Socio-Economic Vulnerability to Climate Change in Rural Areas in the Context of Green Energy Development—A Study of the Great Masurian Lakes Mesoregion
Abstract
:1. Introduction
2. Materials and Methods
Symbol | Feature |
for i-th poviat in k-th scenario | |
value of weight of j-th variable | |
value of j-th variable for i-th poviat | |
the maximum value of the j-th variable for i-th poviat | |
the minimum value of the j-th variable for i-th poviat | |
Ik | the Global Moran’s index for k-th scenario |
n | the total number of poviats |
the values of j-th variable for i-th and i’th compared poviats | |
mean value of the variable for all j-th poviats | |
elements of the spatial matrix of weights for i-th and i’th poviat | |
The value of aggregate weights in k scenario | |
Z(I)k | the number of standard deviations of Moran’s I in relation to the mean in kth scenario |
E(I)k | the expected value of Moran’s I in kth scenario |
Var(I)k | the variance value of Moran’s I in kth scenario |
elements of the spatial matrix of weights for i’th and i-th poviats | |
quantity of sum of weights in the column of j-th variable | |
quantity of sum of the weights in the row of j-th variable |
3. Results
3.1. Changes in Green Energy (X15)
3.2. Changes in Greenhouse Gas Emissions (X14)
3.3. Changes in Electricity Consumption (X38)
3.4. Changes in the Number of Extreme Events and Financial Losses in Farmland (X1, X2)
3.5. VCC Scenarios
3.6. Spatial Heterogeneity of VCC1, VCC2, VCC3 and X1, X2, X14, X15, X38
4. Discussion
Limitations of the Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNFCCC. Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries. 2006. Available online: https://unfccc.int (accessed on 15 April 2022).
- Rekacewicz, P.; Bournay, E. Climate Change: Processes, Characteristics and Threats. DRID Arendal. 2005. Available online: https://www.grida.no/resources/6889 (accessed on 15 April 2022).
- Cao, X.; Kung, C.C.; Wang, Y. An environmental and economic evaluation of carbon sequestration from pyrolysis and biochar application in China. Agric. Econ. Czech 2017, 63, 569–578. [Google Scholar] [CrossRef]
- Ul Haq, M.A.; Nawaz, M.A.; Akram, F.; Natarajan, V.K. Theoretical Implications of Renewable Energy using Improved Cooking Stoves for Rural Households. Int. J. Energy Econ. Policy 2020, 10, 546–554. [Google Scholar] [CrossRef]
- Fei, C.; Kung, C.C.; McCarl, B.A.; Fan, X. The Optimal Development Paths of Competing Bioenergy Technologies: An Economic and Environmental Evaluation. 16 May 2022. Available online: https://ssrn.com/abstract=4111458 (accessed on 12 December 2022). [CrossRef]
- Byrne, J.; Hughes, K.; Rickerson, W.; Kurdgelashvili, L. American policy conflict in the greenhouse: Divergent trends in federal, regional, state, and local green energy and climate change policy. Energy Policy 2007, 35, 4555–4573. [Google Scholar] [CrossRef]
- Laldjebaev, M.; Morreale, S.J.; Sovacool, B.K.; Kassam, K.-A. Rethinking energy security and services in practice: National vulnerability and three energy pathways in Tajikistan. Energy Policy 2018, 114, 39–50. [Google Scholar] [CrossRef]
- Fonta, W.; Ayuk, E.; Huysen, T. Africa and the Green Climate Fund: Current challenges and future opportunities. Clim. Policy 2018, 18, 1210–1225. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change. Climate Change; The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- IPCC. Intergovernmental Panel on Climate Change. Summary for Policymakers, An IPCC Special Report; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Monasterolo, I.; Raberto, M. The impact of phasing out fossil fuel subsidies on the low-carbon transition. Energy Policy 2019, 124, 355–370. [Google Scholar] [CrossRef]
- Hennings, W.; Mischinger, S.; Linssen, J. Utilization of excess wind power in electric vehicles. Energy Policy 2013, 62, 139–144. [Google Scholar] [CrossRef]
- Kaldellis, J.; Zafirakis, D. The wind energy (r)evolution: A short review of a long history. Renew. Energy 2011, 36, 1887–1901. [Google Scholar] [CrossRef]
- Kung, C.-C.; Mu, E. Prospect of Pyrolysis and Biochar Application under Climate Change. Renew. Sustain. Energy Rev. 2019, 114, 109343. [Google Scholar] [CrossRef]
- McInerney, C.; Bunn, D. Expansion of the investor base for the energy transition. Energy Policy 2019, 129, 1240–1244. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Pogson, M.; Hastings, A.; Smith, P. How does bioenergy compare with other land-based renewable energy sources globally? GCB Bioenergy 2012, 5, 513. [Google Scholar] [CrossRef]
- Thi, N.; Lin, C.; Kumar, G. Electricity generation comparison of food waste-based bioenergy with wind and solar powers: A mini review. Sustain. Environ. Res. 2016, 26, 197–202. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, L.; Niu, T.; Zhang, M. Comparison and analysis of energy storage technology to balance fluctuation of wind power output. Power Syst. Prot. Control. 2015, 43, 149–154. [Google Scholar]
- Gielen, D.; Boshell, F.; Saygin, D.; DBazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Chen, C.C.; McCarl, B.A.; Chang, C.C.; Tso, C. Evaluation the potential economic impacts of Taiwanese biomass energy production. Biomass Bioenergy 2011, 35, 1693–1701. [Google Scholar] [CrossRef]
- Searle, S.; Malins, C. A reassessment of global bioenergy potential in 2050. GCB Bioenergy 2015, 7, 328–336. [Google Scholar] [CrossRef]
- Ziska, L.; Runionb, G.; Tomeceka, M.; Priorb, S.; Torbetb, H.; Sicher, R. An evaluation of cassava, sweet potato and field corn aspotential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 2009, 33, 1503–1508. [Google Scholar] [CrossRef]
- Panele Fotowoltaiczne Dziś są Receptą na Drogi Prąd. Jutro Staną Się Uciążliwymi Odpadami. Available online: https://www.money.pl/gospodarka/panele-fotowoltaiczne-dzis-sa-recepta-na-drogi-prad-jutro-stana-sie-uciazliwymi-odpadami-6737231063817024a.html?utm_source=facebook&utm_medium=social&utm_campaign=fbwp&utm_term=post&utm_content=money&fbclid=IwAR2HPjYkV52v_s7oQkfoUwArWawWGZ5n9zTeuG9ZzYaZSDgB_U591O1byro (accessed on 20 March 2022).
- Baqir, M.; Bharti, S.K.; Kothari, R.; Singh, R.P. Assessment of an energy-efficient metal chulha for solid biomass fuel and evaluation of its performance. Int. J. Environ. Sci. Technol. 2019, 16, 6773–6784. [Google Scholar] [CrossRef]
- Dong, X.Y.; Ran, Q.; Hao, Y. On the nonlinear relationship between energy consumption and economic development in China: New evidence from panel data threshold estimations. Qual. Quant. 2019, 53, 1–21. [Google Scholar] [CrossRef]
- Sahoo, S. Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review. Renew. Sustain. Energy Rev. 2016, 59, 927–939. [Google Scholar] [CrossRef]
- Jacobson, A. Connective power: Solar electrification and social change in Kenya. World Dev. 2007, 35, 144–162. [Google Scholar] [CrossRef]
- WB. Climate Change Action Plan (2021–2025). Available online: https://www.worldbank.org/en/news/infographic/2021/06/22/climate-change-action-plan-2021–2025 (accessed on 7 October 2022).
- Reichler, T. Chapter 7—Changes in the Atmospheric Circulation as Indicator of Climate Change. In Climate Change; Letcher revor, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 145–164. [Google Scholar] [CrossRef]
- Bowler, D.; Böhning-Gaese, K. Improving the community-temperature index as a climate change indicator. PLoS ONE 2017, 12, e0184275. [Google Scholar] [CrossRef] [PubMed]
- Gruza, G.; Rankova, E.; Razuvaev, V.; Bulygina, O. Indicators of Climate Change for the Russian Federation. Clim. Chang. 1999, 42, 219–242. [Google Scholar] [CrossRef]
- Sorte, C.J.; Jones, S.J.; Miller, L.P. Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. J. Exp. Mar. Biol. Ecol. 2011, 400, 209–217. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the fourth Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., Van Der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Shah, K.U.; Dulal, H.B.; Johnson, C.; Baptiste, A. Understanding livelihood vulnerability to climate change: Applying the livelihood vulnerability index in Trinidad and Tobago. Geoforum 2013, 47, 125–137. [Google Scholar] [CrossRef]
- Balica, S.F.; Wright, N.G.; van der Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73–105. [Google Scholar] [CrossRef]
- Khan, F.A.; Salman, A. A simple human vulnerability index to climate change hazards for Pakistan. Int. J. Disaster Risk Sci. 2012, 3, 163–176. [Google Scholar] [CrossRef]
- Pandey, R.; Jha, S. Climate vulnerability index–measure of climate change vulnerability to communities: A case of rural Lower Himalaya, India. Mitig. Adapt Strateg. Glob. Change 2012, 17, 487–506. [Google Scholar] [CrossRef]
- Mechler, R.; Bouwer, L.M. Understanding Trends and Projections of Disaster Losses and Climate Change: Is Vulnerability the Missing Link? Clim. Change 2015, 133, 23–35. [Google Scholar] [CrossRef]
- Williams, S.; Bi, P.; Newbury, J.; Robinson, G.; Pisaniello, D.; Saniotis, A.; Hansen, A. Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia. Int. J. Environ. Res. Public Health 2013, 10, 5565–5583. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, S.; Vogt, D.S.; Perret, S.R.; Kazama, F. Adapting cropping systems to climate change in Nepal: A cross-regional study of farmers’ perception and practices. Reg. Environ. Chang. 2011, 11, 335–348. [Google Scholar] [CrossRef]
- Gallopín, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Hahn, M.B.; Riederer, A.M.; Foster, S.O. The livelihood vulnerability index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Glob. Environ. Chang. 2009, 19, 74–88. [Google Scholar] [CrossRef]
- Adu, D.T.; Kuwornu, J.K.M.; Anim-Somuah, H.; Saski, N. Application of livelihood vulnerability index in assessing smallholder maize farming households’ vulnerability to climate change in Brong-Ahafo region Ghana. Kasetsart J. Soc. Sci. 2018, 38, 22–32. [Google Scholar] [CrossRef]
- Brooks, N. Vulnerability, Risk and Adaptation: A Conceptual Framework. Tyndall Centre for Climate Change Research, Working Paper 38. 2003. Available online: https://www.ipcc.ch/apps/njlite/srex/njlite_download.php?id=5463 (accessed on 16 April 2022).
- Garcia, R.A.; Cabeza, M.; Rahbek, C.; Araujo, M.B. Multiple dimensions of climate change and their implications for biodiversity. Science 2014, 344, 124779. [Google Scholar] [CrossRef] [PubMed]
- Aubin, I.L.; Boisvert-Marsh, H.; Kebli, H.; McKenney, D.; Pedlar, J.; Lawrence, K.; Hogg, E.H.; Boulanger, Y.; Gauthier, S.; Ste-Marie, C. Tree vulnerability to climate change: Improving exposure-based assessments using trails as indicators of sensitivity. Ecosphere 2018, 9, e02108. [Google Scholar] [CrossRef]
- Adger, W.N.; Kelly, P.M. Social Vulnerability to Climate Change and the Architecture of Entitlements. In Mitigation and Adaptation Strategies for Global Change; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; Volume 4, pp. 253–266. (In Dutch) [Google Scholar]
- Preston, B.L.; Yuen, E.J.; Westaway, R.M. Putting Vulnerability to Climate Change on the Map: A Review of Approaches, Benefits, and Risks. Sustain. Sci. 2011, 6, 177–202. [Google Scholar] [CrossRef]
- Ebi, K.L.; Boyer, C.; Bowen, K.J.; Frumkin, H.; Hess, J. Monitoring and Evaluation Indicators for Climate Change-Related Health Impacts, Risks, Adaptation, and Resilience. Int. J. Environ. Res. Public Health 2018, 15, 1943. [Google Scholar] [CrossRef] [Green Version]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The Determinants of Vulnerability and Adaptive Capacity at the National Level and the Implications for Adaptation. Glob. Environ. Chang. 2005, 15, 151–162. [Google Scholar] [CrossRef]
- Bellard, C.; Leclerc, C.; Leroy, B.; Bakkenes, M.; Veloz, S.; Thuiller, W.; Couchamp, F. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 2014, 23, 1376–1386. [Google Scholar] [CrossRef]
- Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond predictions: Biodiversity conservation in a changing climate. Science 2011, 332, 53–58. [Google Scholar] [CrossRef]
- Li, D.; Wu, S.; Liu, L.; Zhang, Y.; Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Chang. Biol. 2018, 24, 4095–4106. [Google Scholar] [CrossRef]
- Cardona, O.D.; van Aalst, M.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.; Schipper, E.; Sinh, B. Determinants of risk: Exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 65–108. [Google Scholar]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., Genova, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; p. 1132. [Google Scholar]
- Urban, M.; Bocedi, G.; Hendry, A.; Mihoub, J.-B.; Peer, G.; Singer, A.; Bridle, J.; Crozier, L.; De Meester, L.; Godsoe, W. Improving the forecast for biodiversity under climate change. Science 2016, 353, aad8466. [Google Scholar] [CrossRef] [PubMed]
- Aubin, I.; Munson, A.D.; Cardou, F.; Burton, P.J.; Isabel, N.; Pedlar, J.H.; Paquette, A.; Taylor, A.; Delagrange, S.; Kebli, H. Traits to stay, traits to move: A review of functional traits to assess sensitivity and adaptivity capacity of temperature and boreal trees to climate change. Environ. Rev. 2016, 24, 164–186. [Google Scholar] [CrossRef]
- Walker, B.; Gunderson, L.; Kinzig, A.; Folke, C.; Carpenter, S.; Schultz, L. A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecol. Soc. 2006, 11, 13. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.; Carpenter, S.; Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social-ecological systems analyzes. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Engle, N.L. Adaptive capacity and its assessment. Glob. Environ. Chang. 2011, 21, 647–656. [Google Scholar] [CrossRef]
- Robards, M.D.; Schoon, M.; Meek, C.; Engle, N. The importance of social drivers in the resilient provision of ecosystem services. Glob. Environ. Chang. 2011, 21, 522–529. [Google Scholar] [CrossRef]
- Caretta, M.A. Credit plus microcredit schemes: A key to women’s adaptive capacity. Clim. Dev. 2014, 6, 179–184. [Google Scholar] [CrossRef]
- Dilling, L.; Lackstrom, K.; Haywood, B.; Dow, K.; Lemos, M.C.; Berggren, J.; Kalafatis, S. What stakeholder needs tell us about enabling adaptive capacity: The intersection of context and information provision across regions in the United States. Weather. Clim. Soc. 2015, 7, 5–13. [Google Scholar] [CrossRef]
- Egyir, I.S.; Ofori, K.; Antwi, G.; Ntiamoa-Baidu, Y. Adaptive capacity and coping strategies in the face of climate change: A comparative study of communities around two protected areas in the coastal savanna and transitional zones of Ghana. J. Sustain. Dev. 2015, 8, 1–15. [Google Scholar] [CrossRef]
- Fernández-Giménez, M.; Batkhishig, B.; Batbuyan, B.; Ulambayar, T. Lessons from the Dzud: Community-based rangeland management increases the adaptive capacity of Mongolian herders to winter disasters. World Dev. 2015, 68, 48–65. [Google Scholar] [CrossRef]
- Grecksch, K. Adaptive capacity and water governance in the Keiskamma River catchment, Eastern Cape Province, South Africa. Water SA 2015, 41, 359–368. [Google Scholar] [CrossRef]
- Juhola, S.; Kruse, S. A framework for analysing regional adaptive capacity assessments: Challenges for methodology and policy making. Mitig. Adapt. Strateg. Glob. Chang. 2014, 20, 99–120. [Google Scholar] [CrossRef]
- Martin, G.; Magne, M.A. Agricultural diversity to increase adaptive capacity and reduce vulnerability of livestock systems against weather variability—A farm-scale simulation study. Agric. Ecosyst. Environ. 2015, 199, 301–311. [Google Scholar] [CrossRef]
- McClenachan, L.; O’Connor, G.; Reynolds, T. Adaptive capacity of co-management systems in the face of environmental change: The soft-shell clam fishery and invasive green crabs in Maine. Mar. Policy 2015, 52, 26–32. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Dougill, A.J.; Stringer, L.C. Impacts of land tenure arrangements on the adaptive capacity of marginalized groups: The case of Ghana’s Ejura Sekyedumase and Bongo districts. Land Use Policy 2015, 49, 203–212. [Google Scholar] [CrossRef]
- Chen, M.; Sun, F.; Berry, P.; Tinch, R.; Ju, H.; Lin, E. Integrated assessment of China’s adaptive capacity to climate change with a capital approach. Clim. Chang. 2015, 128, 367–380. [Google Scholar] [CrossRef]
- Clarvis, M.H.; Engle, N.L. Adaptive capacity of water governance arrangements: A comparative study of barriers and opportunities in Swiss and US states. Reg. Environ. Chang. 2015, 15, 517–527. [Google Scholar] [CrossRef]
- Kuruppu, N.; Mukheibir, P.; Murta, J. Ensuring small business continuity under a changing climate: The role of adaptive capacity. In Applied Studies in Climate Adaptation, 1st ed.; Palutikof, J.P., Boulter, S., Barnett, J., Rissik, D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 429–436. [Google Scholar] [CrossRef]
- Johnson, B.B.; Becker, M.L. Social-ecological resilience and adaptive capacity in a transboundary ecosystem. Soc. Nat. Resour. 2015, 28, 766–780. [Google Scholar] [CrossRef]
- Tinch, R.; Jäger, J.; Omann, I.; Harrison, P.A.; Wesely, J.; Dunford, R. Applying a capital framework to measuring coping and adaptive capacity in integrated assessment models. Clim. Chang. 2015, 128, 323–337. [Google Scholar] [CrossRef]
- Mandryk, M.; Reidsma, P.; Kartikasari, K.; van Ittersum, M.; Arts, B. Institutional constraints for adaptive capacity to climate change in Flevoland’s agriculture. Environ. Sci. Policy 2015, 48, 147–162. [Google Scholar] [CrossRef]
- Tu, V.H.; Yabe, M.; Trang, N.T.; Khai, H.V. Adaptive capacity assessment of rural out-migrants: A case study of An Giang Province, Vietnam. J. Fac. Agric. 2015, 60, 265–271. [Google Scholar] [CrossRef]
- Thulstrup, A.W. Livelihood resilience and adaptive capacity: Tracing changes in household access to capital in Central Vietnam. World Dev. 2015, 74, 352–362. [Google Scholar] [CrossRef]
- Siders, A.R. Adaptive capacity to climate change: A synthesis of concepts, methods, and findings in a fragmented field. WIREs Clim. Chang. 2019, 10, e573. [Google Scholar] [CrossRef]
- Elrick-Barr, C.E.; Preston, B.L.; Thomsen, D.C.; Smith, T.F. Toward a new conceptualization of household adaptive capacity to climate change: Applying a risk governance lens. Ecol. Soc. 2014, 19, 12. [Google Scholar] [CrossRef] [Green Version]
- West, J. Investing in adaptive capacity: Opportunities, risks and firm behaviour. In Applied Studies in Climate Adaptation, 1st ed.; Palutikof, J.P., Boulter, S., Barnett, J., Rissik, D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 437–444. [Google Scholar] [CrossRef]
- Gupta, A.K.; Negi, M.; Nandy, S.; Alatalo, J.M.; Singh, V.; Pandey, R. Assessing the vulnerability of socio-environmental systems to climate change along an altitude gradient in the Indian Himalayas. Ecol. Indic. 2019, 106, 105512. [Google Scholar] [CrossRef]
- Renewable Energy Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics (accessed on 7 October 2022).
- Map Data 2022. Google Ireland Limited. Available online: https://www.google.pl/maps/place/Warmian-Masurian+Voivodeship/@53.8584347,21.259973,6z/data=!4m5!3m4!1s0x46e20d3eacc5ae17:0x1020e32ad0ec0f0!8m2!3d53.8671117!4d20.7027861?hl=en (accessed on 15 April 2022).
- IPCC. IPCC, 2022: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar] [CrossRef]
- Žurovec, O.; Čadro, S.; Sitaula, B.K. Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina. Sustainability 2017, 9, 1208. [Google Scholar] [CrossRef]
- Hiremath, D.B.; Shiyani, R.L. Analysis of Vulnerability Indices in Various Agro-Climatic Zones of Gujarat. Ind. J. Agric. Econ. 2013, 68, 1. [Google Scholar]
- Haj, J.; Mimura, N. Supporting climate change vulnerability and adaptation assessments in the Asia-Pacific region: An example of sustainability science. Sustain. Sci. 2006, 1, 23–35. [Google Scholar] [CrossRef]
- Bury, J.T.; Mark, B.G.; McKenzie, J.M.; French, A.; Baraer, M.; Huh, K.I.; Luyo, M.A.Z.; Gómez López, R.J. Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Clim. Chang. 2011, 105, 179–206. [Google Scholar] [CrossRef]
- Knutsson, P.; Ostwald, M. A Process-Oriented Sustainable Livelihoods Approach—A Tool For Increased Understanding of Vulnerability, Adaptation and Resilience. Mitig. Adapt. Strateg. Glob. Chang. 2006, 12. [Google Scholar] [CrossRef]
- Bohle, H.G.; Downing, T.E.; Watts, M.J. Climate change and social vulnerability: Towards sociology and geography of food insecurity. Glob. Environ. Chang. 1994, 4, 37–48. [Google Scholar] [CrossRef]
- Adhav, C.A.; Chandel, B.S.; Bhandari, G.; Ponnusamy, K.; Ram, H. Socio-Economic Vulnerability to Climate Change—Index Development and Mapping for Districts in Maharashtra, India. 2021. Available online: https://doi.org/10.2139/ssrn.3854297 (accessed on 7 October 2022).
- Stec, M.; Janas, A.; Kuliński, A. Grouping the Countries of European Union with Regard to the Human Capital Resources. Nierówności Społeczne A Wzrost Gospod. 2005, 6, 135–146. [Google Scholar]
- Sokołowski, A. Analizy Wielowymiarowe; Materiały Szkoleniowe StatSoft: Krakow, Poland, 2014. [Google Scholar]
- Nowakowski, J.; Borowski, K. Normalizacja wskaźników analizy technicznej. Stud. I Pr. Kol. Zarządzania I Finans. 2003, 29, 58–68. [Google Scholar]
- Rogowski, W. Rachunek Efektywności Przedsięwzięć Inwestycyjnych; Oficyna Ekonomiczna: Kraków, Poland, 2004; p. 195. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973; p. 178. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications; Pion: London, UK, 1981. [Google Scholar]
- Mollalo, A.; Mao, L.; Rashidi, P.; Glass, G.E. A GIS-Based Artificial Neural Network Model for Spatial Distribution of Tuberculosis across the Continental United States. Int. J. Environ. Res. Public Health 2019, 16, 157. [Google Scholar] [CrossRef]
- Huo, X.-N.; Li, H.; Sun, D.-F.; Zhou, L.-D.; Li, B.-G. Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China. Int. J. Environ. Res. Public Health 2012, 9, 995–1017. [Google Scholar] [CrossRef] [Green Version]
- Urząd Regulacji Energetyki. Available online: https://www.ure.gov.pl/ (accessed on 15 April 2022).
- Gazy Cieplarniane. Available online: https://stat.gov.pl/metainformacje/slownik-pojec/pojecia-stosowane-w-statystyce-publicznej/2407,pojecie.html (accessed on 20 May 2022).
- Orczyński, W.; Patej, M. Plan Gospodarki Niskoemisyjnej Dla Obszaru Gmin Położonych Na Terenie Powiatu Szczycieńskiego, Mrągowskiego Oraz Nidzickiego. 2015, Tom II: Gmina Szczytno, Poznań. Archidrog. Available online: https://bip-v1-files.idcom-jst.pl/sites/47085/cms/szablony/9308/pliki/pgn_tom_ii_gmina_szczytno.pdf (accessed on 20 May 2022).
- Energia. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/ (accessed on 20 May 2022).
- VH Polska. Ujemne Skutki Przezimowania a Stan Upraw Rolnych. Available online: https://www.vh-polska.pl/aktualnosci/ujemne-skutki-przezimowania-stan-upraw/ (accessed on 20 May 2022).
- Liczba Zdarzeń Pogodowych. Available online: https://www.gov.pl/web/kgpsp/ponad-26-tys-interwencji-strazakow-w-zwiazku-z-sytuacja-pogodowa (accessed on 15 May 2022).
- Heliview Research. Climate Change Effects; Breda, 2008. Available online: https://heliview.be/summits/ (accessed on 15 May 2022).
- Norrington, H.; Underwood, K. Climate Change and Small Businesses: How Directors Are Responding to the Challenges of Climate Change—Research Findings 2008; Climate South East: Guilford, UK, 2008. [Google Scholar]
- Burnham, C. A Guide to Climate Change for Small- to Medium-Sized Enterprises; Holmes, R., Ed.; The Canadian Chamber of Commerce and Pollution Probe; desLibris: Toronto, ON, Canada, 2006. [Google Scholar]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Change Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef]
- Kowalczyk, A.M.; Czyża, S. Optimising Photovoltaic Farm Location Using a Capabilities Matrix and GIS. Energies 2022, 15, 6693. [Google Scholar] [CrossRef]
- Adaptation Gap Report 2021. The Gathering Storm. Adapting to Climate Change in a Post-Pandemic World. 6 Report UNEP. Available online: https://www.gridw.pl/aktualnosci/unep/2931-adaptacja-i-mitygacja-w-swietle-adaptation-gap-report-the-gathering-storm (accessed on 4 June 2022).
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- EEA. Energia a Zmiany Klimatu. Zobowiązanie Do Działania na Szczeblu Globalnym i Europejskim. Sygnały EEA 2017-09-25. 2017. Available online: https://www.eea.europa.eu/pl/sygna142y/sygnaly-2017/artykuly/energia-a-zmiany-klimatu (accessed on 17 December 2022).
Acronym | Name | Description | Range (Level) |
---|---|---|---|
PVCCI | Physical Vulnerability to Climate Change | climatic shocks and countries’ exposure to these shocks | global, national |
HCCVI | Habitat Climate Change Vulnerability Index | Exposure, resilience | regional, local |
CVI | Climate Vulnerability Index | Exposure, Sensitivity and Adaptive Capability | regional, local |
CHRI | Cultural Heritage Risk Index | hazard, exposure, vulnerability | regional, local |
VI | Vulnerability index | a measure of the exposure of a population to some hazard | regional, local |
EVI | Environmental Vulnerability Index | focus on planned solutions to negative pressures on the environment while promoting sustainability | national, regional |
CVM | Climate Vulnerability Monitor | global assessment of the effect of climate change on the world’s populations brought together by panels of key international authorities | global, national |
CCVI | Climate Change Vulnerability Index | enables organisations to identify areas of risk within their operations, supply chains and investments. | global, national |
SeVI | Socioeconomic Vulnerability Index | climate change affected communities in seven unions | regional, local |
SVI | Social Vulnerability Index | social vulnerability is a term describing how resilient a community is when confronted by external stresses on human health | regional, local |
GEVI | Global Energy Vulnerability Index | exposure of the energy system to adverse events and changes | global, national |
HVI | heat vulnerability index | vulnerability to extreme heat | local |
LVI | livelihood vulnerability index | used to assess the vulnerability of farming households to climate change and variability | Local, regional |
IVI | Infrastructure Vulnerability Index | Infrastructure Vulnerability Index for the drinking water distribution system to assess the vulnerability of the system to terrorist acts and to support the selection of investments to enhance security | Local, regional |
HVI | health vulnerability index | integrated health vulnerability index | Local, regional |
SDVI | Standardized drought Vulnerability index | vulnerability to drought and desertification | Local, regional |
BCVI | Bat cave vulnerability index | a vulnerability index for bat species to climate change | Local, regional |
Symbol | Features | Measure | Average | Min. | Max. | Variation Coefficient |
---|---|---|---|---|---|---|
Exposure | ||||||
X1 | Financial loss on agricultural production | PLN/year/ha AL | 32.0 | 11.2 | 57.0 | 39.75 |
X2 | Extreme events | Index/ha AL | 1.0 | 0.7 | 2.0 | 32.26 |
X3 | Agroclimatic conditions | Index (IUNG) | 8.0 | 5.2 | 10.0 | 13.31 |
Sensitivity | ||||||
X4 | RPP | Index (IUNG) | 65.0 | 52.2 | 78.0 | 12.15 |
X5 | agricultural land | % of poviat | 56 | 30 | 72 | 20.10 |
X6 | rural population | % of poviat | 51 | 32.6 | 75 | 22.08 |
X7 | Number of individual farms | in poviat | 2 | 1.2 | 4 | 31.71 |
X8 | Farm area | ha/in poviat | 55,561 | 30,153.9 | 93,758 | 30.22 |
X9 | Income per farm | PLN/in poviat | 2639 | 2427.8 | 29.1 | 4.74 |
X10 | Employment in agriculture | %/in poviat | 29 | 16.1 | 41 | 24.73 |
X11 | Population density | People/km2 | 48 | 32 | 81 | 29.24 |
X12 | Irrigation—drainage ditch area | ha AL | 1791 | 318 | 5889 | 68.68 |
X13 | Soil degradation (acidification) | % | 43 | 19 | 72 | 36.63 |
Adaptive Capacity | ||||||
X14 | Greenhouse gas emission | Tons/year | 49,346 | 55,286 | 134,717 | 39,819.3 |
X15 | RES | MW | 19 | 0 | 86 | 135.57 |
X16 | GDP | PLN | 27,747 | 21,623.2 | 35,977 | 12.09 |
X17 | Unemployment rate | % | 14 | 4.8 | 22 | 32.08 |
X18 | Number of schools | index | 42 | 17 | 92 | 41.36 |
X19 | Education (percentage of individuals with university education) | % | 12 | 9 | 15 | 13.31 |
X20 | Healthcare | Index/10,000 people | 32 | 7.8 | 53 | 35.46 |
X21 | Medical care | Index/10,000 people | 402 | 173 | 930 | 46.19 |
X22 | Density of paved roads | km/km2 | 117 | 66.9 | 182 | 25.07 |
X23 | Urbanization rate | % | 50 | 25.6 | 68 | 22.83 |
X24 | Entities of national economy | Per 10,000 people | 782 | 635 | 987 | 11.74 |
X25 | Community initiatives | index | 0 | 0.1 | 1 | 39.24 |
X26 | Main crop yield | dt/ha | 37 | 29.5 | 47 | 11.01 |
X27 | Area under crops | ha | 1933 | 1083 | 3516 | 32.25 |
X28 | Local government management level | PLN/resident | 25,907 | 12,510 | 56,495 | 49.68 |
X29 | Human capital | index | 27 | 3 | 51 | 48.11 |
X30 | Economic migration | Number of individuals | 952 | 378 | 2071 | 43.81 |
X31 | Economic capital | PLN | 1,296,471 | 126,373 | 3,029,313 | 73.05 |
X32 | Number of families with children | index | 22,207 | 7859 | 44,120 | 43.88 |
X33 | Fertility rate | index | 1 | 1.1 | 2 | 8.20 |
X34 | Water supply infrastructure | km | 828 | 294.9 | 1910 | 44.65 |
X35 | Natural resources | % | 47 | 19 | 78 | 34.38 |
X36 | Housing resources | number | 20,711 | 8462 | 43,168 | 45.72 |
X37 | Sewerage infrastructure | km | 357 | 141.7 | 1037 | 66.85 |
X38 | Energy consumption | GWh | 44 | 18.1 | 99 | 47.20 |
Indexes | VCC1 (2017) | VCC2 (2021) | VCC3 (2021) |
---|---|---|---|
Moran’s I Index | −0.07882 | −0.07233 | −0.06382 |
Expected Index | −0.05555 | −0.05556 | −0.05556 |
Variance | 0.02000 | 0.02017 | 0.01970 |
z-score | −0.16451 | −0.11815 | −0.05887 |
p-value | 0.86933 | 0.90595 | 0.95305 |
Indexes | X1_2017 | X1_2021 | X2_2017 | X2_2021 | X14_2017 | X14_2021 | X15_2017 | X15_2021 | X38_2017 | X38_2021 |
---|---|---|---|---|---|---|---|---|---|---|
Moran’s Index | −0.030147 | −0.07041 | −0.04269 | −0.10904 | −0.09442 | −0.15542 | 0.073736 | 0.102049 | 0.129615 | 0.15554 |
Expected Index | −0.055556 | −0.05556 | −0.05556 | −0.05556 | −0.05556 | −0.05556 | −0.05556 | −0.05556 | −0.05556 | −0.05556 |
Variance | 0.012367 | 0.000958 | 0.01142 | 0.012547 | 0.019677 | 0.017273 | 0.020595 | 0.020891 | 0.022142 | 0.022599 |
z-score | 0.228482 | −0.48001 | 0.120434 | −0.47749 | −0.27706 | −0.75988 | 0.900932 | 1.090402 | 1.244398 | 1.404233 |
p-value | 0.819272 | 0.631219 | 0.904139 | 0.633017 | 0.781737 | 0.447329 | 0.367624 | 0.275536 | 0.213353 | 0.16025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocur-Bera, K.; Czyża, S. Socio-Economic Vulnerability to Climate Change in Rural Areas in the Context of Green Energy Development—A Study of the Great Masurian Lakes Mesoregion. Int. J. Environ. Res. Public Health 2023, 20, 2689. https://doi.org/10.3390/ijerph20032689
Kocur-Bera K, Czyża S. Socio-Economic Vulnerability to Climate Change in Rural Areas in the Context of Green Energy Development—A Study of the Great Masurian Lakes Mesoregion. International Journal of Environmental Research and Public Health. 2023; 20(3):2689. https://doi.org/10.3390/ijerph20032689
Chicago/Turabian StyleKocur-Bera, Katarzyna, and Szymon Czyża. 2023. "Socio-Economic Vulnerability to Climate Change in Rural Areas in the Context of Green Energy Development—A Study of the Great Masurian Lakes Mesoregion" International Journal of Environmental Research and Public Health 20, no. 3: 2689. https://doi.org/10.3390/ijerph20032689
APA StyleKocur-Bera, K., & Czyża, S. (2023). Socio-Economic Vulnerability to Climate Change in Rural Areas in the Context of Green Energy Development—A Study of the Great Masurian Lakes Mesoregion. International Journal of Environmental Research and Public Health, 20(3), 2689. https://doi.org/10.3390/ijerph20032689