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Abstract: Environmental pollution and health problems caused by the excessive use of motor vehicles
have received widespread attention from all over the world. Currently, research lacks attention to
the nonlinear effects of the built environment on short-distance active travel choices. It is important
to understand these non-linear correlations, because it would be more feasible and necessary to
promote a shift from car users to walking and cycling mode choices over short commuting distances.
A random forest model was used to analyze the nonlinear effects of residents’ social characteristics
and the built environment of their homes and workplaces on their choice of walking and cycling.
The results show that the built environment has a greater impact on short-distance active travel
than the socio-demographics attributes. Residential and workplace-built environments have equal
importance and they have significant non-linear effects on both short-distance walking and cycling.
The nonlinear effects of the built environment on walking and cycling differed significantly, and the
study specifically revealed these effects.

Keywords: nonlinear effects; travel mode choices; short-distance commuting; random forest
approach

1. Introduction

As the number of cars continues to increase annually, environmental pollution and
health problems caused by excessive car use remain a global concern. Academics believe
that replacing car travel with active travel can reduce carbon emissions [1,2] and benefit
people’s health [2,3]. The possibility of using active modes such as walking and cycling as
alternatives to driving was first explored in European countries [4], and it was discovered
to have great potential [3,5,6]. Particularly during the COVID-19 pandemic, the importance
of bicycles as a mode of transportation was reinforced, as they provided an efficient means
of transportation while limiting physical proximity. The pandemic has promoted increased
efforts to encourage cycling, particularly in large cities in Europe, US, and Australia [7].
On one hand, travel distance is a key determinant of commuting mode choice, and it is
often more feasible to encourage residents to walk [8] and cycle [9] for short distances due
to physical constraints. On the other hand, research has shown that a large number of
residents use cars for short distances [5]. The preference for motorized travel in short trips
compared to active travel is an important cause of deterioration in the traffic trip structure
and thus traffic and public health problems [10,11]. Therefore, it is feasible, necessary and
has significant environmental benefits to replace some car trips for short trips with active
travel by walking or cycling [10,12,13].

How can we promote people’s choices of active travel? More and more studies have
focused on looking for reasons why people use their cars for short distance travels [14–16].
They have explored the reasons for car travel choices in terms of residents’ attitudes,
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preferences, socio-demographic attributes, and urban built environments. Although most
studies have concluded that active travel choices can be promoted by improving the built
environment [17–19], the relative importance between the above elements in short distance
travel remains inconclusive. Many studies have confirmed that nonlinear associations
between variables are common in travel behavior [20–22], but nonlinear associations are
still ignored in studies of short distance travel. In addition, in most studies, walking
and cycling were considered separately, and rarely both were considered together. More
importantly, a fine portrayal and comparative analysis of the influencing elements and
mechanisms of walking and cycling is missing. The gaps in these studies has hindered the
refinement of urban planning and transportation policies. Especially in view of the fact that
many policies intended to promote active travel were introduced, the continued excessive
use of cars for short distance travels remains.

To fill these gaps, this study used a random forest approach to capture the complex
relationship between active travel mode choice and built environment variables in short-
distance travel. We used a dataset with a larger sample size (20,008) to avoid overfitting. It
makes a dual contribution to the established literature: first, it focuses on the nonlinear and
threshold effects of active travel mode choice in the built environment and short-distance
commuting behavior, and explores the similarities and differences between walking and
cycling as influenced by the environment. Second, by revealing the different mechanisms
linking the built environment of residence, workplace and active travel, it can provide
effective suggestions for appropriate environmental interventions and encouraging active
travel modes.

This manuscript is divided into five sections. Except for this section, Section 2 provides
a literature review, identifying research gaps. Section 3 presents the data, variables, and the
random forest approach. Section 4 provides details of the results obtained, and Section 5
summarizes the main findings and discusses their implications for planning practice.
Section 6 describes the main conclusions of this study.

2. Literature Review

Over the past decades, research on residents’ travel mode choices has expanded
rapidly and yielded insightful results. Extensive research has shown that travel mode
choice is influenced by multiple factors such as the built environment and socio-economic
attributes [23–25]. The influence of personal characteristics on travel choices is mainly
reflected in the variability in travel mode choices among people of different age, gender,
income, education, and family structure. Research by Dėdelė et al. [26] showed that
male, young and employed people are more likely to choose to travel by car. A study by
Cheng et al. [27] pointed out that females were more likely to choose public transport than
males. Li et al. [28] concluded that car use was negatively associated with increasing age.
A study by van den Berg et al. [29] showed that people with higher education were more
likely to use public transportation.

Many studies have concluded that the built environment plays a more critical role
in travel mode choice. Most studies focusing on the built environment showed that “5D”
elements of the built environment (density, diversity, design, destination accessibility
and distance to transit service) are closely related to travel mode choice [23,30,31]. In
general, people living in high-density and high-mix areas are more likely to choose to
walk and cycle because they have more options for travel goals and are therefore often
closer to their destinations [19,20]. Pedestrian and bike-oriented neighborhood design
is more conducive to active travel, such as higher road density, intersection density, and
street connectivity [32,33]. These studies showed that the factors influencing travel mode
choice are multidimensional. In this context, it is particularly important to identify the key
variables for travel mode choice [32,34]. It is crucial for planners to know the priority level
of the determinants of travel mode choice in order to develop the right interventions [35,36].
In recent years, a limited number of studies used machine learning methods to assess the
relative importance of these elements [32,33,37]. They found that the impact of the built
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environment was more important than other variables. In addition, early studies mainly
counted the built environment indicators within a certain area centered on residence, but
in recent years, some studies have started to consider the built environment of residence
and workplace together, and found that the environmental indicators of the place of work
also have a non-negligible influence on the travel mode choice [22,38,39].

Overall, these studies have focused on the effects of the built environment on the
choice of full distance travel mode. However, the elements and relative importance that
influence the short-distance travel choices remain unattended. Understanding the ele-
ments and relative importance that influence short-distance travel choices is meaningful to
planners. Many Chinese cities are currently devoted to creating 15 min pedestrian-scale
neighborhoods for residents to reduce residents’ daily travel distance and promote active
travel. These policies are indeed beneficial in reducing long distance travel for residents.
However, there are still some people who choose to travel short distances by car. What
elements are more important to encourage short distance active travel? What factors should
be prioritized in order to promote short distance walking and cycling, respectively? This
study fills in the gaps by quantifying the extent to which the built environment affects
short-distance active travel and comparing the extent to which multiple built environment
dimensions of residence and workplace contribute differently to cycling and walking. The
results can help planners prioritize improvements and support the design of more targeted
planning strategies, because there is more potential to achieve a shift from car travel to
active travel in short distance travel [10,12,13].

Alternatively, while established studies have explored the association between the built
environment and active travel, many of them presuppose linear [40–42] or log-linear [43]
relationships between variables. In recent years, many studies have confirmed that nonlin-
ear associations between variables are common in travel behavior [20–22,44], but nonlinear
associations are still ignored in studies of short-distance travel. Indeed, accurately identify-
ing this nonlinear relationship is critical because the threshold effect implies that land-use
policies to promote active travel by changing built environment variables may only be
effective within a range of values [21,22], and the cost of policy implementation can be
significantly reduced by identifying a reasonable range and threshold [45]. For example,
Ding et al. [22] showed that bus stop density had a limited effect on the probability of auto
commuting, but above a threshold of 0.2 persons per acre, its negative correlation increased
sharply. In addition, population density around residential areas is negatively correlated
with car mode choice for commuting, but 35 persons per acre is the threshold of impact,
beyond which the marginal impact diminishes. That is, if car commuting is reduced by
changing density, the increase in density is not unlimited and the threshold should be
35 persons per acre.

It is important to reveal this nonlinear relationship in China, where the scale and speed
of change in the built environment exceeds that of North America or Europe [46,47]. The
experience of Europe and the United States may not be applicable. In addition, in China,
many cities are attempting to promote walking or cycling through planning policies. For
example, the design guidelines for pedestrian-oriented streets in Wuhan recommend a
road network spacing of no more than 200 m and a road network density greater than
8 km/km2. Are these values correct? Limited evidence is provided in the literature, and
the planning orientation is different in different areas. For example, in the older parts of
Wuhan, planning policies tend to encourage people to commute on foot, while in some of
the newer, faster-paced urban areas, policies encourage people to commute by bike. This
shows that walking and cycling still need to be treated differently as active modes of travel
as well. This study uses a random forest approach to identify the non-linear effects of the
built environment of the residence and workplace on two active travel modes, walking
and cycling, and to assess the relative importance of different factors. This study helps
to develop precise urban planning and transportation policies to promote active travel as
an alternative to short-distance motorized travel, which will greatly improve the urban
transportation travel structure, urban environment, and individual well-being.
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3. Materials and Methods
3.1. Study Site

Wuhan was selected as a case study (Figure 1) as it has the highest population size
among the fourteen megacities in China, and is a center for scientific research and education
in central China. Wuhan’s motor vehicle fleet grew rapidly after 2000, with the total number
of motor vehicles exceeding four million by 2021. Despite the increased investment in
transportation facilities in recent years, traffic congestion in Wuhan has been difficult to
improve. According to the city’s future plan, the projected resident population in 2035 will
be 16.6 million, and the travel needs of future residents will be considerably larger.
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3.2. Data Sources
3.2.1. Resident Travel Survey

The travel data in this study came from the fourth travel survey of residents in 2020
conducted by the Wuhan Institute of Transportation Development Strategy. Surveys have
been conducted every decade to determine the basic characteristics of daily movements
of the population. A structured Family Interview Questionnaire was used to collect daily



Int. J. Environ. Res. Public Health 2023, 20, 1969 5 of 21

travel information from residents, such as the start and end points of daily travel, purpose
of travel, selected mode of travel, and social and economic characteristics of families and
individuals, including age, gender, personal education level, employment status, household
registration, family income, family size, and number of children. The survey was conducted
in Wuhan with a 0.5% sample rate (Table 1). Researchers conducted random household
surveys using the WeChat app. A total of 43,660 people’s travel information were collected
over a two-month period. The data were further processed, missing information was
removed, and 30,174 samples were obtained. The spatial distribution of the samples is
shown in Figure 1.

Table 1. Basic information of data collection of four trips of residents in Wuhan.

Year Zone Resident Population and Scale Survey Population and
Household Size Sample Rate

1987 Main urban area 330,000 people
40,000 households — —

1998 Main urban area 3,810,000 people
150,000 households

76,000 people
24,000 households 2.0%

2008 City area 870,000 people
200,000 households

120,000 people
38,000 households 1.5%

2020 City area 12,320,000 people
4080,000 households

43,660 people
15,000 households 0.5%

3.2.2. Built Environment Data

The Wuhan Urban GIS database provides measured data for variables in the built
environment (Table 2). We collected the built environment characteristics within 800 m of
respondents’ residences and destinations. Among them, dwelling location characteristics
were expressed in terms of the Euclidean distance of the residence from the urban center
and the nearest cluster center. The cluster center is identified by Wuhan LBS data. (The
results are from another study by the authors [48].) The mixed entropy index of land use
considers six types of land: residential, commercial, educational, industrial, public services,
and green space. Data on the resident and employed populations were obtained from the
Wuhan census.

Table 2. Built environment information table.

Variables Description

Build
environment

Location
Distance to city center Distance from Wuhan city center—Hankou (in kilometers)

Distance to the nearest cluster center Distance to the center of the nearest sub-Cluster

Transit
accessibility

Distance to the nearest public transit station Distance from the respondent’s residence and destination to
the nearest bus stop (including subway and surface bus)

Number of public transit stops Number of public transit stops within 800 m buffer zone of
respondents’ residence and destination

Density

Population density Residential density within 800 m buffer zone of respondents’
residential and destinations

Job density Job density within 800 m buffer zone of respondents’
residential and destinations

Land development intensity Land use intensity within 800 m buffer zone of respondents’
residential and destinations

Design Number of intersections Number of intersections within 800 m buffer zone of
respondents’ residential and destinations

Diversity Land use mixed entropy index Land use diversity index within 800 m buffer zone of
respondents’ residential and destinations

3.3. Methods
3.3.1. Identification for Short Distance Travel

Determining the distance thresholds for short trips is critical to this study. We de-
termined the short-distance travel threshold based on a combination of the established
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literature and the results of Wuhan travel survey data. First, the range of “short commute”
distance thresholds varies by region and topic. Mackett interviewed 377 people in the
United Kingdom who traveled short distances by car, setting the short-distance threshold
at 8 km [5]. Nazelle et al. [11] defined the short-distance travel threshold at 3 miles (4.8 km)
in a study that analyzed the probability of US residents switching from small cars to other
modes of transportation. Beckx et al. [49] defined the short distance threshold at 8 km
in their study analyzing the potential of the Dutch to replace car trips with active trips.
When assessing the potential carbon savings of walking and cycling instead of driving
short distances in Wales, Neves defined short trips as less than 3 miles (5 km) in length [6].
Similar research conducted in the cities of China consider 5 km as a short distance [50].
Second, the commuter travel distance of a single sample was calculated using the Baidu
Map path-planning API based on the individual commuter mode obtained from the survey
by vectorizing the spatial coding of the OD points of commuter travel obtained from the
survey. According to the results, the average distance of walking and cycling in Wuhan
is 1.25 km. Moreover, 96.97% of walking or cycling commuting distance is within 5 km
(Table 3). Therefore, in order to effectively examine short-distance active travel, a 5 km
threshold is chosen as the definition of short-distance travel in this paper for the study.

Table 3. Active travel distance distribution.

Travel Distance Number of Samples Proportion

<5 km 9225 96.97%
5–10 km 271 2.85%
10–15 km 8 0.08%
15–20 km 3 0.03%
>20 km 6 0.06%

A total of 20,008 short-distance travel samples with travel distance less than 5 km were
screened, accounting for 66.31% of the total sample (Figure 2).
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3.3.2. Variable Descriptive Statistics

Further descriptive statistics were conducted on the screened short distance travel sam-
ple and the results are shown in Table 4. Among them, we counted the built environment
of the respondents’ residence and destination separately.
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Table 4. Variable statistics table.

Variables Description Mean. Std. Min Max

Dependent
variable Travel mode

Walking Whether the respondent commutes on foot, yes = 1, no = 0 0.42 0.49 0.00 1.00

Cycling Whether the respondent commutes by bicycle, yes = 1, no = 0 0.04 0.20 0.00 1.00

Independent
variable

Built
environment

District
Location

Distance to the urban center Distance to Hankou, the first-class urban center of Wuhan (in km) Origin 12.32 13.28 0.13 77.54
Destination 12.12 13.24 0.03 78.05

Distance to the nearest cluster
center

Distance to the center of the nearest cluster (in km) Origin 7.91 10.91 0.16 76.68
Destination 8.47 12.11 0.01 76.68

Public transport
accessibility

Distance to the nearest public
transit station

Distance (in km) from the respondent’s residence to the nearest
bus stop (both metro and surface bus)

Origin 1653.56 6360.54 2.49 48,897.77
Destination 1.44 5.59 0.00 45.28

Public transit station number
Number of public transit stops within a 15 min walking

isochronous circle of the respondent
Origin 17.07 10.42 0.00 46.00

Destination 17.13 10.37 0.00 53.00

Density

Population density Residential density (persons/km2) within a 15 min walking
isochronous circle of respondents

Origin 24,563.92 17,631.81 37.65 75,166.52
Destination 23,988.06 17,393.03 0.00 75,493.31

Job density Job density (persons/km2) within a 15 min walking isochronous
circle of respondents

Origin 8212.74 5746.78 43.22 24,359.55
Destination 8549.08 5954.31 32.80 24,197.97

Land use intensity Floor area ratio of sites within a 15 min walking isochronous
circle of the respondent

Origin 2.86 1.61 0.00 6.25
Destination 2.80 1.68 0.00 6.25

Design
Intersection density Density of intersections of four or more roads within a 15 min

walking isochronous circle of respondents (pcs/km2)
Origin 30.19 20.89 0.00 119.00

Destination 30.01 20.59 0.00 123.00

Road network density Density of the road network within a 15 min walking
isochronous circle of the respondent (in km/km2)

Origin 6010.36 2202.65 81.17 13,373.12
Destination 5977.54 2196.62 0.00 13,515.15

Diversity Land use entropy index Mixed entropy of land use within a 15 min walk isochronous
circle of respondents

Origin 0.64 0.13 0.00 0.98
Destination 0.65 0.13 0.00 0.99

Socio-demographics

Age Age of respondent 31.53 12.70 6.00 75.00
Gender Respondent gender, dummy variable, male = 1, female = 0 0.50 0.50 0.00 1.00

Occupation Whether the respondent is a full-time working employee, dummy variable, yes = 1, no = 0 0.62 1.08 0.00 1.00
Family number Number of family members interviewed 2.89 0.93 1.00 6.00

Family income
Respondent’s annual household income, dummy variable, less than 50,000¥ = 1,

50,000–100,000¥ = 2, 100,000–250,000¥ = 3, 250,000–400,000¥ = 4, 400,000–550,000¥ = 5,
550,000–700,000¥ = 6, greater than 700,000¥ = 7

2.85 0.83 1.00 7.00

Car ownership Whether the respondent’s household owns a private car, dummy variable, yes = 1, no = 0 0.56 1.08 0.00 1.00

House size Respondent’s household housing size, dummy variable, below 40 m2 = 1, 40–70 m2 = 2,
70–90 m2 = 3, 90–110 m2 = 4, 110–120 m2 = 5, 120–150 m2 = 6, greater than 150 m2 = 7 3.58 1.14 1.00 7.00

Education level
Respondents’ degree status, dummy variable, primary school and below = 1, middle

school = 2, high school = 3, undergraduate = 4, undergraduate and above = 5,
postgraduate and above = 6

3.14 1.08 1.00 6.00
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3.3.3. Modeling Method

The random forest (RF) model was used in this study to uncover the complex rela-
tionship between multidimensional elements and commuting carbon emissions. Ho [51]
proposed RF, which is based on the integration method of decision trees, and optimizes
model fitting and prediction by assembling a large number of individual decision trees [52].
It extracts multiple samples from the original samples using the bootstrap resampling
method, and builds a decision tree model for each bootstrap sample. The split in each tree
lasts until the tree reaches its maximum depth. The forecasts of multiple decision trees are
then combined, the final forecast is obtained through voting, and the final result is obtained
by averaging the forecasts of all individual trees. The working route is shown in Figure 3.
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Numerous theoretical and empirical studies have shown that RF is highly predictive,
robust to outliers and noise, and not prone to overfitting [53,54]. Most importantly, it
directly expresses the true relationship between variables rather than assuming a specific
parameter relationship between the self and dependent variables, as in traditional linear
regression [55]. The RF algorithm can handle missing values and maintain accuracy if some
data are lost. In addition, the RF algorithm performs better on a large sample dataset and
is less sensitive to outliers than another popular machine learning algorithm, GBDT. In
addition, RF is better than GBDT for classification tasks.

For model calibration, three parameters must be considered: the total number of
trees n (forest size), the number of split variables m, and the maximum tree depth d [33].
Alternatively, it can calculate the relative importance of a single variable in a variable dataset
and create partial dependency plots to show the relationship between the independent
and dependent variables. Furthermore, in recent years, some researchers have questioned
whether the higher fit of RF compared to linear forest is due to overfitting [56]. This study
used a dataset with a larger sample size (20,008) to avoid overfitting. Finally, we use RF to
predict the probability of walking (Model 1) and cycling (Model 2) mode separately.

4. Results

After referring to the relevant literature [20,33,57], and after several tests, this study
used Python3.8 to build a RF model, with 20% of the samples randomly selected as the
test set and 80% as the training set, in order to obtain more reliable model results. The
parameters were optimized in two steps using Bayesian estimation with the Hyperopt
algorithm: (1) determine the best decision tree scale n, and (2) determine the best split
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variable number m and tree depth d. Finally, after 300 iterative optimizations, optimal
model parameters are determined. The results show that the predictive performance of
model 1 can be neglected, and more time is consumed after more than 35 trees, while the
number of trees for model 2 is 141; therefore, the number n of trees of model 1 was set
to 35. The number n of trees of model 2 was set to 141. The prediction performance of
model 1 is best when the maximum tree depth d is 46 and the split variable m is 6. While
the prediction performance of model 2 is best when the maximum tree depth d is 24 and
the split variable m is 6. The final R2 of model 1 was 0.77, and the final R2 of model 2 was
0.80 (Table 5) (the R2 of the logistic regression model with the same independent variable
data set was 0.61 (Table A1) and 0.65 (Table A2). The final models were used to quantify
the importance of each built environment variable and draw partial dependency plots.

Table 5. Model parameters table.

Model Model 1 Model 2

Best decision tree scale n 35 141
Best split variable number m 6 6

Best tree depth d 46 24
R2 0.77 0.80

4.1. Relative Contributions of Independent Variables

Table 6 illustrates the relative importance of the independent variables in predicting the
individuals’ choice of active travel. The sum of the relative importance of all independent
variables was 100%, and the ranking was based on the magnitude of the relative importance.
Overall, the total contribution of the eight personal attributes to the influence role of walking
and cycling was 16.78% and 14.70%, respectively. The total contribution of the ten built
environments of residence to the influence role of walking and cycling was 41.13% and
42.92%, respectively, and the total contribution of the ten workplace-built environments to
the influence of walking and cycling was 42.09% and 42.38%, respectively. This indicates
that built environment factors of work and home are equally important in predicting active
travel mode choice and are more important than personal socio-demographic characteristics
of residents, which supports previous research that land use variables have a greater
impact on travel than demographics [19]. This result suggests that optimizing the built
environment is important for active travel, and that the residential built environment
and workplace-built environment should receive equal attention. The eight individual
socioeconomic attribute variables contribute in almost equal ranking to walking and cycling
mode choice, indicating that the relevant personal attribute elements had the similar
influence on both active travel choices. Age had the strongest influence on walking and
cycling, followed by education level and household economic factors, whereas gender and
car ownership has little influence on active travel patterns, with similar results found in
studies by Cheng et al. [37]. The results also show that residential built environment factors
have a slightly greater influence on the choice of cycling mode than on walking mode.

More specifically, the contribution of residential-built environment elements to walk-
ing mode choice was 41.13%, which was slightly less than the influence of workplace-built
environment elements to cycling mode choice (42.92%). For walking, the top three most
influential factors were: distance to the nearest cluster center (5.56%), distance to the city
center (4.51%), and job density (4.39%), which is consistent with the strongest relationship
between accessibility to regional centers and travel behavior in several studies [58,59].
The three most influential factors on cycling were: job density (4.83%), land-use diversity
(4.68%), and road network density (4.67%), which is consistent with previous research
suggesting that compact development leads to less driving [60]. This result suggests that
for walking, residential location has the greatest impact, as residents living in urban cen-
ters tend to travel shorter distances and they are more likely to walk. For cycling, road
density and land use mix are more important than district location, suggesting that cycling
responds more significantly to neighborhood design and land use characteristics. There-
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fore, to encourage cycling, these two points need to be prioritized. The job density near
residential plots is important for both walking and cycling, which demonstrates a relative
balance of jobs and housing is more conducive to promoting active travel.

Table 6. Relative contributions of independent variables on active mode choice.

Walk Bike

Categories Predictor Variables Ranking Relative
Importance Ranking Relative

Importance

Individual Attributes

Age 1 6.65%

16.78%

3 4.74%

14.70%

Gender 26 1.05% 27 0.87%
Education level 22 2.28% 22 1.98%
Housing area 23 2.05% 24 1.69%

Employment status 28 0.55% 23 1.82%
Car ownership 27 0.68% 28 0.72%
Family income 25 1.60% 26 1.33%
Family number 24 1.92% 25 1.55%

Built environment
attributes at

residential location

o_ Distance to the city center 6 4.52%

41.13%

7 4.67%

42.92%

o_ Land use intensity 13 4.12% 13 4.35%
o_ Intersection density 20 3.14% 19 3.59%

o_ Land use entropy index 10 4.36% 5 4.68%
o_ Distance to the nearest cluster center 2 5.56% 14 4.32%

o_ Population density 16 4.01% 9 4.64%
o_ Road network density 17 3.78% 6 4.68%

o_ Number of public transit stations 19 3.21% 20 3.17%
o_ Distance to the nearest stop 14 4.04% 16 3.99%

o_ Job density 9 4.39% 2 4.84%

Built environment
attributes at

work location

d_ Distance to the city center 3 4.77%

42.09%

4 4.71%

42.38%

d_ Land use intensity 12 4.18% 17 3.96%
d_ Intersection density 18 3.53% 18 3.59%

d_ Land use entropy index 8 4.40% 11 4.49%
d_ Distance to the nearest cluster center 4 4.67% 10 4.53%

d_ Population density 15 4.03% 1 5.04%
d_ Road network density 5 4.65% 12 4.44%

d_ Number of public transit stations 21 3.11% 21 2.96%
d_ Distance to the nearest stop 7 4.41% 15 4.00%

d_ Job density 11 4.33% 8 4.66%

The prefix “d_” means the built environment variable of the respondent’s destination. The prefix “o_” means the
built environment variable of the respondent’s residence.

The contribution of workplace-built environment factors to walking and cycling were
nearly identical, at 42.09% and 42.38%, respectively. All ten built environment variables
selected for the study explain active travel to a high degree, but the ranking of the degree
of influence of individual elements varies greatly. The top three most influential elements
for walking were: distance to the city center (4.77%), distance to the center of the nearest
cluster center (4.67%), and road network density (4.65%). Moreover, the three elements
with the greatest degree of influence on cycling were: population density (5.04%), distance
to urban centers (4.71%), and job density (4.66%). The results show that the population and
job density of the workplace has a greater impact on cycling, while the workplace location
and road network density have a greater impact on walking, which leads to a different
conclusion from the residential-built environment. The conclusion suggests that, while
focusing on jobs and housing balance, planning policies should be differentiated for job
centers and residential centers.

4.2. Nonlinear Effects of Residential Built Environment Variables

Figures 4 and 5 depict the threshold effect of residential built environment elements on
the short distance active travel mode choices. Overall, most residential built environment
elements have non-linear effects on short-distance active travel. This confirms the nonlinear
relationship between the residential built environment and short distance travel behavior.
Figures 4 and 5 show the specific nonlinear effects of typical residential built environment
elements on short distance walking and cycling.
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Figure 4. The effects of residential (O point) built environment variables on the choice to walk.
(a) Impact of distance to the urban center on walking choices; (b) impact of distance to the nearest
cluster center on walking choices; (c) impact of land use entropy index on walking choices; (d) impact
of land use intensity on walking choices; (e) impact of job density on walking choices; (f) impact of
road network density on walking choices.
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Figure 5. The effects of residential (O point) built environment variables on the choice to cycle.
(a) Impact of distance to the urban center on cycling choices; (b) impact of distance to the nearest
cluster center on cycling choices; (c) impact of land use entropy index on cycling choices; (d) impact
of land use intensity on cycling choices; (e) impact of job density on cycling choices; (f) impact of
road network density on cycling choices.

The effect of the distance of residence from the city center on the mode of cycling trips
was not markedly significant after 15 km, but it began to show a significant facilitating effect
on walking. The threshold point for a mode shift in the walking mode is 15 km, whereas
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the threshold for the turning point in cycling mode is smaller (in the 0–8 km range, the
further the residence is from the city center, the less likely residents are to choose cycling;
within 8–15 km, the negative effect reverses to a positive effect). The distance to the nearest
cluster center also has different effects on walking and cycling. Although the thresholds of
impact are all at 4 km, this distance is positively correlated with the probability of walking
when the distance to the nearest cluster center is less than 4 km, and the marginal effect
slows down beyond 4 km; when the distance to the nearest cluster center is less than 4 km,
this distance is negatively correlated with the probability of cycling, and then becomes
positively correlated. This suggests that the effects of location on walking and cycling
are different, and that policies to encourage walking and cycling should be imposed on
communities in different locations.

For land use characteristics, land use entropy index and land use intensity have non-
linear effects on both short distance walking and cycling. However, the non-linear effects of
land use characteristics on short distance walking and cycling differ. The land use entropy
index has opposite effects on walking and cycling, specifically, as land use entropy index
exceeds 0.65 and continues to increase, the probability of walking gradually decreases,
while the probability of cycling gradually increases. The effects of land use intensity on
walking and cycling are similar, with the probability of both walking and cycling decreasing
and then increasing as land use intensity rises. The difference is that the threshold for the
impact of land use intensity on walking is at 2.00 and for cycling at 3.20. This suggests
that different land use controlling indicators should be chosen for pedestrian and cycling
oriented neighborhoods.

Job density of residence is important for both walking and cycling, but job density has
very different non-linear effects on the two active travel modes. Job density has a significant
positive effect on walking, especially when the job density exceeds 12,500 jobs/km2, the
positive effect becomes more significant. However, the job density has the opposite effect
on cycling. As the job density increases, the probability of cycling decreases significantly,
and when it exceeds 10,000 jobs/km2, the negative effect diminishes and becomes a weak
positive effect. Road network density has a significant positive effect on walking, while
there is a significant cut-off point for cycling. Before the road network density reaches
5.50 km/km2, the road network density and cycling are negatively correlated, when the
road network density exceeds 5.50 km/km2, the negative correlation suddenly changes to a
significant positive correlation. This result proves that, in general, the rise in road network
density facilitates active travel and that the minimum value of road network density should
be 5.50 km/km2, and should be further improved.

4.3. Nonlinear Effects of Workplace- Built Environment Variables

Figures 6 and 7 show the threshold effects of workplace-built environment elements
on the choice of an active travel modes in short distance travels. Overall, most workplace-
built environment elements also have nonlinear effects on short-distance active travel.
Figures 6 and 7 show the specific nonlinear effects of typical workplace-built environment
elements on short distance walking and cycling. These effects differ from the relationship
between the residential built environment and short-distance active travel.

The distances from workplace to urban and nearest cluster center have significant and
varied effects on short distance active travel. Regarding the walking mode of transportation,
the closer the workplace is to the city center, the more likely it is to be chosen when the
distance from the urban center is between 0 and 8 km. After a distance of more than 8 km,
the further the workplace is from the city center, the more likely people are to choose to
walk. The effect of distance from the workplace to the nearest cluster center on the choice
of walking showed a significant positive effect. However, this effect was tapered after more
than 27 km. For the cycling travel mode, both the distance from the city center and the
distance from the cluster center show a positive correlation with the choice of cycling, but
the degree of influence is greater for distance from the city center, and the influence range
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is within 32 km, which is farther than the influence range of the proximity to the cluster
center (27 km).
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Figure 6. The effects of workplace-built (D points) environment variables on the choice to walk.
(a) Impact of distance to the urban center on walking choices; (b) impact of distance to the nearest
cluster center on walking choices; (c) impact of road network density on walking choices; (d) impact
of land use entropy index on walking choices; (e) impact of distance to the nearest public transit
station on walking choices; (f) impact of public transit station number on walking choices.
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Figure 7. The effects of workplace-built (D point) environment variables on the choice to cycle.
(a) Impact of distance to the urban center on cycling choices; (b) impact of distance to the nearest
cluster center on cycling choices; (c) impact of road network density on cycling choices; (d) impact of
land use entropy on cycling choices; (e) impact of distance to the nearest public transit station on
cycling choices; (f) impact of public transit station number on cycling choices.



Int. J. Environ. Res. Public Health 2023, 20, 1969 16 of 21

The road network density at the workplace affects walking and cycling choices in
completely opposite ways, with a road network density of 5 km/km2 being an important
turning point. A road network density below 5 km/km2 promotes the choice of walk-
ing mode and discourages the choice of cycling mode, whereas a road network density
above 5 km/km2 discourages the choice of walking mode and promotes the choice of
cycling mode.

There are also large differences in the way workplace land use entropy index affect
walking and cycling. At a land use entropy index less than 0.62, the increase in diversity
has a slight contribution to walking travel mode choice and a greater inhibitory effect on
cycling travel mode choice. At a land use entropy index greater than 0.62, the land use
entropy index sharply decreases the promotion of walking and greatly promotes cycling.
The average value of land use entropy index in Wuhan has already reached 0.65, which is
higher than most developed countries in Europe and the United States; therefore, for a city
like Wuhan, a further increase in land use mix is less effective in promoting short distance
active travel.

In terms of transit accessibility, the farther the distance from the nearest public trans-
portation station, the greater the possibility of choosing walking and cycling. This proves
that as transit accessibility decreases, active travel is a substitute for transit travel. However,
the number of public transit stations on the choice of walking and cycling mode is with an
increase in number, showing the effect of first inhibiting and then promoting. For walking,
the threshold point for the number of public transit stations is at 20, while for cycling, the
threshold point for the number of public transit stations is at 25. Above these thresholds,
the possibility of both walking and biking rises as the number of transit stops increases.

5. Discussion

This study examined the nonlinear effects of workplace and residential built environ-
ments on short-distance active travel using a random forest approach. First, this study
found that the built environment of residence and work had a relatively consistent effect
on walking and cycling. This differs from the conclusions reached by studies in Western
countries [22]. This paradox is largely related to the vast differences in residential choices
between Western and Chinese residents. Cities such as the U.S. have a large number of
residential areas in the suburbs with low densities and a single type of land use, while
Chinese residents tend to purchase homes close to the city center and sites near residential
areas also tend to have a higher distribution of jobs. Thus, residential locations in China’s
high-density cities also influence residents’ active travel choices as much as their workplace
locations. This suggests that place of residence and place of work should be given equal
weight in policy development. Second, the study also found that the built environment has
a greater impact on short-distance active travel than individual socioeconomic attributes.
Consistent with the findings of previous studies [19,22,33], this study further demonstrates
the importance of improving the built environment to promote short-distance walking
and cycling as an alternative to car travel. In addition, the present study differs from
the specific thresholds derived from studies on Western countries. They are mainly re-
flected in the elements of population density index, road network density index, and public
transportation station index. On the whole, the indicator values in this paper are slightly
higher than the research results in Europe and the United States, which may be due to
the differences in the feedback effect of residents on the built environment in different
countries, and is also related to the higher population density and the density of public
transportation facility sites in Wuhan city is related to the overall higher density of public
transportation facilities. In addition, the population density, land use mix and point density
of transportation facilities in the central city of Wuhan have reached or even exceeded the
optimal range for promoting active travel, and active travel can only be promoted through
more microscopic environmental improvements, such as the improvement of bicycle lanes
and increased street greening. On the other hand, the areas outside the third ring road of
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Wuhan are underdeveloped, so active travel can still be promoted by improving the land
use mix and transportation facility sites.

More importantly, the built environment of the workplace and residence has a different
effect on walking and cycling. Specifically, there are two thresholds for the “distance to
the city center” indicator for both walking and cycling, ranging from 0 to 8 km, the closer
to the city center, the more likely it is that both modes of travel will be chosen. In the
8–32 km distance range, the closer it is to the city center, the less likely it is to choose active
travel. Beyond 32 km, the influence of the city center became very weak. Whereas the
distance of residence and work from the city center act in the same way and threshold
effect on cycling, there is a difference for walking, i.e., in the distance range of 0–13 km, the
farther the residence from the city center, the less likely it is to choose walking, and after
13 km the opposite result is shown. It can be seen that the distance of residence from the
city center has a more distant effect on the range of walking trips. The land-use entropy
index had a minor effect on walking until 0.65, but a significant negative correlation with
cycling, whereas the land-use mixture index had a minor effect on cycling after 0.65, but a
significant negative correlation with walking. This suggests that land use diversity acts in
different ways for walking and cycling. This differs from previous studies that concluded
that land use diversity facilitates active travel [61,62]. This suggests that different land use
patterns should be used for cycling and pedestrian-oriented areas, rather than generalizing
and using the same land use indicators. In the older parts of Wuhan, planning policies
tend to encourage people to commute on foot, while in some of the newer, faster-paced
urban areas, policies encourage people to commute by bike. Different regions should adopt
different land use indicators based on the findings of the empirical study.

Population density, both at residence and workplace, showed a significant positive
correlation with walking trips. However, there is a threshold for the effect on cycling trips,
that is, from 0 to 2500 persons/km2, which shows a negative correlation, and only after
2500 persons/km2 has a positive correlation. It demonstrated that a higher population den-
sity can be an advantage for the choice of active travel modes. This is similar to established
studies. The road network density of residence and workplace can effectively promote the
choice of cycling travel mode after reaching 5.5 km/km2, but has a significant inhibitory
effect on walking, probably because the higher road network density makes the traffic more
complicated, the danger of walking travel increases, and the urban environment is not
conducive to walking commuting. This suggests that for pedestrian-oriented neighborhood
designs, the density of the street network is not better, but rather the safety and quality of
the pedestrian space should be improved to promote active travel [18].

The results of this study suggest that there are differences and contradictions in
the extent and modality of the impact of the built environment on residents’ choices
to walk or bike and that decisions need to be made in the context of the region’s own
development goals. For example, in many Chinese cities, the creation of a 15 min walkable
community requires the configuration of public transit stations, amenities, and other
facilities to encourage walking. More importantly, revealing the range of thresholds for
active travel in residential and workplace-built environments can provide fine-grained
guidance for environmental construction.

This study has some limitations that can be a direction for future in-depth studies.
First, the setting of short commute thresholds may differ for walking and cycling, which
requires further research into the range of distances that residents are willing to walk or
cycle to work, which may vary between cities. In addition, it is unclear whether the results
of this study are consistent because Wuhan is dominated by flat terrain and no relevant
studies are available for cities with large slopes.

6. Conclusions

To encourage active travel choices for short commutes, reduce carbon emissions from
cars, and promote the health of residents, this study focused on the mechanisms by which
the built environment at home and work affects the two main active travel modes of
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walking and cycling. In this study, a random forest model was used because there was
no need to determine the parametric relationships between variables in advance, and a
comparison with traditional logistics regression showed that random forests are more
effective at revealing complex relationships. The main findings are as follows: (1) overall,
the built environment is more important than individual socio-demographic attributes in
influencing both types of active travel. (2) Residential and workplace-built environments
are equally important in influencing active travel. (3) Most built environment factors have
non-linear effects on the two active travel modes, but there are large differences in the way
they affect walking and cycling.

Based on the above, the findings of this study are as follows. Built environment
characteristics such as location, density, and land use entropy index are closely related to
active travel. Therefore, these factors should be given priority in the ongoing planning
and construction of territorial spatial planning to promote active travel. Since the place of
residence and the place of work are equally important, community living area and business
center area planning should receive equal attention. However, for cycling-oriented and
pedestrian-oriented areas, differentiated planning policies should be developed to promote
active travel. In addition, in recent years, Wuhan has been committed to improving spatial
quality to promote active travel for residents to reduce their travel CO2 emissions and
promote the health of the residents after the COVID-19 pandemic. The results of our
empirical study can provide precise guidance for specific planning efforts.
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Appendix A

Table A1. Logistic regression results of walking.

Variables B S.E. Wald Sig. Exp(B) 95.0%C.I. for EXP(B)
Lower Upper

Built
environment

Density

o_ population density 0.000 0.000 4.753 0.029 1.000 1.000 1.000
d_ population density 0.000 0.000 54.455 0.000 1.000 1.000 1.000

o_ job density 0.000 0.000 52.580 0.000 1.000 1.000 1.000
d_ job density 0.000 0.000 26.057 0.000 1.000 1.000 1.000

o_ intersection density 0.011 0.003 14.452 0.000 1.011 1.005 1.017
d_ intersection density −0.005 0.003 2.715 0.099 0.995 0.989 1.001

o_ road network density 0.000 0.000 6.393 0.011 1.000 1.000 1.000
d_ road network density 0.000 0.000 0.082 0.775 1.000 1.000 1.000

o_ land use intensity −0.078 0.030 6.697 0.010 0.925 0.872 0.981
d_ land use intensity −0.100 0.029 12.058 0.001 0.905 0.855 0.957

Diversity o_ land use entropy index 0.020 0.156 0.016 0.898 1.020 0.751 1.385
d_ land use entropy index 0.229 0.154 2.204 0.138 1.257 0.929 1.699

Public transport
accessibility

o_ distance to the nearest public transit station 0.000 0.000 34.895 0.000 1.000 1.000 1.000
d_ distance to the nearest public transit station 0.085 0.015 32.980 0.000 1.089 1.058 1.121

o_ public transit station number 0.000 0.003 0.005 0.945 1.000 0.994 1.006
d_ public transit station number 0.001 0.003 0.161 0.688 1.001 0.995 1.007

District Location

o_ distance to the nearest cluster center −0.001 0.001 0.775 0.379 0.999 0.996 1.001
d_ distance to the nearest cluster center 0.011 0.006 3.302 0.069 1.011 0.999 1.023

o_ distance to the urban center 0.061 0.007 75.046 0.000 1.063 1.048 1.078
d_ distance to the urban center −0.063 0.009 51.798 0.000 0.939 0.923 0.955

Socio-demographics

family number −0.026 0.019 1.893 0.169 0.974 0.939 1.011
family income 0.038 0.021 3.071 0.080 1.038 0.996 1.083

house size −0.038 0.017 5.280 0.022 0.963 0.932 0.994
age 0.001 0.001 0.917 0.338 1.001 0.999 1.004

gender −0.180 0.030 36.836 0.000 0.835 0.788 0.885
education level −0.178 0.017 115.18 0.000 0.837 0.810 0.864

occupation 0.508 0.036 201.441 0.000 1.662 1.550 1.783
car ownership 0.141 0.034 17.057 0.000 1.152 1.077 1.231

constant −0.237 0.201 1.394 0.238 0.789

Table A2. Logistic regression results of cycling.

Variables B S.E. Wald Sig. Exp(B) 95.0%C.I. for EXP(B)
Lower Upper

Built
environment

Density

o_ population density 0.000 0.000 3.716 0.054 1.000 1.000 1.000
d_ population density 0.000 0.000 2.771 0.096 1.000 1.000 1.000

o_ job density 0.000 0.000 6.733 0.009 1.000 1.000 1.000
d_ job density 0.000 0.000 2.602 0.107 1.000 1.000 1.000

o_ intersection density 0.013 0.007 3.282 0.070 1.013 0.999 1.027
d_ intersection density 0.011 0.008 2.104 0.147 1.011 0.996 1.026

o_ road network density 0.000 0.000 2.781 0.095 1.000 1.000 1.000
d_ road network density 0.000 0.000 2.723 0.099 1.000 1.000 1.000

o_ land use intensity 0.187 0.074 6.433 0.011 1.206 1.043 1.394
d_ land use intensity 0.132 0.070 3.575 0.059 1.141 0.995 1.309

Diversity o_ land use entropy index 0.961 0.460 4.356 0.037 2.614 1.060 6.442
d_ land use entropy index −0.183 0.421 0.189 0.664 0.833 0.365 1.901

Public transport
accessibility

o_ distance to the nearest public transit station 0.000 0.000 0.021 0.886 1.000 1.000 1.000
d_ distance to the nearest public transit station 0.037 0.049 0.567 0.452 1.037 0.943 1.141

o_ public transit station number 0.008 0.007 1.181 0.277 1.008 0.994 1.022
d_ public transit station number −0.012 0.007 2.859 0.091 0.988 0.975 1.002

District Location

o_ distance to the nearest cluster center 0.005 0.003 2.240 0.134 1.005 0.999 1.011
d_ distance to the nearest cluster center −0.056 0.016 13.001 0.000 0.945 0.917 0.975

o_ distance to the urban center −0.026 0.019 1.847 0.174 0.974 0.939 1.012
d_ distance to the urban center 0.026 0.022 1.306 0.253 1.026 0.982 1.072

Socio-demographics

family number −0.154 0.048 10.357 0.001 0.857 0.780 0.941
family income −0.028 0.052 0.298 0.585 0.972 0.878 1.076

house size 0.043 0.042 1.062 0.303 1.044 0.962 1.134
age −0.043 0.004 115.858 0.000 0.958 0.951 0.966

gender 0.257 0.074 12.175 0.000 1.294 1.119 1.495
education level 0.270 0.042 40.433 0.000 1.309 1.205 1.423

occupation 0.319 0.090 12.543 0.000 1.375 1.153 1.641
car ownership −0.338 0.084 16.339 0.000 0.713 0.605 0.840

constant −1.925 0.541 12.669 0.000 0.146
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