the number of COVID-19
confirmed cases and exposure to air pollutants was found. Among the six pollutants,
exposure to PM2.5, PM10, and NO2 significantly contributed to the susceptibility to COVID-
19. The mutant variants appear to be more strongly associated with air pollutants than
the original strain. The study and prediction of such a relationship will help to combine
better meteorological factors and air pollutants to observe the transmission characteristics
of seasonal or geographic epidemics caused by viruses or other pathogens. As the virus
mutates and the epidemic spreads, a comprehensive study of the transmission mechanisms
of the virus is essential, and policies will be adjusted and updated accordingly.

Given the severity of the pandemic, there is a need to continue maintaining routine
preventive measures such as social distancing, wearing masks, and washing hands, which
could effectively slow down the spread of the pandemic. The direction of viral mutations
was still unclear but limiting the concentration of air pollutants to lower levels and improv-
ing individual fitness would better control the spread of COVID-19 in the environment and
promote public health.
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