Environmental, Human and Ecotoxicological Impacts of Different Rice Cultivation Systems in Northern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Farm Management Practices
2.2.2. Soil Sampling and Analysis
2.2.3. Soil Organic Carbon Calculation
2.3. System Boundary and Functional Unit
2.4. Carbon Footprint Calculation
2.5. Water Footprint Calculation
2.6. Human and Ecotoxicity Impacts
2.7. Statistical Analysis
3. Results
3.1. Input Inventory Analysis
3.2. Soil Organic Carbon Stock and Sequestration
3.3. Greenhouse Gas Emissions and Carbon Footprint Intensity
3.4. Water Footprint
3.5. Pesticide Usage in Three Rice Planting Systems
3.6. Toxicity from Pesticide Usage
3.7. Pesticide Emission Distribution
4. Discussion
4.1. Environmental Impact under Different Rice Cultivation Systems
4.2. Human and Ecotoxicological Impacts under Different Rice Cultivation Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S.; Chareonwong, U.; Wang, C. Comparison of GHG emissions and farmers’ profit of large-scale and individual farming in rice production across four regions of Thailand. J. Clean. Prod. 2021, 278, 123945. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Kongsurakan, P.; Hatano, R. Assessing Soil Organic Carbon, Soil Nutrients and Soil Erodibility under Terraced Paddy Fields and Upland Rice in Northern Thailand. Agronomy 2022, 12, 537. [Google Scholar] [CrossRef]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Philippe Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Jolodar, N.R.; Karimi, S.; Bouteh, E.; Balist, J.; Prosser, R. Human health and ecological risk assessment of pesticides from rice production in the Babol Roud River in Northern Iran. Sci. Total Environ. 2021, 772, 144729. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, T.; Minx, J. A definition of “carbon footprint”. In Ecological Economics Research Trends; Pertsova, C.C., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 1–11. [Google Scholar]
- Ding, Y.; Liu, Y.X.; Wu, W.X.; Shi, D.Z.; Yang, M.; Zhong, Z.K. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut. 2010, 213, 47–55. [Google Scholar] [CrossRef]
- Koga, N. Nitrous oxide emissions under a four-year crop rotation system in northern Japan: Impacts of reduced tillage, composted cattle manure application and increased plant residue input. Soil Sci. Plant. Nutr. 2013, 59, 56–68. [Google Scholar] [CrossRef]
- Smith, K.A.; Ball, T.; Conen, F.; Dobbie, K.E.; Massheder, J.; Rey, A. Exchange of Greenhouse Gases between Soil and Atmosphere: Interactions of Soil Physical Factors and Biological Processes. Eur. J. Soil Sci. 2018, 69, 10–20. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, B.; Omid, M.; Mousazadeh, H. Prognostication of environmental indices in potato production using artificial neural networks. J. Clean. Prod. 2013, 52, 402–409. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Pan, G.; Li, L.; Wu, L.; Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 2004, 10, 79–92. [Google Scholar] [CrossRef]
- Arunrat, N.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review. Agronomy 2020, 10, 1061. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Wang, C. Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit province, Thailand. J. Environ. Manag. 2021, 289, 112458. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C.; Hatano, R. Carbon, Nitrogen and Water Footprints of Organic Rice and Conventional Rice Production over 4 Years of Cultivation: A Case Study in the Lower North of Thailand. Agronomy 2022, 12, 380. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. 2003 Virtual Water Trade. In Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12–13 December 2002. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2010, 21, 35–48. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Ogbeide, O.; Tongo, I.; Ezemonye, L. Assessing the distribution and human health risk of organochlorine pesticide residues in sediments from selected rivers. Chemosphere 2016, 144, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Safi, J.M. Association between chronic exposure to pesticides and recorded cases of human malignancy in Gaza Governorates (1990–1999). Sci. Total Environ. 2002, 284, 75–84. [Google Scholar] [CrossRef]
- Ghafouri-Khosrowshahi, A.; Ranjbar, A.; Mousavi, L.; Nili-Ahmadabadi, H.; Ghaffari, F.; Zeinvand-Lorestani, H.; Nili-Ahmadabadi, A. Chronic exposure to organophosphate pesticides as an important challenge in promoting reproductive health: A comparative study. J. Educ. Health Promot. 2019, 8, 149. [Google Scholar]
- Murray, C.J.L.; Lopez, A.D.; Jamison, D.T. The global burden of disease in 1990: Summary results, sensitivity analysis and future directions. Bull. World Health Organ. 1994, 72, 495–509. [Google Scholar]
- Verones, F.; Moran, D.; Stadler, K.; Kanemoto, K.; Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 2017, 7, 40743. [Google Scholar] [CrossRef] [PubMed]
- Thanapakpawin, P.; Richey, J.; Thomas, D.; Rodda, S.; Campbell, B.; Logsdon, M. Effects of landuse change on the hydrologic regime of the Mae Chaem river basin. NW Thailand J. Hydrol. 2007, 334, 215–230. [Google Scholar] [CrossRef]
- Walker, A.; Forests and Water in Northern Thailand. Resource Management in Asia-Pacific Program (RMAP), Division of Pacific and Asian History, Research School for Pacific and Asian Studies. 2004. Available online: https://openresearch-repository.anu.edu.au/handle/1885/40985 (accessed on 20 September 2022).
- Arunrat, N.; Sereenonchai, S.; Hatano, R. Impact of burning on soil organic carbon of maize-upland rice system in Mae Chaem Basin of Northern Thailand. Geoderma 2021, 392, 115002. [Google Scholar] [CrossRef]
- Land Development Department (LDD). Preliminary Study on Highland Development Project in Northern Thailand; Soil Survey Division, Land Development Department, Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 1992. (In Thailand)
- Mae Chaem Watershed Research Station. Mae Chaem Watershed. 2010. Available online: http://www.dnp.go.th/watershed/research/mj_station.htm (accessed on 25 June 2018). (In Thailand).
- Walkley, A.; Black, J.A. An examination of the dichromate method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basic Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, USA, 2013. [Google Scholar]
- Yin, W.; Chai, Q.; Fan, Z.; Hu, F.; Fan, H.; Guo, Y.; Zhao, C.; Yu, A. Energy budgeting, carbon budgeting, and carbon footprints of straw and plastic film management for environmentally clean of wheat-maize intercropping system in northwestern China. Sci. Total Environ. 2022, 826, 154220. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.A. Virtual water: A strategic resource global solutions to regional deficits. Ground Water 1998, 36, 545–546. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Virtual water trade. A quantification of virtual water flows between nations in relation to international crop trade. Value Water Res. Rep. Ser. 2002, 11, 166. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- Pollution Control Department. The Quality of Surface Water Standard; Ministry of Natural Resources and Environment: Bangkok, Thailand, 1994. Available online: http://infofile.pcd.go.th/law/3_14_water.pdf (accessed on 7 September 2019). (In Thailand)
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- Arunrat, N.; Wang, C.; Pumijumnong, N. Alternative cropping systems for greenhouse gases mitigation in rice field: A case study in Phichit province of Thailand. J. Clean. Prod. 2016, 133, 657–671. [Google Scholar] [CrossRef]
- Adhya, T.K.; Rath, A.K.; Gupta, P.K.; Rao, V.R.; Das, S.N.; Parida, K.M.; Parashar, D.C.; Sethunathan, N. Methane emission from flooded rice fields under irrigated conditions. Biol. Fertil. Soils 1994, 18, 245–248. [Google Scholar] [CrossRef]
- Alam, M.K.; Biswas, W.K.; Bell, R.W. Greenhouse gas implications of novel and conventional rice production technologies in the Eastern-Gangetic plains. J. Clean. Prod. 2016, 112, 3977–3987. [Google Scholar] [CrossRef]
- Sass, R.L. Spatial and temporal variability in methane emissions from rice paddies: Implications for assessing regional methane budgets. Nutr. Cycl. Agroecosyst. 2002, 64, 3–7. [Google Scholar] [CrossRef]
- Zhang, W.; Dou, Z.; He, P.; Ju, X.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.; Zhang, Y.; Wu, L. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef]
- Champrasert, P.; Sampattagul, S.; Yodkhum, S.; Wangpakapattanawong, P. Assessment of Carbon Footprint of Upland Rice Production in Northern Thailand. Chiang Mai Univ. J. Nat. Sci. 2020, 19, 427–446. [Google Scholar] [CrossRef]
- Adewale, C.; Reganold, J.P.; Higgins, S.; Evans, R.D.; Carpenter-Boggs, L. Improving carbon footprinting of agricultural systems: Boundaries, tiers, and organic farming. Environ. Impact Assess. Rev. 2018, 71, 41–48. [Google Scholar] [CrossRef]
- Alam, M.K.; Bell, R.W.; Biswas, W.K. Decreasing the carbon footprint of an intensive rice-based cropping system using conservation agriculture on the Eastern Gangetic Plains. J. Clean. Prod. 2019, 218, 259–272. [Google Scholar] [CrossRef]
- Adamu, H.; Umar, Y.A.; Akanang, H.; Sabo, A. Evaluation of Carbon Sequestration Potential of Soils—What Is Missing? J. Geosci. Environ. Prot. 2021, 9, 39–47. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon sequestration in agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Galloway, J.N.; Cowling, E.B. Reactive nitrogen and the world: 200 years of change. Ambio 2002, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Benbi, D.K. Carbon footprint and agricultural sustainability nexus in an intensively cultivated region of Indo-Gangetic Plains. Sci. Total Environ. 2018, 644, 611–623. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.; Ridoutt, B.G.; Chen, F. Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region. Water 2015, 7, 7066–7077. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–2008). Water Res. 2016, 94, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Nwani, C.D.; Lakra, W.S.; Nagpure, N.S.; Kumar, R.; Kushwaha, B.; Srivastava, S.K. Toxicity of the herbicide atrazine: Effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch). Int. J. Environ. Res. Public Health 2010, 7, 3298–3312. [Google Scholar] [CrossRef]
- Abigail, M.E.A.; Samuel, S.M.; Ramalingam, C. Addressing the environmental impacts of butachlor and the available remediation strategies: A systematic review. Int. J. Environ. Sci. Technol. 2015, 12, 4025–4036. [Google Scholar] [CrossRef]
- Koslowski, S.; Latapy, C.; Auvray, P.; Blondel, M.; Meijer, L. Long-term fipronil treatment induces hyperactivity in female mice. Int. J. Environ. Res. Public Health 2020, 17, 1579. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, E.B.; Farnese, F.S.; Oliveira, M.S.; Rodrigues, A.C.M.; Dornelas, A.S.P.; Sarmento, R.A.; de Souza, J.C.P.; Resende, E.C.; Saraiva, A.S. Responses of Freshwater Planarian Girardia tigrina to Fipronil-Based Insecticide: Survival, Behavioral and Physiological Endpoints. Diversity 2022, 14, 698. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M.; Bilal, R.M.; Gewida, A.G.A.; Dhama, K.; Abdel-Latif, H.M.R.; Amer, M.S.; Rivero-Perez, N.; Zaragoza-Bastida, A.; Binnaser, Y.S.; et al. An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity. Animals 2021, 11, 1880. [Google Scholar] [CrossRef] [PubMed]
- Fantke, P.; Bijster, M.; Guignard, C.; Hauschild, M.Z.; Huijbregts, M.A.J.; Jolliet, O.; Kounina, A.; Magaud, V.; Margni, M.; McKone, T.E.; et al. USEtox 2.0: Documentation (Version 1). 2017. Available online: https://agris.fao.org/agris-search/search.do?recordID=FR2021087109 (accessed on 10 December 2022).
- Pennington, D.W.; Margni, M.; Ammann, C.; Jolliet, O. Multimedia fate and human intake modeling: Spatial versus nonspatial insights for chemical emissions in Western Europe. Environ. Sci. Technol. 2005, 39, 1119–1128. [Google Scholar] [CrossRef]
- Kah, M.; Beulke, S.; Brown, C.D. Factors influencing degradation of pesticides in soil. J. Agric. Food Chem. 2007, 55, 4487–4492. [Google Scholar] [CrossRef] [PubMed]
- Kodešová, R.; Kočárek, M.; Kodeš, V.; Drábek, O.; Kozák, J.; Hejtmánková, K. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. J. Hazard. Mater. 2011, 186, 540–550. [Google Scholar] [CrossRef] [PubMed]
Input | Unit | Quantity | ||
---|---|---|---|---|
Lowland | Terraced | Upland | ||
Seeds | kg ha−1 crop−1 | 137.5 ± 50.0 a | 112.5 ± 31.25 a | 125.00 ± 31.25 a |
Gasoline | L ha−1 crop−1 | 125.0 ± 43.75 a | 62.5 ± 31.25 b | 0 |
Diesel | L ha−1 crop−1 | 156.25 ± 8.3 a | 125.0 ± 31.25 a | 0 |
Straw | kg ha−1 crop−1 | 3474.4 ± 1250 a | 2618.5 ± 1250 b | 1316.7 ± 625 c |
Manure | kg ha−1 crop−1 | 1250 ± 312.5 a | 937.5 ± 187.5 a | 0 |
Labor | man day−1 crop−1 | 4.0 ± 2.0 a | 5.0 ± 3.0 a | 3.0 ± 2.0 a |
Fertilizer 16-20-0 | kg ha−1 crop−1 | 156.3 ± 85.2 a | 156.3 ± 75.3 a | 0 |
Fertilizer 16-16-8 | kg ha−1 crop−1 | 125.0 ± 31.25 a | 125.0 ± 31.25 a | 62.5 ± 37.25 b |
Fertilizer 46-0-0 | kg ha−1 crop−1 | 62.5 ± 37.25 | 0 | 0 |
Rice System | SOC 2020 (kg C ha−1) | SOC 2021 (kg C ha−1) | SOC 2022 (kg C ha−1) | ΔSOCS (kg C ha−1 year−1) | ΔSOCS (kg CO2 ha−1 year−1) |
---|---|---|---|---|---|
Upland | 61,032.0 ± 1107 aA | 61,093.6 ± 1171 aA | 61,068.6 ± 867 aA | 36.6 ± 8.6 A | 134.3 ± 32.1 A |
Terraced | 44,933.7 ± 1312 aB | 44,991.3 ± 1208 aB | 44,960.5 ± 1045 aB | 26.7 ± 10.1 A | 98.1 ± 38.9 A |
Lowland | 32,751.7 ± 978 aC | 32,782.6 ± 1087 aC | 32,804.7 ± 1127 aC | 52.9 ± 12.2 B | 194.0 ± 45.1 B |
Life Cycle Stage | Rice System | |||
---|---|---|---|---|
Lowland | Terraced | Upland | ||
Raw material production (kg CO2eq ha−1 year−1) | Seeds | 24.5 ± 0.5 a | 22.3 ± 0.5 a | 31.3 ± 2.5 a |
Gasoline | 58.7 ± 1.2 a | 22.1 ± 0.6 b | 0 | |
Diesel | 38.5 ± 1.5 a | 17.8 ± 1.1 b | 0 | |
Chemical fertilizers | 686.5 ± 181.5 a | 315.6 ± 93.6 b | 125.7 ± 24.6 c | |
Herbicides | 82.4 ± 10.3 a | 58.3 ± 8.5 b | 35.5 ± 5.5 c | |
Pesticides | 58.6 ± 7.6 a | 97.5 ± 10.1 b | 42.4 ± 8.4 a | |
Field emission (kg CO2eq ha−1 year−1) | Gasoline | 312.4 ± 5.7 a | 167.5 ± 3.8 b | 0 |
Diesel | 257.7 ± 7.7 a | 113.1 ± 4.1 b | 0 | |
Herbicides | 98.7 ± 0.7 a | 65.3 ± 1.1 b | 42.3 ± 0.4 c | |
Pesticides | 26.6 ± 1.4 a | 83.5 ± 1.7 b | 21.1 ± 0.6 a | |
CH4 | 2767.9 ± 1512.4 a | 2914.3 ± 1604.5 a | 0 | |
N2O | 316.8 ± 21.3 a | 189.7 ± 15.4 b | 97.5 ± 11.3 c | |
Labor | 77.4 ± 5.4 a | 51.6 ± 3.8 b | 38.7 ± 10.4 c | |
Harvesting | 121.3 ± 15.2 | 0 | 0 | |
Total GHG (kg CO2eq ha−1 year−1) | 4928.0 ± 2132.5 a | 4118.6 ± 1976.4 b | 434.5 ± 101.5 c | |
Net GHG emissions (kg CO2eq ha−1 year−1) | 4734.0 ± 1042.5 a | 4020.5 ± 867.5 b | 300.2 ± 87.6 c | |
Yield (kg ha−1 year−1) | 4632.5 ± 870.6 a | 3491.3 ± 367.5 b | 1755.6 ± 750.5 c | |
Carbon footprint intensity (kg CO2eq kg−1 rice yield) | 1.02 ± 0.32 a | 1.15 ± 0.66 b | 0.17 ± 0.09 c |
Rice System | Green WF (m3 ton−1) | (%) | Blue WF (m3 ton−1) | (%) | Gray WF (m3 ton−1) | (%) | Total (m3 ton−1) |
---|---|---|---|---|---|---|---|
Upland | 1217.9 ± 108.9 a | 94.9 | 0.0 | 0.0 | 65.3 ± 17.6 a | 5.1 | 1283.2 ± 121.3 a |
Terraced | 1116.8 ± 112.3 a | 78.5 | 37.5 ± 12.5 a | 2.6 | 267.8 ± 100.3 b | 18.8 | 1422.1 ± 135.8 a |
Lowland | 1008.5 ± 110.1 a | 59.3 | 103.4 ± 56.8 b | 6.1 | 589.7 ± 125.7 c | 34.7 | 1701.6 ± 181.4 b |
Rice Cultivation System | Pesticides | Average a.i. Use ± S.D. (kg ha−1 year−1) 2020 | Average a.i. Use ± S.D. (kg ha−1 year−1) 2021 | Average a.i. Use ± S.D. (kg ha−1 year−1) 2022 | Average Active Ingredients Recommended (kg ha−1 year−1) |
---|---|---|---|---|---|
Lowland | 2,4-D | 0.919 ± 0.275 | 1.160 ± 0.236 | 1.116 ± 0.336 | 1.680 |
Acephate | 0.547 ± 0.135 | 0.498 ± 0.150 | 0.469 ± 0.149 | 0.188 | |
Acetochlor | 0.605 ± 0.270 | 0.692 ± 0.235 | 0.750 ± 0.264 | 1.563 | |
Alachlor | 1.400 ± 0.346 | 1.586 ± 0.285 | 1.560 ± 0.329 | 3.600 | |
Atrazine | 1.246 ± 0.724 | 1.256 ± 0.530 | 1.350 ± 0.605 | 2.530 | |
Butachlor | 0.984 ± 0.600 | 1.055 ± 0.374 | 1.125 ± 0.410 | 1.800 | |
Chlorpyrifos | 0.125 ± 0 | 0.143 ± 0.0001 | 0.125 ± 0 | 1.000 | |
Fipronil | - | 0.125 ± 0 | - | 0.050 | |
Glyphosate | 0.881 ± 0.442 | 0.793 ± 0.266 | 0.990 ± 0.376 | 0.450 | |
Mancozeb | 0.500 ± 0 | 0.500 ± 0 | 0.500 ± 0 | 3.000 | |
Metaldehyde | 0.536 ± 0.152 | 0.564 ± 0.143 | 0.577 ± 0.117 | 1.313 | |
Upland | Acephate | - | - | 0.0002 ± 0 | 0.188 |
Alachlor | 0.15 ± 0 | 0.09 ± 0 | - | 3.600 | |
Carbendazim | 0.312 ± 0 | 0.188 ± 0 | - | 0.188 | |
Chlorpyrifos | - | - | 0.025 ± 0 | 1.000 | |
Cypermethrin | - | 0.131 ± 0 | - | 0.044 | |
Mancozeb | - | - | 0.0002 ± 0 | 3.000 | |
Terraced | 2,4-D | 0.525 ± 0 | 0.525 ± 0 | - | 1.680 |
Alachlor | - | - | 0.150 ± 0 | 3.600 | |
Carbendazim | 0.250 ± 0.088 | 0.312 ± 0 | 0.188 ± 0.177 | 0.188 | |
Captan | - | 0.938 ± 0 | - | 0.125 | |
Chlorpyrifos | - | - | 0.013 ± 0 | 1.000 | |
Cypermethrin | 0.109 ± 0 | - | - | 0.043 | |
Fipronil | - | 0.125 ± 0 | - | 0.050 | |
Mancozeb | 0.500 ± 0 | 0.500 ± 0 | - | 3.000 | |
Metaldehyde | 0.313 ± 0 | 0.313 ± 0 | - | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toolkiattiwong, P.; Arunrat, N.; Sereenonchai, S. Environmental, Human and Ecotoxicological Impacts of Different Rice Cultivation Systems in Northern Thailand. Int. J. Environ. Res. Public Health 2023, 20, 2738. https://doi.org/10.3390/ijerph20032738
Toolkiattiwong P, Arunrat N, Sereenonchai S. Environmental, Human and Ecotoxicological Impacts of Different Rice Cultivation Systems in Northern Thailand. International Journal of Environmental Research and Public Health. 2023; 20(3):2738. https://doi.org/10.3390/ijerph20032738
Chicago/Turabian StyleToolkiattiwong, Patharanun, Noppol Arunrat, and Sukanya Sereenonchai. 2023. "Environmental, Human and Ecotoxicological Impacts of Different Rice Cultivation Systems in Northern Thailand" International Journal of Environmental Research and Public Health 20, no. 3: 2738. https://doi.org/10.3390/ijerph20032738
APA StyleToolkiattiwong, P., Arunrat, N., & Sereenonchai, S. (2023). Environmental, Human and Ecotoxicological Impacts of Different Rice Cultivation Systems in Northern Thailand. International Journal of Environmental Research and Public Health, 20(3), 2738. https://doi.org/10.3390/ijerph20032738