Meta-Analysis of the Effect of Different Exercise Mode on Carotid Atherosclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Ethics
2.3. Search Strategy
2.4. Inclusion and Exclusion Criteria
2.4.1. Inclusion Criteria
2.4.2. Exclusion Criteria
2.5. Outcomes
2.6. Data Extraction and Synthesis
2.7. Literature Quality Evaluation
2.8. Statistical Analyses
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Risk of Bias
3.4. Effects of Different Exercise Mode on cIMT
3.5. Effects of Different Exercise Mode on TC
3.6. Effects of Different Exercise Mode on LDL-C
3.7. Effects of Different Exercise Mode on HDL-C
3.8. Adverse Events, Sensitivity Analysis, and Publication Bias
4. Discussion
4.1. Limitations
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, P.; Fang, Z.; Wang, H.; Cai, Y.; Rahimi, K.; Zhu, Y.; Fowkes, F.G.R.; Fowkes, F.J.I.; Rudan, I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob. Health 2020, 8, e721–e729. [Google Scholar] [CrossRef] [PubMed]
- Allison, M.; Ho, E.; Denenberg, J.O.; Langer, R.D.; Newman, A.B.; Fabsitz, R.R.; Criqui, M.H. Ethnic-Specific Prevalence of Peripheral Arterial Disease in the United States. Am. J. Prev. Med. 2007, 32, 328–333. [Google Scholar] [CrossRef]
- Kim, J.S.; Caplan, L.R. Clinical Stroke Syndromes. Intracranial Atheroscler. Pathophysiol. Diagn. Treat. 2016, 40, 72–92. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Tang, X.; Luo, Q.; Xu, D.; Yu, B. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis. 2019, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Katsiki, N.; Mantzoros, C.; Mikhailidis, D.P. Adiponectin, lipids and atherosclerosis. Curr. Opin. Lipidol. 2017, 28, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, H.H.; Heine, G.; Kroger, K.; Rätz, M.; Lichtenstern, C.; Schmitz, A.; Kindermann, W. Exercise and atherogenesis: Where is the missing link? Exerc. Immunol. Rev. 1999, 5, 96–102. [Google Scholar]
- Bertoni, A.G.; Whitt-Glover, M.C.; Chung, H.; Le, K.Y.; Barr, R.G.; Mahesh, M.; Jenny, N.S.; Burke, G.L.; Jacobs, D.R. The Association Between Physical Activity and Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2009, 169, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Shimada, K.; Mikami, Y.; Murayama, T.; Yokode, M.; Fujita, M.; Kita, T.; Kishimoto, C. Atherosclerotic plaques induced by marble-burying behavior arestabilized by exercise training in experimental atherosclerosis. Int. J. Cardiol. 2011, 151, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, E.C.; Franke, W.D.; Sharp, R.L.; Lee, D.-C. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS ONE 2019, 14, e0210292. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. 2011. Available online: https://www.science-open.com/document?vid=232a3a89-d32f-4a3b-9e2b-a475c37ea0ae (accessed on 8 March 2021).
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.M.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Adams, S.; DeLorey, D.S.; Davenport, M.H.; Stickland, M.K.; Fairey, A.S.; North, S.; Szczotka, A.; Courneya, K.S. Effects of high-intensity aerobic interval training on cardiovascular disease risk in testicular cancer survivors: A phase 2 randomized controlled trial. Cancer 2017, 123, 4057–4065. [Google Scholar] [CrossRef]
- Byrkjeland, R.; Stensæth, K.-H.; Anderssen, S.; Njerve, I.U.; Arnesen, H.; Seljeflot, I.; Solheim, S. Effects of exercise training on carotid intima-media thickness in patients with type 2 diabetes and coronary artery disease. Influence of carotid plaques. Cardiovasc. Diabetol. 2016, 15, 13. [Google Scholar] [CrossRef]
- Cai, R. Influence of Taijiquan practice on the size of carotid atherosclerotic plaque in middle-aged people. Phys. Educ. Res. Educ. 2014, 29, 124–126. [Google Scholar]
- Chen, M.J.; Dong, B.; Li, L.; Zeng, L.Z.; Shen, D.P. Effects of walking exercise on carotid intima media thickness and anxiety status in elderly patients with hypertension and anxiety. Chin. J. Geriatr. Care 2017, 15, 39–41. [Google Scholar]
- Choi, K.M.; Han, K.A.; Ahn, H.J.; Hwang, S.Y.; Hong, H.C.; Choi, H.Y.; Yang, S.J.; Yoo, H.J.; Baik, S.H.; Choi, D.S.; et al. Effects of Exercise on sRAGE Levels and Cardiometabolic Risk Factors in Patients with Type 2 Diabetes: A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2012, 97, 3751–3758. [Google Scholar] [CrossRef] [Green Version]
- Choo, J.; Lee, J.; Cho, J.-H.; Burke, L.E.; Sekikawa, A.; Jae, S.Y. Effects of weight management by exercise modes on markers of subclinical atherosclerosis and cardiometabolic profile among women with abdominal obesity: A randomized controlled trial. BMC Cardiovasc. Disord. 2014, 14, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuensiri, N.; Suksom, D.; Tanaka, H. Effects of High-Intensity Intermittent Training on Vascular Function in Obese Preadolescent Boys. Child. Obes. 2018, 14, 41–49. [Google Scholar] [CrossRef]
- Farpour-Lambert, N.J.; Aggoun, Y.; Marchand, L.M.; Martin, X.E.; Herrmann, F.R.; Beghetti, M. Physical Activity Reduces Systemic Blood Pressure and Improves Early Markers of Atherosclerosis in Pre-Pubertal Obese Children. J. Am. Coll. Cardiol. 2009, 54, 2396–2406. [Google Scholar] [CrossRef]
- Hosseini, S.R.A.; Farahati, S.; Moazzami, M.; Daloee, M.H.; Daloee, S.H. The impact of high-intensity interval training versus moderate-intensity continuous training on carotid intima-media thickness and ankle-brachial index in middle-aged women. Int. J. Prev. Med. 2020, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Fayh, A.P.T.; Lopes, A.L.; Da Silva, A.M.V.; Reischak-Oliveira, A.; Friedman, R. Effects of 5% weight loss through diet or diet plus exercise on cardiovascular parameters of obese: A randomized clinical trial. Eur. J. Nutr. 2013, 52, 1443–1450. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, X.Q.; Li, J. Life intervention in children with obesity-related vascular abnormalities. Chin. J. Epidemiol. 2008, 7, 672–675. [Google Scholar]
- Ghardashi-Afousi, A.; Davoodi, M.; Hesamabadi, B.K.; Asvadi-Fard, M.; Bigi, M.A.B.; Izadi, M.R.; Gaeini, A.A. Improved carotid intima-media thickness-induced high-intensity interval training associated with decreased serum levels of Dkk-1 and sclerostin in type 2 diabetes. J. Diabetes Its Complicat. 2020, 34, 107469. [Google Scholar] [CrossRef] [PubMed]
- Ghardashi Afousi, A.; Izadi, M.R.; Rakhshan, K.; Mafi, F.; Biglari, S.; Gandomkar Bagheri, H. Improved brachial artery shear patterns and increased flow-mediated dilatation after low-volume high-intensity interval training in type 2 diabetes. Exp. Physiol. 2018, 103, 1264–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, N.; Fujie, S.; Horii, N.; Miyamoto-Mikami, E.; Tsuji, K.; Uchida, M.; Hamaoka, T.; Tabata, I.; Iemitsu, M. Effects of Different Exercise Modes on Arterial Stiffness and Nitric Oxide Synthesis. Med. Sci. Sports Exerc. 2018, 50, 1177–1185. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Fotiadis, G.; Kapelouzou, A.; Kostakis, A.; Liapis, C.D.; Vrabas, I.S. The differential anti-inflammatory effects of exercise modalities and their association with early carotid atherosclerosis progression in patients with Type 2 diabetes. Diabet. Med. 2013, 30, e41–e50. [Google Scholar] [CrossRef]
- Kim, H.-K.; Hwang, C.-L.; Yoo, J.-K.; Hwang, M.-H.; Handberg, E.; Petersen, J.; Nichols, W.W.; Sofianos, S.; Christou, D.D. All-Extremity Exercise Training Improves Arterial Stiffness in Older Adults. Med. Sci. Sports Exerc. 2017, 49, 1404–1411. [Google Scholar] [CrossRef] [PubMed]
- Li, J.B.; Yang, J.Q. Clinical effect of long-term aerobic exercise combined with Guizhi Poria capsule in the treatment of hypertension carotid atherosclerosis. China Med. Rev. 2018, 15, 40–43. [Google Scholar]
- Liu, H.B. Study on the Clinical Application Value of Comprehensive Exercise Therapy against Atherosclerosis. Master’s thesis, Chengdu Sport University, Chengdu, China, 2021. [Google Scholar]
- Liu, Y.P.; Li, J.W.; Liu, L.X. Effect of exercise on vascular endothelial function in middle-aged patients with impaired glucose tolerance. Chin. J. Sports Med. 2007, 685–688. [Google Scholar]
- Meyer, A.A.; Kundt, G.; Lenschow, U.; Schuff-Werner, P.; Kienast, W. Improvement of Early Vascular Changes and Cardiovascular Risk Factors in Obese Children After a Six-Month Exercise Program. J. Am. Coll. Cardiol. 2006, 48, 1865–1870. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.Q.; Yue, W.S.; Zou, Y.; Wang, Y.P.; Xiong, Y.T.; Yan, Z.X.; Gu, P.; Zhang, Q.; Jiang, B.L. Effects of regular aerobic exercise on endothelium-dependent dilation in type 2 diabetes mellitus. Chin. J. Clin. Phys. (Electron. Ed.) 2014, 8, 581–585. [Google Scholar]
- Ning, G.J.; Chen, M.S. Effects of long-term exercise training on blood pressure control and carotid artery disease in patients with mild to moderate hypertension. J. Bengbu Med. Coll. 2016, 41, 636–638. [Google Scholar]
- Nytrøen, K.; Rustad, L.A.; Erikstad, I.; Aukrust, P.; Ueland, T.; Lekva, T.; Gude, E.; Wilhelmsen, N.; Hervold, A.; Aakhus, S.; et al. Effect of high-intensity interval training on progression of cardiac allograft vasculopathy. J. Hear. Lung Transplant. 2013, 32, 1073–1080. [Google Scholar] [CrossRef]
- Park, J.; Kwon, Y.; Park, H. Effects of 24-Week Aerobic and Resistance Training on Carotid Artery Intima-Media Thickness and Flow Velocity in Elderly Women with Sarcopenic Obesity. J. Atheroscler. Thromb. 2017, 24, 1117–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugh, C.J.A.; Sprung, V.S.; Kemp, G.J.; Richardson, P.; Shojaee-Moradie, F.; Umpleby, A.M.; Green, D.J.; Cable, N.T.; Jones, H.; Cuthbertson, D.J. Exercise training reverses endothelial dysfunction in nonalcoholic fatty liver disease. Am. J. Physiol. Circ. Physiol. 2014, 307, H1298–H1306. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, S.; Naimi, S.S.; Rezasoltani, A.; Rahimi, A.; Baghban, A.A.; Noori, A.; Rashedi, V. Changes in vascular structure in diabetic patients after 8 weeks aerobic physical exercise: A randomized controlled trial. Int. J. Diabetes Dev. Ctries. 2017, 38, 202–208. [Google Scholar] [CrossRef]
- Sherwood, A.; Blumenthal, J.A.; Smith, P.J.; Watkins, L.L.; Hoffman, B.M.; Hinderliter, A.L. Effects of Exercise and Sertraline on Measures of Coronary Heart Disease Risk in Patients With Major Depression: Results From the SMILE-II Randomized Clinical Trial. Psychosom. Med. 2016, 78, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.-H.; Lee, Y.; Gil Kim, S.; Choi, B.Y.; Lee, H.-S.; Bang, S.-Y. The beneficial effects of Tai Chi exercise on endothelial function and arterial stiffness in elderly women with rheumatoid arthritis. Thromb. Haemost. 2015, 17, 380. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.J.; Yang, J.Q. Clinical effect of long-term aerobic exercise combined with ginkgo leaf in the treatment of atherosclerosis. J. Hainan Med. Univ. 2018, 24, 1971–1974. [Google Scholar]
- Zhang, L.J. Effect of taijiquan on carotid atherosclerosis. Chin. Rural Med. 2012, 19, 13–14. [Google Scholar]
- Zhang, X.H. Effect of exercise intervention on vascular function in patients with type 2 diabetes. Nurs. Res. 2012, 26, 1485–1486. [Google Scholar]
- Zhang, Y.F. Effects of atorvastatin combined with brisk exercise on LDL-C, TC, TG and HDL-C levels in patients with carotid atherosclerosis. Chin. J. Med. Res. 2020, 18, 118–120. [Google Scholar]
- Zhao, J.; Lu, Y.M.; Lu, Y.; Yue, D.M.; Wei, C.W. Effect of exercise training on carotid intima media thickness in patients with mild to moderate hypertension. J. Cardiovasc. Rehabil. Med. 2014, 23, 247–249. [Google Scholar]
- Zhu, C.C. Effect of Fitness Qigong (Dance) on Atherosclerosis and Blood Lipid in Middle-Aged and Elderly Women. Master’s thesis, Xi’an Physical Education University, Xi’an, China, 2017. [Google Scholar]
- Polak, J.F.; Pencina, M.J.; Pencina, K.M.; O’Donnell, C.J.; Wolf, P.A.; D’Agostino, R.B., Sr. Carotid-wall intima-mediathickness and cardiovascular events. New Engl. J. Med. 2011, 365, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, M.W.; von Kegler, S.; Steinmetz, H.; Markus, H.S.; Sitzer, M. Carotid intima-mediathickening indicates a higher vascular risk across a wide age range: Prospective data from the Carotid Atherosclerosis Progression Study(CAPS). Stroke 2006, 37, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Backer, G.; Ambrosioni, E.; Borch-Johnsen, K.; Brotons, C.; Cifkova, R.; Dallongeville, J.; Ebrahim, S.; Faergeman, O.; Graham, I.; Mancia, G.; et al. European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force Of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). Atherosclerosis 2004, 173, 381–391. [Google Scholar]
- Seals, D.R.; Nagy, E.E.; Moreau, K.L. Aerobic exercise training and vascular function with ageing in healthy men and women. J. Physiol. 2019, 597, 4901–4914. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Li, D. The effects of exercise on cardiovascular biomarkers: New insights recent data, and applications. Adv. Exp. Med. Biol. 2017, 999, 43–53. [Google Scholar]
- Carpio-Rivera, E.; Moncada-Jiménez, J.; Salazar-Rojas, W.; Solera-Herrera, A. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation. Arq. Bras. Cardiol. 2016, 106, 422–433. [Google Scholar] [CrossRef]
- Ashor, A.W.; Lara, J.; Siervo, M.; Celis-Morales, C.; Mathers, J.C. Effects of Exercise Modalities on Arterial Stiffness and Wave Reflection: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2014, 9, e110034. [Google Scholar] [CrossRef] [Green Version]
- Alaupovic, P.; Heinonen, T.; Shurzinske, L.; Black, D.M. Effect of a new HMG-CoA reductase inhibitor, atorvastatin, on lipids, apolipoproteins and lipoprotein particles in patients with elevated serum cholesterol and triglyceride levels. Atherosclerosis 1997, 133, 123–133. [Google Scholar] [CrossRef]
- Schuler, G.; Hambrecht, R.; Schlierf, G.; Niebauer, J.; Hauer, K.; Neumann, J.; Hoberg, E.; Drinkmann, A.; Bacher, F.; Grunze, M. Regular physical exercise and low-fat diet, effect on progression of coronary heart disease. Circulation 1992, 86, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rong, K.; Zheng, H.X.; Bi, W.J.; Chen, Y. Influencing factors of unstable plaque in asymptomatic elderly women with carotid atherosclerosis. Int. J. Geriatr. 2022, 43, 674–678. [Google Scholar]
- Wewege, M.A.; Thom, J.M.; Rye, K.-A.; Parmenter, B.J. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome. Atherosclerosis 2018, 274, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Booth, F.W.; Laye, M.J.; Lees, S.J.; Rector, R.S.; Thyfault, J.P. Reduced physical activity and risk of chronic disease: Te biology behind the consequences. Eur. J. Appl. Physiol. 2008, 102, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Sloan, R.P.; Shapiro, P.A.; DeMeersman, R.E.; McKinley, P.S.; Tracey, K.J.; Slavov, I.; Fang, Y.; Flood, P.D. Aerobic exercise attenuates inducible TNF production in humans. J. Appl. Physiol. 2007, 103, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Country Language | Subject Type | Sample (E/C) | Mean Age/Year (E/C) | Intervention Program (E/C) | Exercise Intensity | Duration of Intervention | Drug Usage | Outcome | Jadad Score | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency (weekly) | Time (min) | Duration | ||||||||||
Adams 2017 [12] | Canada (English) | Testicular cancer survivors | E = 35 C = 28 | 34.3 44.0 | HIIT NE | 4 * 4 min 95% VO2peak | 3 | 35 | 12 weeks | - | cIMT; TC; LDL-C; HDL-C | 7 |
Byrkjeland 2016 [13] | Norway (English) | Patients with type 2 diabetes and coronary heart disease | E = 61 C = 62 | 63.5 63.2 | AE + RE NE | ⅔AE + ⅓RE | 3 | 60 | 12 weeks | - | cIMT; TC; LDL-C; HDL-C | 5 |
Cai 2014 [14] | China (Chinese) | Men with atherosclerotic Women with atherosclerotic | E1 = 13 C1 = 15 E2 = 18 C2 = 16 | 49 52 51 48 | AE NE AE NE | 75% HRpeak 75% HRpeak | 5 5 | 40 40 | 12 weeks 12 weeks | - | cIMT | 5 |
Chen 2017 [15] | China (Chinese) | Patients with hypertension and anxiety | E = 80 C = 80 | 72.35 72.26 | AE NE | Less than 70% of HRmax | 5 | 20~30 | 4 months | - | cIMT | 3 |
Choi 2012 [16] | South Korea (English) | Patient with type 2 diabetes | E = 38 C = 37 | 53.8 55 | AE NE | 3.6~6.0 MET | 5 | 60 | 12 months | - | TC; LDL-C; HDL-C | 6 |
Choo 2014 [17] | South Korea (English) | Healthy women | E1 = 20 E2 = 15 C = 14 | 46.0 41.8 43.1 | RE RE + AE NE | 50–70% HRmax; Two sets of 8–12 repetitions | 3 | 30 | 12 months | - | cIMT; TC; LDL-C; HDL-C | 4 |
Chuensiri 2018 [18] | Thailand (English) | Obese preadolescent boys | E = 11 C = 11 | 11.0 10.6 | HIIT NE | 90% of peak power output | 3 | 16 | 12 | - | cIMT; TC; LDL-C; HDL-C | 5 |
Farpour- Lambert 2009 [19] | Switzerland (English) | Prepubertal obese children | E = 22 C = 22 | 9.1 8.8 | AE + RE NE | 55~65% VO2peak, 2 to 3 groups of 10 to 15 times | 3 | 60 | 12 weeks | - | cIMT; TC; LDL-C; HDL-C | 6 |
Farahati 2020 [20] | Iran (English) | Inactive and overweight women | E1 = 10 E2 = 11 C = 9 | 42.8 43.9 44.2 | HIIT AE NE | 85–95% of HRpeak 60–70% of HRmax | 3 | 25 47 | 12 weeks | - | cIMT; TC; LDL-C | 5 |
Fayh 2013 [21] | Brazil (English) | Obese | E = 17 C = 18 | 32.3 31.4 | AE +DT NE + DT | 70% HRR | 3 | 45 | 65.9 days 79.7 days | - | TC; LDL-C; HDL-C | 5 |
Fan 2008 [22] | China (Chinese) | Overweight and obese children | E1 = 18 E2 = 20 C = 40 | 10 10 9.9 | AE +DT AE +DT NE + DT | 60~70% HRpeak 60~70% HRpeak | 2 1~2 | 75 75 | 6 weeks 1 year | - | cIMT; LDL-C; HDL-C | 3 |
Ghardashi2020 [23] | Iran (English) | Patients with type 2 diabetes | E = 30 C = 29 | 55.10 54.10 | HIIT + MT NE + MT | 85–90% HRmax | 3 | 24 | 12 weeks | - | cIMT; TC; LDL-C; HDL-C | 5 |
Ghardashi 2018 [24] | Iran (English) | Patients with type 2 diabetes | E1 = 18 E2 = 17 C = 17 | 54.78 53.12 54.24 | HIIT AE NE | 12 repetitions of 1.5 min 85~95% HRpeak 70% HRpeak | 3 2 | 42 42 | 12 weeks 12 weeks | - | TC; LDL-C; HDL-C | 6 |
Hasegawa 2018 [25] | Japan (English) | Healthy men | E1 = 7 E2 = 7 C = 7 | 23.7 23.1 20.7 | HIIT AE NE | 12 repetitions of 1.5 min 85~95% HRpeak 60~70% VO2peak | 3 | 3.5 45 | 6 weeks 8 weeks | - | TC; HDL-C | 5 |
Kadoglou 2013 [26] | Greece (English) | Patients with type 2 diabetes | E1 = 25 E2 = 25 E3 = 25 C = 25 | 58.3 56.1 57.9 57.9 | AE RE AE + RE NE | 60–75% of HRmax 60–80% load max | 4 | 60 | 4 weeks | - | cIMT; TC; LDL-C; HDL-C | 4 |
Kim 2017 [27] | America (English) | Sedentary elderly | E1 = 17 E2 = 18 C = 14 | 65 65 62 | HIIT AE NE | 4 * 4 min 95% HRpeak 70% HRpeak | 4 | 60 | 8 weeks | - | cIMT; TC; LDL-C; HDL-C | 6 |
Li 2018 [28] | China (Chinese) | Patient with hypertensive carotid atherosclerosis | E = 62 C = 62 | 58.2 57.8 | AE + MT NE + MT | - | 3~5 | 35 | 6 months | - | cIMT; TC; LDL-C; HDL-C | 4 |
Liu 2021 [29] | China (Chinese) | Patients with carotid atherosclerosis | E = 22 C = 24 | 52.96 53.00 | AE + MT NE + MT | Fast walk: 3~4 km/h; Tai Chi Quan: 70% HRpeak | 5 | 80 | 6 weeks | - | cIMT; LDL-C; HDL-C | 5 |
Liu 2007 [30] | China (Chinese) | Patients with impaired glucose tolerance | E1 = 17 E2 = 12 C = 16 | 49.8 | AE + DT AE + RE+ DT NE + DT | 60~70% HRpeak 60~70% HRpeak AE + 2~3 groups, 15~20 times RE | 4 4 | 60 50 | 24 weeks 24 weeks | - | cIMT | 3 |
Meyer 2006 [31] | Germany (English) | Obese children | E = 33 C = 34 | 13.7 14.1 | AE NE | 3 sets of 8–12 reps, 80% 1 RM | 3 | 45 | 6 months | - | cIMT; LDL-C; HDL-C | 5 |
Ma 2014 [32] | China (Chinese) | Patients with type 2 diabetes | E = 58 C = 52 | 60.67 60.42 | AE + MT NE + MT | 70~80% HRpeak | 3~4 | 60~90 | 6 months | Antihypertensive drugs | TC; LDL-C; HDL-C | 3 |
Ning 2016 [33] | China (Chinese) | Patients with mild to moderate hypertension | E = 50 C = 50 | 60.75 61.21 | AE + MT NE + MT | 6 km/h | 7 | 30 | 1 year | Antihypertensive drugs | cIMT | 4 |
Nytroen 2013 [34] | Norway (English) | Patients with heart transplant | E = 20 C = 23 | 51 53 | HIIT + MT NE + MT | 12 times of 4 min, 91.5% HRpeak | 3 | - | 6 months | Calcineurin inhibitor | cIMT; TC; LDL-C; HDL-C | 5 |
Park 2017 [35] | Korea (English) | Sarcopenia obesity | E = 25 C = 25 | 73.5 74.7 | AE + RE NE | 8~15 repetitions per set 13–24 RPE | 3 | 20~30 | 24 weeks | - | cIMT; TC;LDL-C; HDL-C | 5 |
Pugh 2014 [36] | England (English) | Patients with non-alcoholic fatty liver | E = 13 C = 8 | 44~51 43~51 | AE + MT NE + MT | 30~60% HRR | 3~5 | 30~45 | 16 weeks | Antihypertensive drugs | TC; LDL-C; HDL-C | 5 |
Rahbar 2018 [37] | Iran (English) | Diabetic patients | E = 13 C = 15 | 48.31 48.6 | AE NE | 50~70% HRpeak | 3 | 30 | 8 weeks | - | cIMT | 6 |
Sherwood 2016 [38] | America (English) | Patients with major depression | E = 51 C = 49 | 51.1 51.2 | AE NE | 70~85% HRpeak | 3 | 30 | 16 weeks | - | cIMT TC | 5 |
Shin 2015 [39] | South Korea (English) | Patients with rheumatoid arthritis | E = 29 C = 27 | 64.0 62.7 | AE NE | - | 1 | 60 | 3 months | - | cIMT; TC; LDL-C; HDL-C | 5 |
Wang 2018 [40] | China (Chinese) | Patients with carotid atherosclerosis | E = 52 C = 52 | 52.65 51.74 | AE + MT NE + MT | - | 3 | 30 | 12 weeks | - | cIMT;TC; | 5 |
Zhang 2012 [41] | China (Chinese) | Patients with carotid atherosclerosis | E = 47 C = 51 | 35~58 | AE NE | - | 5~8 | 30~50 | 18 months | - | cIMT | 4 |
Zhang 2012 [42] | China (Chinese) | Patients with type 2 diabetes | E = 40 C = 40 | 52.4 | AE NE | 80% (170-year) × HR | 1~2 | 30–60 | 6 months | - | TC; LDL-C;HDL-C | 5 |
Zhang 2020 [43] | China (Chinese) | Patients with carotid atherosclerosis | E = 84 C = 84 | 55.25 55.12 | AE + MT NE + MT | 4.5 km/h | 4~5 | 40 | 12 months | - | cIMT; TC; LDL-C; HDL-C | 3 |
Zhao 2014 [44] | China (Chinese) | Patients with mild-to-moderate hypertension | E = 46 C = 46 | 61.5 61.5 | AE + MT NE + MT | 6 km/h | 7 | 30 | 1 year | Antihypertensive drugs | cIMT | 4 |
Zhu 2017 [45] | China (Chinese) | Middle-aged and elderly women | E = 15 C = 15 | 59.91 60.13 | AE NE | 120–130 times/min | 3 | 60 | 6 months | - | TC; LDL-C; HDL-C | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Zhang, X.; Yin, S.; Tuo, H.; Lin, Q.; Tang, F.; Liu, W. Meta-Analysis of the Effect of Different Exercise Mode on Carotid Atherosclerosis. Int. J. Environ. Res. Public Health 2023, 20, 2189. https://doi.org/10.3390/ijerph20032189
Gao P, Zhang X, Yin S, Tuo H, Lin Q, Tang F, Liu W. Meta-Analysis of the Effect of Different Exercise Mode on Carotid Atherosclerosis. International Journal of Environmental Research and Public Health. 2023; 20(3):2189. https://doi.org/10.3390/ijerph20032189
Chicago/Turabian StyleGao, Pincao, Xinxin Zhang, Shanshan Yin, Haowen Tuo, Qihan Lin, Fang Tang, and Weiguo Liu. 2023. "Meta-Analysis of the Effect of Different Exercise Mode on Carotid Atherosclerosis" International Journal of Environmental Research and Public Health 20, no. 3: 2189. https://doi.org/10.3390/ijerph20032189
APA StyleGao, P., Zhang, X., Yin, S., Tuo, H., Lin, Q., Tang, F., & Liu, W. (2023). Meta-Analysis of the Effect of Different Exercise Mode on Carotid Atherosclerosis. International Journal of Environmental Research and Public Health, 20(3), 2189. https://doi.org/10.3390/ijerph20032189