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Abstract: The study demonstrated that the rate of spatial development is correlated with its fractal
dimension. The presented results indicate that the fractal dimension can be a useful tool for describing
different phases of urban development. Therefore, the formulated research hypothesis states that
the fractal dimension of cities’ external boundaries is correlated with the rate of spatial development
in urban areas. The above implies that the higher the rate of spatial development, the smoother
the external boundaries of urban investment. Rapidly developing cities contribute to considerable
changes in land management, in particular in municipalities surrounding the urban core. Urban
development processes often induce negative changes in land management and contribute to chaotic
and unplanned development. To address these problems, new methods are being developed for
modeling and predicting the rate of changes in transitional zones between urban and rural areas.
These processes are particularly pronounced in urban space, whose expansion proceeds at an uneven
pace. The aim of this study was to propose a method for describing urbanization processes that are
based on the dependence between the urban growth rate, the fractal dimension, and basic geometric
parameters, such as city area and the length of city boundaries. Based on the calculated changes in
the values of these parameters, a classification system was proposed to identify distinctive phases
of urban development. The study revealed that land cover databases are highly useful for such
analyses. The study was conducted on 58 medium-size European cities with a population of up to
300,000, including France, Germany, Italy, Poland, and Croatia. The study demonstrated that the
fractal dimension and the basic geometric parameters of urban boundaries are significantly correlated
with the rate of the spatial development of cities. The proposed indicators can be used to describe the
spatial development of urban areas and the rate of urban growth. The development of the analyzed
cities was modeled with the use of CORINE Land Cover (CLC) data for 2000–2006–2012–2018,
acquired under the EU Copernicus program.

Keywords: fractal dimension; urban development; urban and regional planning; CORINE Land
Cover (CLC)

1. Introduction
1.1. Spatial Development of Cities

Cities are the key areas in the development of every civilization, and they attract
considerable attention in various fields of scientific inquiry [1–3]. However, urban develop-
ment in Europe and the world is accompanied by negative phenomena. The accumulation
of uncontrolled social, economic, and spatial processes exacerbates the scale of the en-
countered problems and affects a growing number of people residing in cities and the
surrounding areas [4–7]. Increased mobility and unlimited access to mobile devices and
the Internet contributes to the growth of cities and the urban population [8].
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Urban development analyses indicate that urban expansion contributes to adverse
changes in land use and management [9]. The rapid development of cities leads to urban
crowding as well as land, water, and air pollution, which poses a public health risk [10].
Cities generally differ in structure and design, but upon closer inspection, certain similari-
ties can be observed in urban forms [11,12].

Wilson, Ware, and Ware described three types of processes in the development of
urban areas: infill development, expansion of the existing areas, and the creation of new
areas that are located remotely from the urban core. The new settlements can be isolated,
can be linear, or can form clusters [13].

One approach to identifying new urban areas postulates that infill development takes
place when at least 40% of the transformed land is surrounded by urbanized areas [14].
Most of these areas are equipped with basic technical infrastructure, such as roads and
public utilities, and with social infrastructure [13]. According to Ellman, the existing
infrastructure is the main prerequisite for infill development [15]. This is a rational approach
that accounts for the importance of infrastructure in the process of building cities. The
emergence of new settlements puts pressure on the local authorities to deliver the required
infrastructure [15,16]. From the point of view of landscape preservation and environmental
protection, infill development contributes to the loss of open areas and urban ventilation
corridors [17]. This approach confirms that urban development is strictly linked with a
city’s geometry; therefore, it can be described with the use of geometric parameters such as
surface area, a perimeter, and the fractal dimension.

Urban expansion takes place when the percentage of urbanized land surrounding
a given area does not exceed 50% [18]. This approach focuses mainly on changes in
land use, and urban expansion occurs when urban land-use types become predominant
in each territory [19]. The conversion of undeveloped land to urban land can involve
two processes [20]. The first process includes changes in the transitional zone, which is
characterized by low availability of infrastructure. The second process involves changes
outside the transitional zone, where new settlements are highly dispersed, and they are
referred to as urban villages. Therefore, the existing land-use types are indicative of the
stage of urban development, which implies that land cover data can also be used to analyze
the spatial expansion of cities [21,22].

Urban expansion has far-reaching consequences for the functioning of entire ecosys-
tems as well as the residents of urban, transitional, and rural areas [23]. This type of urban
development is referred to as boundary or border development, where urban areas expand
in parallel bands with an outer edge [1]. The above phenomenon is linked with the concept
of the urban growth boundary (UGB), which has been extensively explored in the litera-
ture [24–27]. New settlements can be also remotely established from the existing urban
centers [20]. The resulting changes in land use take place outside the transitional zone,
and they are termed as leapfrog development [9]. The establishment of new settlements
at a certain distance from the urban core is also known as isolated development, and it is
characteristic of rural areas where new additions to the existing clusters of buildings match
the local architectural style.

1.2. Fractal Dimension in Analyses of Urban Development

Urbanization is one of the most dynamic global processes. Urbanization drives social
and economic growth, which is why cities continue to expand their area and population.
Urbanization induces profound changes in space, and it gradually modifies land-use
structures. Urban spaces and changes in areas that are directly subjected to urbanization
pressure should be monitored. New analytical methods and techniques are needed to
reliably assess the nature and rate of urbanization, in particular the spatial expansion of
cities [28].

An analysis of the literature indicates that the boundaries of a city rarely coincide with
its administrative boundaries and are difficult to define. The course and geometry of city
boundaries play a key role in urban development, which is why they attract considerable
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research interest. Urban areas have a complex and extensive spatial structure, and the
distance from the city center to city boundaries is difficult to determine. The boundaries of
urban areas play a key role in urban research. However, the length of urban boundaries
and the area enclosed by these boundaries cannot be objectively defined [29–32]. Therefore,
the length of the urban boundary has to be accurately measured to determine the size of
the urban population.

Increasingly accurate models of urban development are being developed to address
progressing urbanization, which poses one of the greatest civilizational problems in the
world. Research into local factors that promote urban development indicates that cities
are self-organizing structures [33]. One of the most interesting approaches to analyzing
urban development and changes in urban boundaries posits that cities should be regarded
as fractal units [34]. A fractal is a geometrical figure whose individual parts are similar
to the whole [35,36]. By definition, a fractal is a set for which the Hausdorff–Besicovitch
dimension strictly exceeds the topological dimension [37,38]. A fractal is scaleless, and it
cannot be described with traditional units such as length, surface area, volume, or density.

The fractal dimensions of cities are generally defined in two-dimensional space on the
basis of digital maps and remote-sensing images [9,10,20]. If an urban fractal is defined in
two-dimensional space, the urban area and the urban boundary can be described with the
use of fractal dimensions. The urban boundary can be regarded as a fractal line [36,39–41].
A closed curve representing the urban boundary is defined as the urban periphery, where
the Euclidean pattern of urban space can be described [37,42]. In practice, the upper
boundary and the lower boundary of the fractal dimension of urban space are influenced
by the method applied to define the study area. Two approaches can be used to derive
the fractal time series of urban growth [43,44]. The first approach relies on a fixed study
area [45] and the second approach on a variable study area [46,47].

In the literature, all fractal images represent prefractals, rather than true fractals in a
mathematical sense. A true fractal has an infinite number of iterations that can be revealed
only in the world of mathematics. A prefractal has a limited number of hierarchical levels
with a fractal geometry. Cities are accidental prefractals rather than true fractals because
the urban form cannot be described on a characteristic scale [48].

Two approaches have been proposed for determining the fractal dimensions of urban
areas. In the first approach, fractal dimensions are calculated for the shape of a city’s
boundary, whereas in the second approach, fractal dimensions are linked with the density
of urban development [33]. These approaches imply that urban development resembles the
growth of two-dimensional particle aggregates [49]. Several concepts have been proposed
for modeling the spatial development of cities. A recent approach makes a reference to
cluster expansion in terms of statistical physics, and it posits that new objects are not added
to the cluster but rather are linked with it [50]. A model describing the development of
urban settlements as miniature cities (subclusters) relies on the assumption that urban
growth fuels further growth. According to the various approaches to urban development
in the literature, urban growth should be regarded as a process of organic growth that
begins in the urban core and spreads to miniature cities outside the urban core [28,51].

Spatial databases containing information about land cover as well as advanced tech-
niques for processing and modeling spatial data are vast sources of knowledge, and they
can be deployed to develop new tools for identifying and monitoring urban sprawl [52–54].
The CORINE Land Cover (CLC) database supports broad spatial analyses because the data
describing land cover in Europe are characterized by spatial continuity and enable the
nonambiguous identification of various land-use types. Most importantly, CLC databases
are regularly developed, which facilitates analyses of the dynamics and rate of changes and
supports forecasting. Other sources of data, such as the Urban Atlas and the Global Human
Settlement Layer, are less versatile in this respect [15]. According to the literature, the CLC
is a far more useful resource for small-scale studies, but it is a less reliable tool for analyses
conducted on a larger scale [17]. The CLC project, initiated in 1985 and updated in 2000,
2006, 2012, and 2018, provides information on the EEA member countries (39 countries,
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EEA39). The minimum mapping unit (MMU) in the CLC is 25 hectares (ha) for aerial
phenomena and a minimum width of 100 m for linear phenomena. Land cover is mapped
mainly on the basis of the visual interpretation of high-resolution satellite images. The CLC
data set consists of 44 land cover classes grouped into five main categories: artificial sur-
faces, agricultural areas, forest and seminatural areas, wetlands, and water bodies [55–57].
Studies that rely on CLC data have certain limitations, such as the detailed nature of input
data and interpretation methods and, consequently, a high degree of generalization. In
areas characterized by considerable land fragmentation, the results can be generalized into
dominant land-use types, which leads to a certain loss of information.

In this study, the development of urbanized areas was described and modeled with the
use of the fractal dimension calculated on the basis of CLC data. The main aim of this study
was to propose a method for describing the spatial development of a city. Basic geometric
parameters were computed in selected European cities, and changes in these parameters
were analyzed over time to propose a formula for describing and classifying cities on the
basis of their stage of evolution. This research is important because of the importance of
monitoring urbanization processes. The adopted method makes it possible to identify the
trends and dynamics of the processes taking place, providing an important indicator for
optimizing the spatial policy of the cities under analysis. The proposed procedure may
contribute to extending the scope of research in spatial terms (selection of analyzed cities),
in temporal terms (successive time intervals), and in terms of indicators (the analysis may
be extended by adding subsequent indicators, e.g., number of inhabitants). The application
of new elements in the analysis may contribute to the enrichment of empirical research
in the identification of urban development processes. The spatial expansion of cities, the
fractal dimension, and CLC data are described in the Introduction. The cities selected for
the study and the procedure for calculating the fractal dimensions of city boundaries and
the rate of urban development are described in the Section 2. The indicators calculated for
the analyzed cities, the increase in the urban area, and the fractal dimension of the analyzed
cities are presented, and the examined cities are classified on the basis of the stages of
urban expansion in different time intervals in the Section 3. The results are discussed in the
Section 4, and the recommendations for future research are formulated in the Section 5.

2. Materials and Methods
2.1. Study Area

The rate of spatial development was analyzed in 58 European cities, which were
selected for the study on the basis of the availability of CLC data for 2000, 2006, 2012,
and 2018 (Figure 1). The evaluated medium-size cities had a population of up to 300,000
at the beginning of the analyzed period. Owing to considerable differences in the social
and economic development of European cities, only cities in the European Union, includ-
ing France, Germany, Italy, Poland, United Kingdom, and Croatia, were selected for the
study. In line with the New Urban Agenda [58], the study was conducted in European
cities with the greatest potential to make Europe a global reference point for identifying,
experimenting, and applying solutions to future urban challenges [59]. Land cover data for
the examined cities were acquired from the CLC database for 2000, 2006, 2012, and 2018.
CORINE Land Cover data are publicly available, and they are stored and managed by the
respective national authorities in the EU [60]. In addition, the use of data from the CLC
database, owing to the different levels of accuracy in the data sets, where older data sets
have less accuracy than newer ones, required visual verification of the different land-use
types occurring for each urban area. The authors in this paper wanted to accurately de-
termine geometric indicators for urban areas, so they focused on 58 European cities, and
they bore in mind that historical CLC data sets have some limitations, such as the detailed
nature of the input data and methods of interpretation.
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Figure 1. Location of the analyzed cities.

The cities located in different European countries and characterized by various spatial
attributes were compared to verify the fractal dimension as an indicator for evaluating
the rate of urban development. The analyzed set included coastal cities (Aberdeen, Rijeka,
Trieste) as well as inland cities (Cheltenham, Strasbourg, Crawley). The limiting effect of
rivers’ intersecting urban areas was also considered. In the past, rivers played an important
role in the establishment of urban settlements, and they presently pose a significant barrier
to the expansion of local transportation systems. Therefore, cities intersected by rivers
(Verona, Norwich, Nantes) as well as cities that were not built around water courses
(Oviedo, Białystok, Erfurt) were included in the analysis. The social, economic, legal,
and spatial aspects of urban development differ across European countries; therefore, the
evaluated cities most probably differ according to other distinguishing features. The fractal
dimension was determined to objectivize the process of describing urban development.

The available sources of land cover data were analyzed for the needs of this study.
The CLC inventory was selected thanks to its availability, broad coverage, and confirmed
usefulness in evaluations of urban development [61–64]. The boundaries of urban areas
had to be determined in detail; therefore, land use was described on the basis of level 3
CLC data. The land cover map for selected cities is presented in Figure 2. In the studied
group of 48 cities, land cover was determined at two points in time on the basis of CLC data
for 2000, 2006, 2012, and 2018. This approach supported the identification of significant
changes in the fractal dimension of city boundaries. The boundaries of the studied cities
were identified in detail, which facilitated analyses of the rate of urbanization.
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2.2. Procedure for Calculating the Fractal Dimension of Boundaries and the Rate of Urban
Development

This study was inspired by the referenced works and by research into the dependence
between the fractal dimension of the external boundaries of various land-use types and the
degree of anthropogenic pressure [64].

For the needs of the study, urban areas were selected by determining which of the 58
land cover classes in the CLC inventory should be used for further analysis. The main land
cover classes characteristic of urban areas were described on the basis of the principles for
identifying urban morphological zones (UMZs). In the CLC inventory, level 1 landscape
patterns represented artificial surfaces. In some cities, level 3 patterns denoting forests
and seminatural areas were also classified as urban areas. This was the case when forests
and seminatural ecosystems were surrounded in their entirety by artificial surfaces. The
selected areas were then aggregated into a single group. In the following step, urban
boundaries were verified on the basis of high-resolution satellite images for the analyzed
time periods [65]. The procedure was repeated for CLC 2000, 2006, 2012, and 2018 data. The
urban boundaries identified on the basis of CLC data for 2000 2006, 2012, and 2018 were
compared to identify changes in urbanization processes in the evaluated cities (Figure 3).
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In this study, the fractal dimension of urban development was analyzed on the basis
of research into land cover and land-use types [51,66]. The fractal dimension of urban areas
was determined with the box-counting method. The hierarchical grid method proposed
by De Cola was used, where a grid of boxes is superimposed on a fractal, and the objects
intersected by the fractal are counted [67]. In this approach, the number of boxes represents
the fractal’s surface area, and the combined length of box edges is the fractal’s perimeter.
The size of the boxes in the grid overlay is decreased in successive iterations. The box-
counting method is used to identify changes in the fractal’s perimeter when the length of
the box edges is decreased [68]. In urban structures, the number of elements in successive
iterations is not constant; therefore, the box-counting dimension is defined as a boundary
value where the length of the box sides decreases toward zero. According to Equation (1),

O = c ∗
√

S
D f (1)

where

O is the perimeter;
c is the shape constant;
S is the surface area;
Df is the box-counting fractal dimension.

Therefore, the box-counting dimension is defined by Equation (2):

D f =
log O

log
√

S
(2)

The box-counting dimension is determined as the slope of a regression line in a graph
presenting the correlations between log values. In practice, real-world objects are usually
modeled with the box-counting method and the compass-walking method. The relevant
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technique has to be selected when planning the experiment because it will influence the
preparation of input data and the choice of calculation methods.

The obtained results were compared with CLC data, which were acquired under the
Copernicus program. The CLC inventory was used because not all urbanized areas are
contained within the administrative boundaries of cities. As a result, these areas are not
taken into account in analyses of the spatial development of cities. There is no single
harmonized definition of a city and a functional urban area, which considerably impedes
analyses of European cities [19]. For this reason, the boundaries of urban areas were
identified by introducing the urban morphological zone (UMZ) concept, which denotes
continuous urban fabric with different population density. An urban morphological zone
can be defined as “a set of urban areas laying less than 200 m apart”. These urban areas
are defined on the basis of land cover classes describing the urban tissue and function [69].
The UMZ database was created by the European Environment Agency (EEA) on the basis
of CLC data and automated methods for defining the boundaries of urban agglomerations.
Maximum distance is the key criterion. Urban morphological zones comprise areas of
dense urban development (separated by a maximum distance of 200 m), and they consist
of the following land cover classes: continuous or discontinuous urban fabric, industrial or
commercial units, green urban areas, selected forest areas, port areas, airports, sport and
leisure facilities, and road and railway networks [70]. The adopted solution for identifying
urban areas relied on a set of spatial data developed on the basis of the CLC inventory and
the assumptions for defining UMZs [71].

The calculation of the fractal dimension and the determination of the rate of urban
development in the analyzed cities between 2000–2006, 2006–2012, and 2012–2018 were
important steps in the adopted procedure. A standard urban development model was
adopted to describe population growth and human behaviors relating to optimal decision-
making within the allocation of time and according to required effort and resources. There
are many examples linking the applied model with economic, social, and health-related
behaviors, including descriptions of the exponential growth of urban populations [72,73].

The fractal dimension (Df) was calculated with the box-counting method, also known
as the area-perimeter method. In the adopted approach, the variables were the surface
area of the fragments of the grids covering the studied object (S), which is described by the
number of boxes, and the object’s perimeter (O), which is expressed by an equal number
of box edges in a given fragment of the grid. All calculations were performed in the
QGIS program. A geographic database containing information about land-use types in the
analyzed years and classes of objects representing grid boxes with specific dimensions was
generated. An algorithm was created for calculating the surface area and the perimeter of
grid boxes. The fractal dimension was calculated on the basis of the values computed for
boxes with a minimum surface area of 625 m2 and a maximum surface area of 625 km2.
The box area was determined in 30 steps. The algorithm was tested and applied to boxes in
each size category on the basis of CLC data for 2000, 2006, 2012, and 2018. The increase in
the fractal dimension (∆Df) was calculated with the use of Equation (3):

∆D f =

(
D2i − D1i

D2i

)
(3)

where

∆Df is the increase in the fractal dimension;
D1 is the fractal dimension in time t;
D2 is the fractal dimension in time t + 1;
i is the number for the analyzed city.

The increase in the fractal dimension of cities’ external boundaries is correlated with
the rate of spatial development in urban areas. Higher values of increase in the fractal
dimension imply a higher rate of spatial development, creating a ragged and dendritic
urban fabric. On the other hand, the lower values of the increase indicator are related mostly
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to filling the areas between the main traffic routes and areas vulnerable to the pressures of
urbanization processes while avoiding natural and anthropogenic obstacles. The study was
expanded to include an analysis of changes in the area and perimeter of geometric figures
that represent urban land-use types and were used to calculate the fractal dimension. The
rate of changes in figure geometry and the fractal dimension was determined in successive
time intervals: 2000–2006, 2006–2012, and 2012–2018.

The spatial development of cities (increase in urban area) in each time interval (2000–
2006, 2006–2012, and 2012–2018) was calculated with the use of Equation (4):

∆Ai =

(
A2i − A1i

A2i

)
(4)

where

∆A i is the urban growth rate i city;
A1 is the urban area in time t;
A2 is the urban area in time t + 1,
i is the number for the analyzed city.

The values of the urban growth ∆Ai rate indicator can range from 0 to several points.
Values close to 0 indicate that a city’s area did not increase in the analyzed period, which
implies that its development was inhibited. This is often the case when urban development
is constrained by natural or artificial barriers. Values higher than 1 are indicative of dynamic
urban development.

The increase in the perimeter of the geometric figure, i.e., the increase in the length of
city boundaries, was calculated with the use of Equation (5):

∆Pi =

(
P2i − P1i

P2i

)
(5)

where

∆APi is the increase in the length of i city boundaries;
P1 is the boundary length in time t;
P2 is the boundary length in time t + 1;
i is the number for the analyzed city.

The increase in boundary length denotes the degree of figure filling. Ragged bound-
aries are longer, and they could imply that a rapidly developing city has annexed the
surrounding areas. In turn, smoother boundaries are shorter, which suggests that the urban
fabric is more compact and urban growth relies mainly on infill development (for example,
in vacant areas between transport routes).

In order to organize the steps taken in the procedure for determining the phases of
urban development, we can identify three stages. The first involves the determination of
the study area. Within the framework of the activities undertaken, it is necessary to make
a selection of cities and characterize the data sets that allow the identification of urban
processes. The second stage involves data analysis and the determination of boundaries
and classes characteristic of urbanized areas. The next step assumes the calculation of
basic geometrical parameters (area, perimeter) and the fractal dimension. According to
the acquired data, an increase in the above indicators is determined for the available
time intervals. The last step involves the verification of the obtained results and the
determination of a pattern for classifying the stages of urban development for every city.
The respective increases in the fractal dimension (∆Df), area (∆A), and boundary (perimeter)
length (∆P) were calculated in the next step. The relationships between the calculated
values were analyzed in all time intervals, but significant correlations were not observed.
Therefore, it was assumed that the calculated increases can provide additional information
on spatial expansion. An urban expansion matrix was developed on the basis of the
calculated increase in the analyzed parameters and literature data (Table 1). The examined
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cities were assigned to different urban expansion classes on the basis of the calculated
changes in perimeter, area, and the fractal dimension. All possible change combinations in
2000–2006, 2006–2012, and 2012–2018 were determined, and the increase (↑) and decrease
(↓) in the analyzed indicators were calculated. The resulting urban expansion matrix was
composed of eight classes, and it was used to determine the rate of spatial changes in each
city. The classification process based on the urban expansion matrix is presented in Table 1.

Table 1. Urban expansion matrix for dividing the analyzed cities into eight classes. ↑ represents an
increase in perimeter (P), area (A), or fractal dimension (Df) in the analyzed period; ↓ represents a
decrease in perimeter, area, or fractal dimension in the analyzed period.

Class P A Df
8 ↑ ↑ ↑
7 ↑ ↑ ↓
6 ↑ ↓ ↑
5 ↑ ↓ ↓
4 ↓ ↑ ↑
3 ↓ ↑ ↓
2 ↓ ↓ ↑
1 ↓ ↓ ↓

Note: The colours used in the table symbolize the different phases of spatial expansions, labelled as in Table 3 and
Figure 4.

On the basis of the calculated changes in perimeter, area, and the fractal dimension,
the analyzed cities were divided into eight classes, denoting different phases (stages) of
spatial expansion. The proposed classes are described below:

Class 8— in this rapid urban expansion, the city expands in an uncontrolled manner in all
directions. New urban fabric is ragged and dendritic.

Class 7— urban expansion involves mainly infill development between major transport
routes, and obstacles are bypassed. Areas that are relatively sensitive to urban-
ization pressure are annexed by the city. City boundaries are more compact and
regular.

Class 6— urban expansion takes place only in the vicinity of urban infrastructure. Urban
boundaries are smoother, but the city has a dendritic shape.

Class 5— urban expansion takes place in areas that are more resistant to anthropogenic
pressure. Urban boundaries are smoother and more compact.

Class 4— urbanized areas disappear. City boundaries are more ragged and dendritic in
shape. Examples of the above include reclaimed areas with urban infrastructure,
in particular linear infrastructure.

Class 3— in urban regression, urbanized areas disappear from the urban periphery. Urban
boundaries are compact but ragged.

Class 2— in the regression phase, urbanization regresses, and urbanized areas are found
mainly in the vicinity of linear infrastructure. Urban boundaries evolve into a
dendritic shape.

Class 1— full regression occurs in all directions.

The developed classification system was used to describe the phases of urban develop-
ment in the examined cities in 2000–2006, 2006–2012, and 2012–2018. The proposed method
was applied to examine the intensity and rate of changes in urban development.

3. Results

The study was conducted in 58 European cities. Their surface area, perimeter, and
fractal dimension (Df) calculated on the basis of CLC data for 2000, 2006, 2012, and 2018 are
presented in Table A1. The urban growth rate indicator was calculated for all cities on the
basis of the increase in their area, perimeter, and fractal dimension in 2000–2006, 2006–2012,
and 2012–2018 (Table 2).
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Table 2. Increase in the area, perimeter, and fractal dimension of the analyzed cities.

No. City
∆A

2000–
2006

∆P
2000–
2006

∆Df
2000–
2006

∆A
2006–
2012

∆P
2006–
2012

∆Df
2006–
2012

∆A
2012–
2018

∆P
2012–
2018

∆Df
2012–
2018

1 Aberdeen 0.034 0.059 0.002 0.017 −0.040 −0.004 0.022 0.004 0.003
2 Alicante 0.609 0.363 0.017 −0.051 −0.228 −0.023 0.034 0.051 0.006
3 Almeria 0.450 0.078 0.014 0.241 −0.131 −0.014 0.001 0.001 0.000
4 Augsburg 0.036 0.010 0.002 0.164 0.039 −0.013 0.003 −0.003 0.000
5 Basel 0.078 0.087 0.012 0.074 −0.046 −0.005 0.011 0.012 −0.007
6 Białystok 0.168 0.567 0.037 0.065 0.013 0.000 0.041 0.057 0.002
7 Bordeaux 0.043 0.032 0.004 0.112 0.003 0.000 0.010 −0.015 −0.001
8 Bournemouth 0.029 −0.046 −0.005 0.022 0.032 0.006 0.001 0.004 0.000

9 Brighton and
Hove 0.044 −0.033 −0.003 0.021 −0.030 −0.002 0.010 0.028 0.003

10 Brunswick 0.056 0.090 0.009 0.222 −0.139 −0.019 0.002 0.000 0.000
11 Burgos 0.116 0.946 0.102 0.177 −0.042 −0.001 0.323 0.274 0.030
12 Cambridge 0.331 0.247 0.011 0.046 0.023 0.003 0.023 −0.017 −0.002
13 Cheltenham 0.037 0.112 0.013 0.016 −0.015 −0.003 0.008 0.025 0.003
14 Chemnitz 0.055 −0.042 −0.004 0.346 0.369 −0.004 −0.020 0.041 0.003
15 Colchester 0.149 −0.144 −0.021 0.026 −0.035 −0.003 0.019 0.011 0.002
16 Crawley 0.399 0.346 0.018 0.013 −0.001 0.000 0.003 0.002 0.000
17 Częstochowa 0.359 0.434 −0.014 0.014 0.016 0.002 0.002 0.000 0.000
18 Derby 0.009 0.118 0.019 0.002 0.083 0.008 0.019 0.049 0.006
19 Erfurt 0.101 0.168 0.014 0.072 0.045 0.007 0.010 0.020 −0.004

20 Freiburg im
Breisgau 0.044 0.097 0.014 0.065 0.007 0.001 0.004 0.012 0.007

21 Geneva 0.158 0.050 0.009 0.023 0.024 0.003 0.013 0.006 −0.001
22 Gloucester 0.062 0.071 0.011 0.054 −0.078 −0.007 0.046 −0.010 −0.002
23 Osijek 0.004 −0.001 0.000 0.055 0.085 0.012 0.000 0.000 0.000
24 Rijeka 0.480 0.556 0.004 0.007 0.009 0.001 0.007 0.008 0.003
25 Split 0.324 0.494 −0.015 0.007 0.011 0.001 0.000 0.000 0.000
26 Graz 0.234 0.400 0.007 0.004 −0.007 −0.001 0.005 0.004 0.000
27 Karlsruhe 0.025 0.015 0.003 0.148 −0.063 −0.006 0.020 0.048 −0.001
28 Kiel 0.025 −0.002 0.001 0.093 −0.016 −0.010 −0.001 −0.018 0.002
29 Linz 0.082 0.070 −0.005 0.033 0.019 0.002 0.006 −0.003 0.000
30 Lubeck 0.033 0.075 0.007 0.115 −0.013 −0.004 0.029 0.016 0.001
31 Luton 0.010 −0.029 −0.004 0.004 0.025 0.004 0.006 0.007 0.000
32 Magdeburg 0.025 0.007 0.003 0.039 0.086 0.005 0.001 0.000 0.000
33 Messina 0.083 −0.060 −0.040 0.017 0.012 0.001 0.017 0.068 0.009
34 Milton Keynes 0.122 0.009 0.002 −0.001 0.071 0.008 0.023 0.038 0.005
35 Monchengladbach 0.007 0.001 0.000 0.579 0.362 −0.020 0.009 −0.003 −0.005
36 Munster 0.040 0.114 0.016 0.068 −0.007 0.020 0.000 0.000 0.000
37 Nantes 0.071 0.023 0.004 0.047 −0.038 −0.005 0.013 −0.009 −0.001
38 Newport 0.123 0.149 −0.016 0.030 −0.035 −0.004 0.002 0.008 0.001
39 Northampton 0.153 0.092 0.008 0.016 0.031 0.003 0.016 0.003 0.001
40 Norwich 0.179 0.014 0.005 0.035 0.067 0.005 0.019 0.028 0.004
41 Oviedo 0.336 0.226 0.019 0.154 −0.001 −0.006 0.006 0.016 0.001
42 Padua 0.081 0.087 0.011 0.065 −0.003 −0.001 0.019 0.005 −0.002
43 Radom 0.436 0.321 0.011 0.129 0.030 −0.001 0.023 0.024 0.002
44 Rennes 0.154 0.280 0.036 0.023 −0.009 −0.001 0.040 −0.033 −0.005
45 Rostock 0.059 0.059 0.010 0.120 −0.003 −0.004 0.003 −0.002 0.000
46 Salzburg 0.044 0.194 0.007 −0.019 0.040 0.004 0.000 0.006 0.001
47 Santander 0.259 −0.079 0.001 0.090 0.242 0.012 0.002 −0.003 0.000
48 Stavanger 0.020 0.029 −0.006 0.041 0.001 0.002 0.032 −0.016 0.001
49 Strasbourg 0.049 −0.003 0.003 0.021 0.029 0.001 0.002 −0.003 −0.001
50 Tampere 0.036 0.046 0.006 0.110 0.007 0.003 0.050 −0.037 −0.003
51 Taranto 0.014 0.038 0.003 0.028 −0.044 −0.002 0.026 −0.031 −0.004
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Table 2. Cont.

No. City
∆A

2000–
2006

∆P
2000–
2006

∆Df
2000–
2006

∆A
2006–
2012

∆P
2006–
2012

∆Df
2006–
2012

∆A
2012–
2018

∆P
2012–
2018

∆Df
2012–
2018

52 Toruń 0.435 0.543 −0.002 0.093 0.094 0.002 0.003 0.002 0.000
53 Trieste 0.269 0.314 0.041 0.116 0.056 −0.008 0.009 0.015 0.001
54 Trondheim 0.016 0.067 0.010 0.078 0.022 0.000 0.010 0.002 0.001
55 Uppsala 0.018 −0.005 −0.001 0.036 0.054 0.010 0.005 −0.015 −0.001
56 Västerås 0.043 0.145 0.015 0.012 −0.006 −0.001 0.353 2.557 0.061
57 Verona 0.673 1.216 0.012 0.010 −0.001 0.000 0.029 0.106 −0.002
58 Vigo 0.226 1.338 0.056 0.018 −0.003 0.000 −0.240 −0.712 −0.052

In terms of the increase in city area (∆A), the values of the urban growth rate indicator
considerably differed across the examined time intervals. In 2000–2006, the greatest increase
in urban area was noted in Verona (0.673), Alicante (0.609), and Rijeka (0.480). In 2006–2012,
the greatest increase in urban area was observed in Monchengladbach (0.578), Chemnitz
(0.346), and Almeria (0.2410). These cities are popular tourist destinations with similar
locations and geographical features, which suggests that these factors played a role in their
development in the analyzed periods. Similar observations were made in the last time
interval. In 2012–2018, the greatest increase in urban area was noted in Västerås (0.353),
Burgos (0.323), and Tampere (0.050). An analysis of changes in the fractal dimension (∆Df)
over time produced equally interesting results in 2000–2006: the greatest increase in the
fractal dimension was observed in Burgos (0.102), Vigo (0.056), and Trieste (0.041). In
2006–2012, the greatest increase in the fractal dimension was noted in Munster (0.020),
Santander (0.012), and Osijek (0.010). In 2012–2018, the greatest increase in the fractal
dimension was observed in Västerås (0.061), Burgos (0.030), and Messina (0.009). The
greatest increase in city perimeter (∆P) was noted in Vigo (1.338), Verona (1.216), and
Burgos (0.946) in 2000–2006; in Chemnitz (0.369), Monchengladbach (0.362), and Santander
(0.242) in 2006–2012; and in Västerås (2.557), Burgos (0.274), and Verona (0.106) in 2012–2018.
Moreover, the greatest increase in the analyzed parameters was observed in cities that are
popular tourist destinations and, in two cases (Chemnitz and Munster), in rapidly growing
industrial centers. In some cases, the analyzed parameters increased at a steady rate, which
confirms the hypothesis that urban expansion proceeds at an uneven rate.

In line with the adopted procedure, the analyzed cities were divided into eight classes
describing different phases (stages) of spatial development in the examined time intervals.
The examined cities were allocated to different classes on the basis of the previously
calculated increase (↑) or decrease (↓) in city area, perimeter, and the fractal dimension in
2000–2006, 2006–2012, and 2012–2018 (Tables 1 and 2). The resulting classification of the
analyzed cities is presented in Table 3.

Table 3. Classification of cities in the analyzed time intervals.

No. City 2006 2012 2018
1 Aberdeen 8 5 8
2 Alicante 8 1 8
3 Almeria 8 5 8
4 Augsburg 8 7 5
5 Basel 8 5 7
6 Białystok 8 8 8
7 Bordeaux 8 8 5
8 Bournemouth 5 8 8
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Table 3. Cont.

No. City 2006 2012 2018

9 Brighton and
Hove 5 5 8

10 Brunswick 8 5 6
11 Burgos 8 5 8
12 Cambridge 8 8 5
13 Cheltenham 8 5 8
14 Chemnitz 5 7 4
15 Colchester 5 5 8
16 Crawley 8 5 8
17 Częstochowa 7 8 1
18 Derby 8 8 8
19 Erfurt 8 8 7

20 Freiburg im
Breisgau 8 8 8

21 Geneva 8 8 7
22 Gloucester 8 5 5
23 Osijek 5 8 8
24 Rijeka 8 8 8
25 Split 7 8 1
26 Graz 8 5 8
27 Karlsruhe 8 5 7
28 Kiel 6 5 2
29 Linz 7 8 5
30 Lubeck 8 5 8
31 Luton 5 8 8
32 Magdeburg 8 8 5
33 Messina 5 8 8
34 Milton Keynes 8 4 8
35 Monchengladbach 8 7 5
36 Munster 8 6 1
37 Nantes 8 5 5
38 Newport 7 5 8
39 Northampton 8 8 8
40 Norwich 8 8 8
41 Oviedo 8 5 8
42 Padua 8 5 7
43 Radom 8 7 8
44 Rennes 8 5 5
45 Rostock 8 5 5
46 Salzburg 8 4 8
47 Santander 6 8 5
48 Stavanger 7 8 6
49 Strasbourg 6 8 5
50 Tampere 8 8 5
51 Taranto 8 5 5
52 Toruń 7 8 1
53 Trieste 8 7 8
54 Trondheim 8 7 8
55 Uppsala 5 8 5
56 Västerås 8 5 8
57 Verona 8 6 7
58 Vigo 8 5 1

Note: The colours used in the table symbolize the different phases of spatial expansions, labelled as in Table 1 and
Figure 4.

The proposed classification system presents the stages of urban expansion in 58
European cities in 2000–2006, 2006–2012, and 2012–2018. Rapid changes in the rate of
spatial development can be observed across the examined time intervals. Some cities were
assigned to radically different classes in each period, including Alicante (8-1-8), whereas
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a rapid decrease in the rate of spatial development was observed in Split, Częstochowa,
and Toruń (7-8-1). Between 2000 and 2018, a high and steady rate of urban development
was observed in Białystok, Derby, Freiburg, Rijeka, Northampton, and Norwich, where the
values of all examined parameters increased. Aberdeen, Almeria, Erfurt, Geneva, Trieste,
Trondheim, and Verona were characterized by a relatively steady rate of urban expansion,
and none of these cities moved up or down by more than one or two classes in the analyzed
period. In the remaining cities, spatial expansion proceeded in rapid spurts. The phases of
spatial expansion in the studied cities are presented in maps in Figure 4.
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4. Discussion

Geospatial data, including CLC data, are a rich source of knowledge, and they can be
used to develop new tools for identifying and monitoring urbanization processes. In areas
that are most exposed to urbanization pressure, the degree and rate of urban expansion can
be most effectively monitored by analyzing land cover data. However, this approach also
has many limitations, which became apparent at the stage of calculating the boundaries
and the fractal dimension of the cities.
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The maximum city area for calculating the fractal dimension in the box-counting
method was set at a maximum side length of 25,000 m, and the minimum side length was
set at 25 m. In the calculations, 30 intermediate values of box side length (min-max) were
adopted. Box sizes were compared in all evaluated periods. The comparison for 2018 was
based on Sentinel data, which are more accurate (to the nearest 10 m) than other data sets.
However, the acquired data were analyzed only in the vector format on the assumption that
CLC data for 2000, 2006, 2012, and 2018 can be used to analyze changes in the surface area of
the studied cities. Urban morphological zones were established for the needs of the analysis.
However, a detailed analysis of the data set prepared on the basis of UMZ guidelines
revealed that despite the absence of changes in land use, the same areas were differently
classified in the CLC database in the studied periods. For example, the classification of
undeveloped areas changed in Alicante (black circle in Figure 5). Undeveloped areas in the
CLC database were marked with code 3.2.3 (sclerophyllous vegetation; 3.2 scrub and/or
herbaceous vegetation associations; and 3 forest and seminatural areas) (Figure 5a) in 2000
and with code 3.2.1 (natural grassland) in 2006 (Figure 5b).
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Figure 5. Classification of land-use types in Alicante: (a) 2000, (b) 2006.

According to the research conducted, it can be concluded that there are specific cases
such as Alicante that require in-depth analysis. The background of the changes that have
taken place is related to the development of transport infrastructure and the temporary
identification of adjacent areas as built-up areas. The consequence of the processes that
have occurred is the infilling of land between the main traffic routes. Such processes affect
the dynamics of change in terms of urban development phases. In view of the above, the
authors believe that it makes sense to continue the research and extend it to include further
time scales that would allow a more accurate identification of the urbanization processes.

In Lubeck, the area marked with code 1.1.2 (discontinuous urban fabric; 1.1 urban
fabric; 1 artificial surfaces) in 2000 (black circle in Figure 6a) was marked with code 3.1.1
(broad-leaved forest; 3.1 forest; and 3 forest and seminatural areas) in 2006 (black circle in
Figure 6b).
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Figure 6. Classification of land-use types in Lubeck: (a) 2000, (b) 2006.

In Milton Keynes, the area marked with code 2.3.1 (pastures) in 2000 (black circle in
Figure 7a) was classified as an urban area in 2006 (code 1.4.1 green urban areas) (black circle
in Figure 7b) despite the absence of any changes in land use in this period.
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These observations suggest that the fractal dimension, area, and perimeter of objects
classified as urban areas could have been considerably influenced by the image interpreta-
tion method adopted in the selected periods.

The update frequency of land cover data in the vector format is yet another limitation
in analyses on urbanization processes. The update cycle for CLC is 6 years. This update
frequency appears reasonable for urbanization studies, but it significantly affects the time
scale of the analysis. On the basis of the quality and specificity of the available information,
land cover data can be reliably compared beginning from 2000, which implies that only
four data sets can be used for analysis. This is a relatively small sample, in particular in
studies that explore dynamic urbanization processes. The quality of the results is also
affected by rapid technological advancements in data acquisition methods, which affects
the accuracy of the available information. The above could pose a considerable problem, in
particular in comparative analyses.

The rate of urban growth is determined mainly by the urban morphology (urban form)
and its relationship with the size of a city, its functions, and the economic, social, technical,
and environmental determinants of development. Observations of long-term, continuous
urbanization processes generate valuable and sometimes-surprising results. In many cities,
the urban growth rate indicator assumed negative values in the studied period. This could
imply that many areas that are influenced and transformed by urbanization processes
ultimately evolve into nonurban forms. The above suggests that urban development is a
more dynamic and bidirectional process than was previously thought. Urban expansion is
not always represented by positive values of the urban growth rate indicator, and negative
values can be observed in certain stages of the urban life cycle [74]. Urban development or
expansion begins in land that is most accessible. Therefore, urban land-use types can be
compared to a predator in Lotka–Volterra equations, and they aggressively dominate over
the remaining (surrounding) land-use forms [54–56]. In this analogy, “weaker” land-use
types are more rapidly transformed into the dominant land-use forms. The results of the
analysis presented in the above tables produce interesting conclusions concerning the rate
of urbanization in the evaluated cities. Cities with the highest rate of urban growth in
the analyzed period were in Germany (Freiburg im Breisgau), Croatia (Grad Rijeka), the
United Kingdom (Derby, Northampton, and Norwich), and Poland (Białystok), a finding
that is largely consistent with the economic trends reported in these countries in the studied
period.

Most of the analyzed 58 cities were characterized by positive values of the urban
growth rate indicator in each of the three studied time intervals. Negative indicator values
were observed in only five cases (in total, 174 indicator values were calculated) in the
examined period. This result confirms that urbanization exerts considerable anthropogenic
pressure, and areas affected by urbanization rarely regress to other land-use types. The
above could also imply that area expansion is not a highly reliable indicator for analyzing
the development of areas that have already undergone urbanization. The territorial expan-
sion of cities could be more effectively examined on the basis of the increase in the length
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of their boundaries and the fractal dimension, which, as demonstrated by this study, are
characterized by much greater variation.

The proposed classification method effectively identifies trends in the spatial devel-
opment of cities [75]. The number of classes is directly associated with the number of
parameters adopted for the analysis. The phases (stages) of urbanization and changes in
the spatial development of cities were described by assigning cities to different classes
on the basis of changes in their area, perimeter, and fractal dimension. High and sudden
increases in perimeter and the fractal dimension denote the rapid and often-uncoordinated
spatial development of urbanized areas.

5. Conclusions

Analyses of the rate of urban development play key roles in land management in
the context of monitoring the growth of cities and the adjacent areas and undertaking
preventive measures. The rate of urban development can be accurately evaluated with the
use of spatial data. The proposed procedure for evaluating the spatial development of cities
requires access to regularly updated land cover data. Land cover data sets and advanced
techniques for processing and modeling spatial data are rich sources of knowledge, and they
can be used to develop new tools for identifying and monitoring the spatial development
of cities. The CLC inventory is characterized by spatial continuity, and it can be reliably
used to identify various land-use types and analyze the geometry of cities. CORINE Land
Cover data are acquired at regular time intervals; therefore, changes in land use can be
reliably monitored. Several key conclusions can be formulated on the basis of the analysis
of the external boundaries of urban areas.

The proposed classification of the development phases of medium-size European cities
indicates development trends and can be used as a tool for monitoring urban urbanization.
On the basis of the analyzed cases, the stability of development of cities in the central part
of Europe can be observed. Additionally, we can find individual cases, such as Munster,
Vigo, Kiel, and Augsburg, where there is a steady decline in development phases. The
authors point out that the usefulness of the tool will be even greater in the future, when it
will be possible to carry out analyses for further time intervals. The method adopted also
makes it possible to identify specific cases of changes in urban development phases, using
Alicante as an example (grades 8-1-8). Such cases require in-depth analyses. It should be
noted that they may be due to the processes of intensive development of infrastructure
investments taking place. Consequently, in their surroundings, many areas act as servicing
areas for the investments, thus being classified as urbanized areas. On the other hand,
after the investment has completed, they return to their original uses, being identified
as nonurbanized areas. However, in the long term, the completed investment over time
induces urbanization processes in the neighboring areas. Consequently, neighboring areas
are again identified as urbanized land-use classes.

The results of the conducted analysis indicate that the CLC inventory is a useful
resource for describing the rate of urban growth. A high rate of urbanization leads to rapid
development regardless of the attributes of built-up land, which can speed up or slow
down this process to a varied degree. These findings could suggest that slow urbanization
promotes the development of areas with optimal spatial attributes.

The results of this study and the derived conclusions can be used to formulate a prelim-
inary rule concerning the evolution of the external boundaries of cities: cities where urban
development proceeds at a faster rate are characterized by smoother external boundaries.
Therefore, cities (urban morphological zones) whose spatial development proceeds at a
faster rate tend to have ragged external boundaries. The reverse also applies: the fractal
dimension of cities’ external boundaries is higher in urban areas characterized by a lower
rate of spatial development.

The study demonstrated that urbanization not only increases the area of urbanized
areas but also leads to changes in the length and shape of city boundaries. These geometric
parameters could play key roles in describing the intensity of urbanization processes.
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The proposed procedure can be applied in the preliminary stage of identifying the phase
of urban development. The results can be used to determine whether cities evolve in
a planned manner and whether spatial transformation processes lead to the creation of
optimal, compact urban forms.

The identification of the directions and rate of the urban development in Europe and in
other parts of the world poses a considerable challenge. Information on potential land use
is key to enhancing inclusive and sustainable urbanization. Urban sprawl and inefficient
use of land continue to pose a problem, with varying impacts in different contexts. Modern
technologies, such as satellite data, support the continuous monitoring of the changes in,
standardization of, and protection of citizens’ privacy. Urban planning solutions that make
optimal use of the available space will maximize social benefits, support the identification of
areas that require careful regulation, and promote forward-looking urban growth strategies.
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Appendix A

Table A1. Indicators calculated for the analyzed cities.

No. City Area
2000

Perimeter
2000

Df
2000

Area
2006

Perimeter
2006

Df
2006

Area
2012

Perimeter
2012

Df
2012

Area
2018

Perimeter
2018

Df
2018

1 Aberdeen 67,263,637 102,237 1.338 69,519,042 108,249 1.340 70,710,440 103,893 1.334 72,249,601 104,308 1.338
2 Alicante 50,496,580 192,360 1.422 81,238,955 262,196 1.446 77,068,189 202,382 1.412 79,707,784 212,726 1.420
3 Almeria 11,640,212 47,308 1.147 16,880,300 51,013 1.162 20,947,702 44,328 1.146 20,964,787 44,358 1.146
4 Augsburg 89,180,879 191,870 1.327 92,362,516 193,866 1.330 107,547,113 201,474 1.313 107,909,640 200,813 1.313
5 Basel 157,934,812 387,508 1.366 170,283,024 421,103 1.382 182,923,668 401,653 1.376 184,934,808 406,482 1.367
6 Białystok 64,455,729 100,112 1.328 75,273,396 156,922 1.376 80,130,273 159,010 1.376 83,448,907 168,136 1.378
7 Bordeaux 308,775,959 507,042 1.368 322,066,733 523,454 1.373 358,002,287 524,826 1.374 361,462,345 516,801 1.372
8 Bournemouth 142,992,121 217,121 1.323 147,159,663 207,152 1.317 150,338,702 213,805 1.324 150,513,812 214,668 1.324

9 Brighton and
Hove 127,602,753 252,304 1.269 133,183,489 244,020 1.265 135,963,558 236,762 1.263 137,381,993 243,305 1.266

10 Brunswick 68,843,109 138,618 1.381 72,661,920 151,160 1.393 88,771,563 130,107 1.366 88,957,609 130,087 1.366
11 Burgos 20,668,599 44,840 1.156 23,074,207 87,269 1.274 27,158,455 83,590 1.273 35,929,603 106,524 1.311
12 Cambridge 37,317,910 111,882 1.334 49,680,391 139,553 1.349 51,974,652 142,752 1.353 53,166,626 140,307 1.351
13 Cheltenham 29,106,660 40,798 1.152 30,191,308 45,356 1.167 30,684,759 44,674 1.164 30,918,812 45,800 1.167
14 Chemnitz 95,025,243 237,192 1.400 100,236,312 227,238 1.394 134,918,653 311,087 1.388 132,202,434 323,719 1.393
15 Colchester 31,736,115 73,822 1.260 36,473,417 63,203 1.233 37,425,123 60,971 1.229 38,124,252 61,665 1.232
16 Crawley 45,806,994 95,786 1.296 64,077,035 128,968 1.320 64,920,112 128,877 1.320 65,106,310 129,090 1.320
17 Częstochowa 80,208,849 251,242 1.419 109,027,693 360,277 1.399 110,550,809 366,066 1.402 110,727,554 366,174 1.402
18 Derby 70,670,120 97,400 1.326 71,285,720 108,930 1.351 71,452,501 117,970 1.361 72,826,329 123,782 1.370
19 Erfurt 57,566,592 129,652 1.367 63,353,156 151,406 1.385 67,939,309 158,182 1.395 68,624,471 161,275 1.390

20 Freiburg im
Breisgau 39,406,616 73,835 1.273 41,128,141 81,033 1.290 43,809,285 81,568 1.292 44,000,784 82,542 1.301

21 Geneva 145,904,944 437,914 1.339 168,884,570 459,823 1.351 172,782,425 470,774 1.354 17,506,1836 473,532 1.353
22 Gloucester 42,890,396 71,197 1.274 45,536,294 76,261 1.288 47,975,868 70,319 1.279 50,161,412 69,618 1.276
23 Osijek 24,599,969 60,670 1.220 24,698,581 60,602 1.220 26,061,040 65,773 1.235 26,064,768 65,804 1.235
24 Rijeka 47,180,036 163,676 1.382 69,847,365 254,635 1.387 70,362,184 256,854 1.389 70,832,830 258,890 1.393
25 Split 46,084,157 132,089 1.308 61,027,336 197,320 1.288 61,440,402 199,455 1.290 61,440,405 199,455 1.290
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Table A1. Cont.

No. City Area
2000

Perimeter
2000

Df
2000

Area
2006

Perimeter
2006

Df
2006

Area
2012

Perimeter
2012

Df
2012

Area
2018

Perimeter
2018

Df
2018

26 Graz 128,847,606 330,578 1.379 159,050,472 462,702 1.389 159,756,599 459,561 1.388 160,518,832 461,399 1.389
27 Karlsruhe 86,889,721 222,599 1.370 89,062,547 225,848 1.373 102,202,011 211,531 1.365 104,230,470 221,698 1.364
28 Kiel 89,888,134 180,704 1.382 92,140,510 180,346 1.384 100,675,617 177,516 1.371 100,617,931 174,345 1.373
29 Linz 98,715,706 272,948 1.431 106,758,145 291,937 1.424 110,305,359 297,418 1.427 110,912,553 296,469 1.427
30 Lubeck 78,665,421 162,210 1.391 81,268,488 174,363 1.401 90,610,074 172,119 1.396 93,274,423 174,876 1.398
31 Luton 54,020,400 76,852 1.297 54,562,317 74,594 1.292 54,756,663 76,424 1.296 55,096,487 76,931 1.297
32 Magdeburg 90,037,584 97,132 1.297 92,257,932 97,828 1.301 95,883,524 106,259 1.308 96,013,646 106,229 1.308
33 Messina 36,905,747 144,325 1.287 39,970,198 135,624 1.236 40,630,620 137,292 1.238 41,305,243 146,569 1.249
34 Milton Keynes 83,929,329 87,082 1.292 94,139,524 87,831 1.294 94,081,158 94,075 1.304 96,267,594 97,678 1.310
35 Monchengladbach 77,042,656 230,723 1.373 77,549,121 231,028 1.373 122,412,255 314,548 1.345 123,498,839 313,507 1.339
36 Munster 9,176,266 27,890 0.998 9,544,808 31,076 1.014 10,192,354 30,858 1.034 10,192,355 30,858 1.034
37 Nantes 196,300,406 497,202 1.402 210,214,281 508,659 1.408 220,020,040 489,220 1.401 222,787,045 484,651 1.400
38 Newport 92,690,567 196,917 1.337 104,052,121 226,191 1.315 107,181,083 218,345 1.310 107,432,449 220,198 1.311
39 Northampton 63,236,559 83,886 1.312 72,886,653 91,633 1.323 74,017,544 94,504 1.327 75,220,301 94,775 1.328
40 Norwich 58,350,202 105,102 1.341 68,785,504 106,601 1.348 71,163,865 113,734 1.355 72,476,976 116,894 1.361
41 Oviedo 30,270,394 130,194 1.326 40,454,565 159,681 1.351 46,695,897 159,549 1.342 46,981,231 162,124 1.344
42 Padua 113,177,353 480,654 1.367 122,373,858 522,587 1.382 130,302,472 520,817 1.380 132,809,463 523,260 1.378
43 Radom 63,372,848 227,487 1.394 90,990,809 300,446 1.409 102,731,711 309,310 1.407 105,125,141 316,793 1.410
44 Rennes 84,397,742 147,301 1.352 97,395,636 188,583 1.401 99,621,628 186,842 1.399 103,629,305 180,597 1.393
45 Rostock 80,216,869 203,482 1.428 84,941,850 215,400 1.442 95,138,942 214,734 1.437 95,422,326 214,270 1.437
46 Salzburg 60,770,398 159,021 1.408 63,451,964 189,834 1.418 62,272,285 197,466 1.423 62,282,265 198,602 1.425
47 Santander 46,175,380 206,776 1.412 58,128,853 190,515 1.414 63,353,448 236,678 1.431 63,459,655 236,063 1.431
48 Stavanger 72,917,640 188,031 1.341 74,362,384 193,489 1.332 77,402,931 193,773 1.334 79,872,570 190,696 1.335
49 Strasbourg 140,282,522 265,111 1.341 147,162,531 264,428 1.345 150,239,157 272,174 1.346 150,481,183 271,274 1.345
50 Tampere 167,864,760 501,069 1.337 173,900,228 524,051 1.344 193,083,347 527,909 1.348 202,683,538 508,279 1.344
51 Taranto 37,633,351 75,272 1.274 38,159,634 78,113 1.278 39,231,719 74,704 1.276 40,245,200 72,357 1.271
52 Toruń 51,195,714 117,397 1.365 73,447,782 181,093 1.363 80,300,568 198,199 1.365 80,519,719 198,545 1.365
53 Trieste 35,666,462 119,988 1.329 45,250,584 157,616 1.384 50,507,992 166,366 1.373 50,950,231 168,836 1.375
54 Trondheim 60,497,462 118,299 1.326 61,437,964 126,246 1.340 66,239,648 128,983 1.339 66,917,558 129,200 1.340
55 Uppsala 45,758,479 96,304 1.299 46,587,699 95,812 1.299 48,250,041 100,958 1.312 48,504,973 99,396 1.310
56 Västerås 54,461,025 75,194 1.288 56,785,936 86,065 1.307 57,440,334 85,526 1.306 77,730,254 304,210 1.386
57 Verona 45,782,281 137,632 1.370 76,586,414 305,048 1.386 77,356,561 304,873 1.386 79,615,225 337,288 1.383
58 Vigo 63,774,393 144,690 1.310 78,190,764 338,234 1.383 79,615,225 337,288 1.383 60,542,618 97,247 1.310
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