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Abstract: With the advancement of medicine, more and more researchers have turned their attention
to the study of fetal genetic diseases in recent years. However, it is still a challenge to detect genetic
diseases in the fetus, especially in an area lacking access to healthcare. The existing research primarily
focuses on using teenagers’ or adults’ face information to screen for genetic diseases, but there are no
relevant directions on disease detection using fetal facial information. To fill the vacancy, we designed
a two-stage ensemble learning model based on sonography, Fgds-EL, to identify genetic diseases
with 932 images. Concretely speaking, we use aggregated information of facial regions to detect
anomalies, such as the jaw, frontal bone, and nasal bone areas. Our experiments show that our model
yields a sensitivity of 0.92 and a specificity of 0.97 in the test set, on par with the senior sonographer,
and outperforming other popular deep learning algorithms. Moreover, our model has the potential
to be an effective noninvasive screening tool for the early screening of genetic diseases in the fetus.

Keywords: fetal genetic disease; obstetrics and gynecology ultrasound; fetal facial; deep learning;
ensemble learning

1. Introduction

According to a study conducted in 1988, a disease with a significant genetic compo-
nent is likely to affect at least 7.9 percent of newborns [1]. There are approximately 7000
known genetic diseases, with 30% to 40% of cases causing facial and skull abnormalities,
particularly in Down syndrome, the most common genetic disease [2,3]. Genetic diseases
are clinically linked to severe cardiovascular, immune, endocrine, and neurodevelopmental
risks, affecting the quality of life of patients and their families [4]. Medical institutions
have recently used Down syndrome screening, maternal plasma fetal cell-free fetal DNA
(cffDNA), and expanded non-invasive prenatal testing (NIPT) to screen for genetic dis-
ease [5]. However, the ability of these screening methods to detect genetic diseases is
limited: there is no effective screening for fetal monogenetic syndrome; these methods
are time-consuming and laborious; and they may be unworkable in many countries and
regions with underdeveloped healthcare models.

With the continuous advancement of ultrasonic diagnosis techniques and the accu-
mulation of clinical experience, prenatal ultrasound has become widely used in prenatal
genetic disease screening owing to the diverse advantages it offers, including real-time
acquisition, low costs, no radiation, and noninvasiveness [6]. There are a large number

Int. J. Environ. Res. Public Health 2023, 20, 2377. https://doi.org/10.3390/ijerph20032377 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph20032377
https://doi.org/10.3390/ijerph20032377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-6005-1905
https://orcid.org/0000-0002-1233-5065
https://orcid.org/0000-0003-4573-3809
https://doi.org/10.3390/ijerph20032377
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20032377?type=check_update&version=1


Int. J. Environ. Res. Public Health 2023, 20, 2377 2 of 16

of popular sonographic features, such as nuchal translucency (NT), nasal bone (NB), cleft
lip, palatine jaw, and frontal bone, that can be used to screen for genetic diseases. In 2010,
Ettema and his team found that in 302 cases of trisomy 21, 171 cases of trisomy 18, and
69 cases of trisomy 13, 14.2% of the trisomy 21 fetuses had abnormal skull morphologies,
of which 41.5% of the trisomy 18 fetuses had abnormal facial contours, and 65.2% of the
trisomy 13 fetuses had a cleft lip and palate [7]. Some studies reveal that 65% of trisomy
21 fetuses have an absent or short nasal bone according to the sonographic examination
between 15 and 24 weeks of gestation [8–12]. With the development of craniofacial genetics,
many rare genetic diseases have also been shown to have specific facial features, such as
the broad nasal bridge in 15q11-q13 duplication syndrome, the maxillary hypoplasia in
17q22 microdeletion, the wide and depressed nasal bridge in Helsmoortel-van der AA
syndrome, etc. [13–15]. These studies show the specificity of fetal facial features. However,
the recognition of nonclassical phenotypes or ultra-rare syndromes is limited by the experi-
ence of the individual expert, making it critical to use new methods to help analyze fetal
ultrasound indicators.

Computer vision has long been concerned with medical image analysis issues [16].
Deep learning has provided a new impetus to computer vision research [17–19]. In fetal
ultrasound, deep learning has been used for standard plane recognition, standard plane
localization, and screening for structural abnormalities [20–25]. If a computer vision system
can be developed to recognize the facial information of normal and abnormal fetuses, it
will be useful to help screen high-risk fetuses. Given the prevalence of prenatal ultrasound
examinations in medical institutions of all levels around the world, well-developed deep
learning models based on sonographic fetal facial images have the potential to alleviate the
shortage of expertise in primary care and improve genetic disease screening accuracy.

In this study, we developed Fgds-EL (Fetal genetic disease-Ensemble Learning), a
two-stage ensemble learning model that used a convolutional neural network (CNN) and
Random Forest (RF) to automatically screen for genetic diseases in fetal ultrasound imag-
ing. The Fgds-EL uses an aggregate of fetal facial regions to improve performance and
robustness. Additionally, we analyzed the screening performance of subnetworks from
Fgds-EL and show the contribution of image regions to the decision by interpretable tech-
niques [26]. Moreover, we compare the performance of the Fgds-EL to that of sonographers
of different levels.

The main contributions of this paper are as follows: (1) the development of a two-stage
ensemble learning model based on fetal facial, named Fgds-EL, for robust and accurate
screening genetic diseases; (2) evaluating the performance of Fgds-EL in screening for
fetal genetic diseases from ultrasound images; (3) the decision-making area of the Fgds-EL
is visualized using the heat map to discover the anatomical structures related to genetic
diseases; and (4) comparing the performance of the Fgds-EL to that of sonographers.

2. Materials and Methods
2.1. Data Acquisition

In this study, we collected ultrasound fetal profile images from around 1000 preg-
nant women with an age range of 23–38 years who underwent prenatal diagnosis at the
Guangzhou Women and Children’s Medical Center. We excluded (n = 333) from the initial
list of 1000 cases, those without genetic results, 3D volume images and complete clinical
data. Thus, our dataset contained 556 normal pregnancies and 111 pregnancies with genetic
anomalies. All examinations have been performed and diagnosed before the research
by one or two ultrasound specialists with more than five years of experience. Overall,
our datasets contain 845 normal pregnancy images and 275 genetic disease images from
667 cases, with a gestational age distribution of 14.8 ± 2.6 (range 11–27). Details on the
development set and test set are described in Table 1.
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Table 1. Characteristics of the development set and the test set.

Development (Training) Set Test Set

No. of pregnancies with genetic
anomaly 111

No. of normal pregnancies 556
Ultrasonic equipment GE Volution E10

Institution Guangzhou Women and Children’s Medical
Center

Total no. of qualified ultrasound
images 776 156

Genetic disease images 189 63
Normal pregnancies images 587 93

Finally, we used a program script to randomly divide positive cases into training and
test sets at a ratio of 3:1. The training set includes 189 images of 74 positive cases, and
the test set includes 63 images of 37 positive cases. In order to balance the proportion of
samples in the test set, we randomly divided the negative cases into the training set and
the test set at a ratio of 9:1. Therefore, the training set includes 587 images of 56 negative
cases, and the test set includes 93 images of 500 negative cases. It is worth noting that this
dataset is divided at the case level rather than the image level to observe a more realistic
screening performance.

This study was approved by the Institutional Review Board of the Guangzhou Women and
Children’s Medical Center (473B01, 2021). Each participant signed an informed consent form.

2.2. Date Preprocessing

At first, we converted all the images into grayscale images. Following that, we rescaled
the images to 400 × 440 pixels in size and normalized the pixel values to a range of 0 to
1. In addition, we augmented the training data set with distortion, zoom in, tilt, zoom
out, and crop. All preprocessing steps make use of open-source Python libraries: OpenCV,
scikit-image, and NumPy.

Following data preprocessing, a total of 20,000 images, including 10,000 normal preg-
nancy images and 10,000 genetic disease images, are used to develop Fgds-EL.

2.3. Ensemble Learning Architecture

Both local and global facial features have been considered as significant variations
for the detection of genetic diseases. Figure 1 gives a block diagram representation of
the proposed model. Our deep learning model is named Fgds-EL (Fetal Genetic Disease
Screening Model based on Ensemble Learning). We design a deep learning architecture
structured into three parts, which perform global facial feature extraction (Network A),
local feature extraction (Network B), and genetic disease risk estimation (RF).

Our deep learning architecture is inspired by an experiment conducted to predict
the genetic diseases of the whole face, including the upper face, middle face, and lower
face [27,28]. In our proposed model, subgraphs B1 and B2 were initially cropped from the
facial images with the help of an automated program. Subgraph B3 was cropped from the
images with the help of a bone detection algorithm that uses threshold segmentation [29].
These cropped pictures are divided into three parts, which will be fed into different net-
works along with the full face information for extracting the essential representation of the
facial features. The extracted representations are then aggregated into a single represen-
tation vector. After that, an ensemble learning model is trained on these representations
for further classification. The entire framework can be divided into three parts: subgraph
acquisition (segmentation), fetal facial representation extraction, and ensemble learning.
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Figure 1. Workflow of the deep learning model for screening fetal genetic diseases. First, the fetal
facial image is extracted into four subgraphs by automatic segmentation and bone detection and
input into four networks, respectively. Then, the joint prediction probability is obtained using RF on
the prediction results of the four networks, and finally, the risk score and heatmap corresponding to
this image is obtained.

2.3.1. Subgraph Acquisition

In the subgraph acquisition part (Figure 1a), the ultrasound image is extracted as four
subgraphs. Subgraph A contains the whole face, including the upper face, middle face, and
lower face. Subgraph B1 contains the middle and lower face. It includes 220 × 250 pixels
from the facial image. Subgraph B2 contains the upper face and hindbrain. It includes
300 × 400 pixels from the facial image. Subgraph B3 is the bone detection subgraph, in
which we use the detection method proposed by Lai et al. to extract the features of the
nasal bone and jaw [29]. An example of the various subgraphs extracted from a fetal profile
is shown in subgraph acquisition in Figure 1.

2.3.2. Fetal Facial Representation Extraction

In subgraph A, Network A identified facial differences to estimate the probability of a
patient presenting with a genetic disease and the probability of the patient not presenting
with a genetic disease from the facial image of size 440 × 400 pixels. Network B embedded
three networks (B.1, B.2, and B.3) with the architectures described in Figure 1b. Network B.1,
B.2, and B.3 are connected to subgraphs B1, B2, and B3. They identified facial differences to
estimate the probability of a patient presenting with a genetic disease and the probability
of the patient not presenting with a genetic disease. ReLU (Rectified Linear Unit) activation
functions were used after each filter operation. A ReLU function was used in the final layer
to ensure that the probabilities of the two classes were disjoint. All pooling operations used
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two strides to decrease the data size to half on each spatial dimension. Each network is
trained separately, the outputs of each network’s last neural network layer are selected
as the probability of genetic disease, and we simply concatenate them together to form
multiple dimensional features. We used ResNet-50 as Network B.1 and ResNet-18 as
Network A. Considering that the key information in Subgraph B2 and Subgraph B3 are
low-level image features, we constructed Networks B.2 and B.3 using the residual module.
The structures of Network B.2 and Network B.3 are shown in Figure S1.

2.3.3. Ensemble Learning

We use RF as the stacking model of sub-networks in ensemble learning, and RF fuses
the disease probability of each network to estimate the comprehensive probability of a
patient presenting with a genetic disease and the comprehensive probability of a patient
not presenting with a genetic disease. To prevent overfitting, we adjusted the parameters of
the training set. The number of parameters of the decision tree is 43, the maximum depth
of the decision tree is 3, and the other parameters are the default parameters.

Networks A, B, and RF were trained in two stages. First, Networks A and B were used
to predict the disease probability of each network. Following that, RF is used to combine
each network’s prediction probability to obtain the overall classification performance. In the
CNN model, at least one residual block is added to each network, and batch normalization
optimization is carried out in each convolution layer. Learning rate optimization was
performed using the Adam optimizer, with an initial learning rate of 1 × 10−5. During
the training process, the callback function is used to keep an eye on the validation set loss
function, and the best model is saved.

We implemented and trained Fgds-EL, and all the functionality, experiments, and
analysis were implemented using Python (NumPy 1.16, for array manipulation; opencv
4.1, scikit-image 0.17, imageio 2.8, and Pillow 7.1 for image operations; and scikit-learn 0.19
for performance quantification) and Google Tensorflow 2.0 (for the implementation of the
deep learning architecture).

2.4. Performance Evaluation

To comprehensively evaluate the excellent performance of our proposed Fgds-EL
model, we trained the other models, including classic convolution network models, such as
ResNet [30], VGG [31], and DenseNet [32,33]. At the same time, in order to further analyze
the performance of our method, we also compare it with other recent deep learning models,
such as ResNest50 [34], EfficientFormer [35], Swin Transformer [36], and RepLKNet [37].
Since the proposed model combines several CNN models, we also measure the processing
speed of a single sample and compare it with other models in the results section. The CPU
of our experimental platform is an Intel Core i7-11800H, and the GPU is a NVIDIA GeForce
RTX 3080 Laptop.

In the statistical analysis, six quantitative indicators are used to evaluate the screening
performance, such as accuracy (ACC), sensitivity (SEN), specificity (SPEC), and F1 score. F1
score, also known as balanced F score, is defined as the harmonic average of the precision
and recall rates. Additionally, we use the receiver operating characteristic (ROC) curve and
the area under the receiver ROC curve (AUC) to assess the screening performance between
different models and networks. Additionally, ROC analysis is performed to determine the
optimal operating thresholds by using the outputs of the models on the tuning dataset. We
also use the distribution of risk scores related to the genetic disease determined by Fgds-EL
in test sets.
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2.5. Performance Comparison between the Fgds-EL and Prenatal Diagnostic Doctor

To compare the Fgds-EL’s performance to that of a doctor, we recruited three sonog-
raphers with varying levels of clinical experience (a junior sonographer with three years
of experience, a junior professional sonographer with seven years of experience, and a
senior with 15 years of experience). Fgds-EL and each sonographer were given 100 images
from the test set and were asked to independently determine whether the fetus had certain
genetic diseases.

2.6. Heat Map Generation

Grad-CAM is used to visualize the decision-making ability of our model by adding
a visualization layer to the CNN model [26]. This method uses target concept gradients
to generate a localization map highlighting key image regions for concept prediction.
Redder regions indicate more important predictions. A heat map is generated using this
tool to interpret the Fgds-EL’s rationale for distinguishing between normal fetal facial
development and genetic diseases of the face.

Instead of retraining the model or making changes to it, Grad-CAM’s approach simply
takes a single image into the network to extract the top layer feature maps and uses
backpropagation to compute the gradients to generate a category gradient matrix. In
this way, we can obtain a feature map associated with the category information, and
then overlay it with the original image to obtain a heat map that can explain the model’s
decision logic.

3. Results
3.1. Dataset Characteristics

A total of 932 images (including 680 normal pregnancy images and 252 genetic disease
images) are retrieved for developing the ensemble learning model. Following data prepro-
cessing, a total of 20,000 images, including 10,000 normal pregnancy images and 10,000
genetic disease images, are used to develop Fgds-EL, and 158 images (including 94 images
of normal pregnancies and 63 images of genetic diseases) are used to test our model. In the
original dataset, the top three genetic diseases in our datasets are Down syndrome (55/252,
21.8%), trisomy 18 (80/252, 30.9%), and trisomy 13 (42/252, 16.4%). The other genetic dis-
eases (e.g., monogenic genetic disease and Turner syndrome) are 30.9% (75/252), including
Turner syndrome, 1q21.1 microdeletion, 15q11-q13 duplication syndrome, 15q26.1-q26.3
deletion and 20p13 duplication, Helsmoortel-van der AA syndrome, 4P syndrome, etc.
Details on the development set and test set are described in Table 1.

3.2. Performance of the Fgds-EL and Each Subnetwork

The development and validation processes of the Fgds-EL are shown in Figure 1.
It uses an aggregation of fetal facial regions to improve performance and robustness.
The fetal facial images are extracted into four subgraphs by an automated program. To
examine how each subgraph contributes to the ensemble learning model and genetic
disease screening, we evaluate each subgraph’s performance separately in comparison to
the ensemble learning model. The feature importance obtained from ensemble learning is
shown in Figure 2. It is used to show the contribution of each subgraph to Fgds-EL. We
draw the ROC curve obtained from the subnetworks (Networks A, Networks B.1, Networks
B.2, and Networks B.3) in Fgds-EL training. For comparison, the ROC curve from ensemble
learning is also shown in Figure 3a.
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For screening genetic diseases, the optimal algorithm Fgds-EL achieves an area under
the receiver operating characteristic curve (AUC) of 0.986, a sensitivity of 0.92, and a
specificity of 0.97 in the test set. We also calculate the performance of each subnetwork
to find out how different parts of the fetal face affect the screening for genetic diseases.
Network A achieves the best performance in the subnetwork, including an AUC of 0.857, a
sensitivity of 0.76, and a specificity of 0.81 by training subgraph A. Network B.1 achieves
an AUC of 0.889, a sensitivity of 0.78, and a specificity of 0.86 by training subgraph B1, and
Network B.2 obtains an AUC of 0.66, a sensitivity of 0.70, and a specificity of 0.63 by training
subgraph B2. In the bone detection subgraph, Network B.3 attains an AUC of 0.711, a
sensitivity of 0.52, and a specificity of 0.93 by training subgraph B3. Network B.1 shows the
best performance in subnetworks, which indicates that subgraph B1 contains information
that is essential for screening genetic diseases. Further information encompassing the F1
score of Fgds-EL and the subnetwork is also displayed in Table 2.

The distribution of the predicted scores and the confusion matrices related to the cate-
gories determined by the Fgds-EL and sub-networks in test sets are shown in Figure 4a,b.
With the threshold set at 0.3, the percentage of correctly classified images in genetic dis-
ease was 92.1% (58/63) in Fgds-EL. By comparison, those correctly classified were 76.2%
(48/63) in Network A (threshold = 0.7), 77.8% (49/63) in Network B.1 (threshold = 0.47),
71.4% (45/63) in Network B.2 (threshold = 0.6), and 52.4% (33/63) in Network B.3
(threshold = 0.56), respectively.
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(a) The receiver operating characteristic (ROC) curves of the different sub-networks and Fgds-EL in
the test set. (b) The ROC curves of the different deep learning algorithms in the test set. AUC is the
area under the ROC curve.

Table 2. Fgds-EL performance in screening and identifying genetic diseases.

AUROC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) F1

Fgds-EL 0.986
(0.984–0.987)

0.92
(0.82–0.97)

0.97
(0.90–0.99) 0.935

Network A 0.857
(0.849–0.861)

0.76
(0.64–0.86)

0.81
(0.71–0.88) 0.744

Network B.1 0.889
(0.884–0.896)

0.78
(0.65–0.87)

0.86
(0.77–0.92) 0.784

Network B.2 0.660
(0.654–0.671)

0.70
(0.57–0.80)

0.63
(0.52–0.72) 0.620

Network B.3 0.711
(0.703–0.721)

0.52
(0.40–0.65)

0.93
(0.85–0.97) 0.641

Data are metric value or metric value (95% CI). AUROC = area under the receiver operating characteristics curve.
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Figure 4. Risk scores (range 0–1) and confusion matrix predicted by the deep learning model for
discerning fetal genetic diseases. Scores closer to 1 denote a higher probability of genetic diseases.
The upper and lower bounds of the box refer to the 25th and 75th percentiles, and the line intersection
in the box refers to the median. Green triangles and red stars represent outliers and mean values
respectively. Whiskers refer to the full range of risk scores. In the confusion matrix, the horizontal
coordinate is the predicted label, and the vertical coordinate is the true label. (a) The risk scores
predicted by the different sub-networks and Fgds-EL in the test set. (b) The confusion matrix of the
different sub-networks and Fgds-EL in the test set. (c,e) The risk scores predicted by the different
deep learning models in the test set. (d,f) The confusion matrix of the different sub-networks and
Fgds-EL in the test set.
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3.3. Performance of the Fgds-EL and Other Deep Learning Algorithms

The screening results of the Fgds-EL for genetic diseases are shown in Table 1. Eight clas-
sic deep learning algorithms, DenseNet-169, DenseNet-121, ResNet-50, VGG-16, ResNest50,
EfficientFormer, Swin Transformer, and RepLKNet, are used to train models to compare
with Fgds-EL. The ROC curves of these algorithms in test sets are shown in Figure 3b, and
the corresponding confusion matrices and the distribution of predicted scores are presented
in Figure 4c–f, which indicates that our Fgds-EL is the optimal algorithm. The F1 score also
shows that the features of different facial genetic diseases learned by the Fgds-EL are more
identifiable than others. Further information encompassing AUC, sensitivities, specificities,
and F1 scores of these algorithms and Fgds-EL is displayed in Table 2.

Since the proposed model combines several CNN models, we also measure the pro-
cessing speed of a single sample. The results show that the model loading time of Fgds-EL
is 2.638 s, and the model prediction time is 0.942 s, which is slightly higher than ResNet-50
and lower than DenseNet. In the recent deep learning model, Swin Transfomer has the
fastest processing speed, while ResNest50 and RepLKNet have the slowest processing
speeds. The processing speed of all the models is shown in Table 3.

Table 3. Performance of four deep learning algorithms in the test datasets.

AUROC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI) F1 Loading Time

(Seconds)
Prediction Time

(Seconds)

Fgds-EL 0.986
(0.984–0.987)

0.92
(0.82–0.97)

0.97
(0.90–0.99) 0.935 2.638 0.942

ResNet-50 0.870
(0.862–0.875)

0.76
(0.64–0.86)

0.85
(0.76–0.91) 0.768 1.535 0.503

DenseNet-169 0.920
(0.915–0.926)

0.89
(0.78–0.95)

0.88
(0.80–0.94) 0.862 3.167 1.446

DenseNet-201 0.909
(0.907–0.915)

0.73
(0.60–0.83)

0.91
(0.83–0.96) 0.786 3.843 1.744

VGG-16 0.818
(0.812–0.828)

0.70
(0.57–0.80)

0.95
(0.87–0.98) 0.786 1.377 0.102

ResNest50 0.959
(0.956–0.963)

0.889
(0.778–0.950)

0.883
(0.796–0.937) 0.862 24.457 2.232

EfficientFormer 0.890
(0.883–0.894)

0.714
(0.585–0.818)

0.926
(0.848–0.967) 0.783 5.050 0.956

Swin Transformer 0.915
(0.912–0.921)

0.857
(0.741–0.929)

0.830
(0.735–0.897) 0.812 0.931 0.211

RepLKNet 0.916
(0.912–0.922)

0.857
(0.741–0.929)

0.840
(0.747–0.905) 0.818 34.128 1.534

Data are metric value or metric value (95% CI). AUROC = area under the receiver operating characteristics curve.

3.4. Importance Score from Fgds-EL

RF is an ensemble learning classifier based on the decision tree with good model
interpretability. Fgds-EL used an ensemble learning model based on a RF, which is stacked
by networks A, B.1, B.2, and B.3. The importance score can reflect the contribution of each
subgraph to Fgds-EL screening performance and help us understand the logic of the model.
The importance scores of network A, network B.1, network B.2, and network B.3 are 0.53,
0.16, 0.03, and 0.32, respectively, as shown in Figure 2. This indicates that the bone detection
subgraph (subgraph B3) promotes the performance of the Fgds-EL. At the same time, subgraph
B1 enlarges and focuses on some facial features that are not visible in the original image.

3.5. Fgds-EL Detects Facial Abnormalities by Subnetworks’ Heatmaps

To explore the interpretability of the Fgds-EL in screening genetic diseases, we use the
heatmaps created by Grad-CAM algorithms to visualize the regions that contributed most to
the model’s decisions. We find that heatmaps highlight the mouth, nose, jaw, and forehead
regions. Furthermore, the heatmap from the sub-network highlights some abnormalities of
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the facial features of genetic diseases in more detail. According to the heatmap, there are
three findings shown as follows. (1) Network B3 is able to accurately identify information
such as the nasal and jaw bones of the fetus, which are often overlooked in the analysis of
the global image. (2) Network B2 focuses on the morphological features of the skull, and
the flattened forehead of trisomy 13 is accurately identified by the heat map. (3) The heat
map of Network B1 focuses on the richer information of facial details. Examples of images
and corresponding heatmaps of genetic disease are shown in Figure 5.
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Network B (B.1, B.2, B.3). The heatmap illustrates the importance of local areas within the image for
classification. The importance value is scaled between −10 and 15, where a higher number indicates
that the area is of higher importance for classifying the image as consistent with genetic diseases.
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As shown in Figure 5, the heatmap indicated that trisomy 21 exhibited the phenotypic
characteristics of absent and hypoplastic nasal bones in the fetuses; trisomy 13 presents
with holoprosencephaly, cyclopia, ethmocephaly, cebocephaly, or premaxillary agenesis;
trisomy 18 is associated with facial features, such as cleft lip and jaw deformity; in the
screening test of a Helsmoortel-van der AA syndrome, Fgds-EL accurately detected the
prominent forehead, wide and depressed nasal bridge, and upturned nasal tip; and 4P
syndrome has special facial features such as bulging eyebrows and eyes and a small jaw
deformity. Other clinical findings are shown in the Supplementary Material.

3.6. Fgds-EL’s Performance Is on Par with the Senior Sonographers

For screening genetic disease from the test set, the junior sonographer achieves an
accuracy of 0.63 with a sensitivity of 0.42 and a specificity of 0.73, the attending achieves an
accuracy of 0.74 with a sensitivity of 0.79 and a specificity of 0.72, and the senior obtains
an accuracy of 0.91 with a sensitivity of 0.88 and a specificity of 0.93, while the Fgds-
EL acquires an accuracy of 0.93 with a sensitivity of 0.91 and a specificity of 0.95. The
performances of these three sonographers are presented in Table 4 and Figure 6.

Table 4. The screening performance of the Fgds-EL model and three sonographers.

Fgds-EL Junior Attending Senior

Accuracy 0.93 0.63 0.74 0.91
Sensitivity
(95% CI)

0.91
(0.78–0.97)

0.58
(0.42–0.72)

0.84
(0.70–0.93)

0.91
(0.78–0.97)

Specificity
(95% CI)

0.95
(0.84–0.98)

0.67
(0.53–0.79)

0.65
(0.51–0.77)

0.91
(0.79–0.97)

Int. J. Environ. Res. Public Health 2023, 20, x  14 of 18 
 

 

and eyes and a small jaw deformity. Other clinical findings are shown in the 

Supplementary Material. 

3.6. Fgds-EL’s Performance Is on Par with the Senior Sonographers 

For screening genetic disease from the test set, the junior sonographer achieves an 

accuracy of 0.63 with a sensitivity of 0.42 and a specificity of 0.73, the attending achieves 

an accuracy of 0.74 with a sensitivity of 0.79 and a specificity of 0.72, and the senior obtains 

an accuracy of 0.91 with a sensitivity of 0.88 and a specificity of 0.93, while the Fgds-EL 

acquires an accuracy of 0.93 with a sensitivity of 0.91 and a specificity of 0.95. The 

performances of these three sonographers are presented in Table 4 and Figure 6. 

Table 4. The screening performance of the Fgds-EL model and three sonographers. 

 Fgds-EL Junior  Attending Senior 

Accuracy 0.93 0.63 0.74 0.91 

Sensitivity  

(95% CI) 

0.91  

(0.78–0.97) 

0.58  

(0.42–0.72) 

0.84  

(0.70–0.93) 

0.91  

(0.78–0.97) 

Specificity  

(95% CI) 

0.95  

(0.84–0.98) 

0.67  

(0.53–0.79) 

0.65  

(0.51–0.77) 

0.91  

(0.79–0.97) 

 

Figure 6. The ROC curves of the Fgds-EL and confusion matrix for screening for genetic diseases on 

the test set with three levels of sonographer performance (junior, attending, and senior) to compare. 

In the confusion matrix, the horizontal coordinate is the predicted label, and the vertical coordinate 

is the true label. 

4. Discussion 

The goal of this study is to develop a significant ensemble learning algorithm (named 

Fgds-EL) to screen for genetic diseases in the fetus. The workflow of our deep learning 

model for screening fetal genetic diseases is shown in Figure 1. Figures 3 and 4 show that 

Fgds-EL algorithms are effective at screening genetic diseases, outperforming ResNet, 

ResNest50, DenseNet, Swin Transformer, and other algorithms, and have an acceptable 

processing speed. In a comparative study of subnetworks, we discover that the Network 

B.1 developed by subgraph B.1 achieves the best performance (AUC 0.89, sensitivity 0.78, 

specificity 0.86). In light of our interpretable experiments, the features of the mouth and 

Figure 6. The ROC curves of the Fgds-EL and confusion matrix for screening for genetic diseases on
the test set with three levels of sonographer performance (junior, attending, and senior) to compare.
In the confusion matrix, the horizontal coordinate is the predicted label, and the vertical coordinate is
the true label.

4. Discussion

The goal of this study is to develop a significant ensemble learning algorithm (named
Fgds-EL) to screen for genetic diseases in the fetus. The workflow of our deep learning
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model for screening fetal genetic diseases is shown in Figure 1. Figures 3 and 4 show
that Fgds-EL algorithms are effective at screening genetic diseases, outperforming ResNet,
ResNest50, DenseNet, Swin Transformer, and other algorithms, and have an acceptable
processing speed. In a comparative study of subnetworks, we discover that the Network
B.1 developed by subgraph B.1 achieves the best performance (AUC 0.89, sensitivity 0.78,
specificity 0.86). In light of our interpretable experiments, the features of the mouth
and nose regions in subgraph B.1 have contributed a great deal to genetic disease facial
manifestations. In our further study of ensemble learning, we show the importance of
scores of sub-networks in Figure 2. The scores of network A, network B.1, network B.2,
and network B.3 are 0.53, 0.13, 0.03, and 0.32, respectively. It illustrates that the nasal bone,
jaw, and other knowledge learned by Network B.3 effectively enhance the performance of
the Fgds-EL. In general, the results show that Fgds-EL has the potential to be an effective
noninvasive screening tool for early screening of genetic diseases in the fetus, such as Down
syndrome, reducing the use of medical resources (amniocentesis and NIPT) and improving
the detection rate.

Chromosomal diseases are the most common genetic diseases and the leading causes
of congenital disability. Abnormal facial manifestations usually accompany patients with
chromosomal genetic syndromes [38–41]. With the rapid development of CNN technology,
automatic facial recognition technology has been widely studied and developed in recent
years. Facial recognition has become one of the most popular research topics in pattern
recognition and image processing in the past three decades. The latest research has shown
that facial analysis technology can improve clinicians’ ability to diagnose genetic syndromes.
FDNA has developed a facial disease recognition system, termed “face2Gene” [27], which
combines computational facial recognition with a clinical knowledge database. It uses deep
learning algorithms to aid pediatricians in the diagnosis of genetic syndromes through
image recognition. This has attracted extensive attention in clinical genetics. Porras et al.
developed a deep learning system including facial morphology detection, using facial
images to evaluate a child’s risk of presenting with a genetic syndrome [28]. These studies
use children’s facial photos to diagnose genetic syndromes. They have a high clinical
application, making it possible to construct an AI screening system for fetal face recognition.

Our current method calculates the risk of genetic diseases (including common ane-
uploidies, subchromosomal abnormalities, and monogenic diseases) by using ultrasono-
graphic images of the head through a routine structural scan in the first and mid-trimester.
This means that original images are readily available and do not increase the additional
workload of ultrasound technicians. It has the potential to be widely applicable in remote
or underdeveloped areas. We hope that the model will reduce the time it takes to refer
patients with suspected genetic diseases and speed up the process of diagnosing them.

Deep learning is regarded as a high-risk decision due to the lack of interpretability
in diagnosis, and is even referred to as “a black box.” To investigate this issue, we use the
RF algorithm for ensemble learning and the importance score to visualize the contribution
of subnetworks to the final decision. We also create heatmaps using the Grad-CAM
technique [26] to visualize the regions that contribute the most to the classification of the
model. The heatmap highlights high-contributing areas in images, such as the nose, mouth,
forehead, and others. Notably, we also show the heatmap of each subgraph in the model,
which is useful for understanding the basis of model evaluation from different perspectives
and exploring abnormal facial features. As shown in Figures 1 and 5, network A learns the
entire image and has good recognition ability for global image features, but misses local
features such as bone features. Network B.1 is more sensitive to the middle and lower face,
whereas network B.3 can finely reflect the development of the nasal bone, jaw bone, and
other parts, and network B.2 is more sensitive to the frontal bone and hindbrain. Many cases
will have a variety of facial defects that are frequently omitted due to doctors’ inattention
and lack of knowledge. People with Down syndrome, for example, will have nasal bone
loss, ossification of the forehead and maxilla, and facial abnormalities such as ear defects.
Such abnormalities can be found in other genetic diseases as well. As a result, our model can



Int. J. Environ. Res. Public Health 2023, 20, 2377 14 of 16

not only improve detection rates, but also generate an innovative, interpretable heatmap.
This interpretability feature could make it more useful in complementary medicine.

In the research domain, potential applications include: (1) studying the facial abnor-
malities of fetal genetic diseases and analyzing the facial risk areas; (2) discovering new
genetic diseases; and (3) performing a correlation analysis between genetic diseases and
facial characteristics. In the clinical domain, potential applications in the future could
include: (1) It can be packaged into low-cost screening software and deployed to the cloud
or server, which would be a convenient and cost-effective approach for promoting the early
detection of genetic disease; (2) deployed to hospitals at all levels for graded diagnosis and
treatment to reduce medical errors and medical waste; (3) it provides suggestions for diag-
noses for doctors to consider as a complementary diagnostic technique; and (4) large-scale,
cross-regional genetic disease screening.

Although the present study proves the potential of our Fgds-EL in screening genetic
diseases, the model has several limitations, which we wish to address in the near future:
(1) Our study only used a small number of cases of genetic diseases from one center, which
may affect the robustness of the model. In the next study, we will collect data from different
races (e.g., Black, Latinx, Caucasian, etc.) to improve the robustness of the model. (2) In
addition to the cases included in this study, there are many rare genetic diseases with
typical facial abnormalities. The next study needs to combine multiple institutions to
collect these rare cases. (3) Only one standard section of ultrasonic images is used in this
study. In the following study, we will explore the use of other standard sections for genetic
disease screening. In addition, while our model appears well suited for a screening purpose
(discerning facial abnormalities in genetic diseases), it cannot provide a specific diagnosis
based on images. We expect to collect more ultrasonic facial images of genetic diseases
in each category and then develop an AI model to realize this function. (4) We did not
compare the differences between our model and the integrated test and the NIPT in this
experiment, we hope to collect data for comparative experiments in future studies. (5) The
model has been tested against three human raters, but the number of human raters involved
is relatively small. In the future, we will conduct large-scale comparative research.

In conclusion, we created Fgds-EL, a deep learning model based on the ensemble
learning framework, to screen for fetal genetic diseases. Fgds-EL could also predict a risk
score for trisomy 21, trisomy 18, trisomy 13, and other rare genetic diseases in an automated,
accurate, and quantitative manner. As a new technology for clinic grading, this AI model
can assist medical institutions in conducting large-scale fetal genetic disease screening
while also reducing the use of medical resources.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph20032377/s1, Supplemental Material S1, Figure S1: Structure
of Network B.2 and Network B.3. ResBlock 1 and ResBlock 2 are two residual modules, and ×n
represents n repetitions. A BatchNormalization layer follows each convolutional layer, and all the
activation function are uesd ReLU. Supplemental Material S2: Other clinical findings.
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