Added Inspiratory Resistance Does Not Impair Cognitive Function and Mood State
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caretti, D.M. Cognitive performance and mood during respirator wear and exercise. Am. Ind. Hyg. Assoc. J. 1999, 60, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Coyne, K.; Caretti, D.; Scott, W.; Johnson, A.; Koh, F. Inspiratory flow rates during hard work when breathing through different respirator inhalation and exhalation resistances. J. Occup. Environ. Hyg. 2006, 3, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Craig, F.N.; Blevins, W.V.; Cummings, E.G. Exhausting work limited by external resistance and inhalation of carbon dioxide. J. Appl. Physiol. 1970, 29, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Roberge, R.J.; Kim, J.H.; Powell, J.B.; Shaffer, R.E.; Ylitalo, C.M.; Sebastian, J.M. Impact of low filter resistances on subjective and physiological responses to filtering facepiece respirators. PLoS One 2013, 8, e84901. [Google Scholar] [CrossRef]
- Crow, T.J.; Kelman, G.R. Psychological effects of mild acute hypoxia. Br. J. Anaesth. 1973, 45, 335–337. [Google Scholar] [CrossRef]
- Laciga, P.; Koller, E.A. Respiratory, circulatory, and ECG changes during acute exposure to high altitude. J. Appl. Physiol. 1976, 41, 159–167. [Google Scholar] [CrossRef]
- Denison, D.M.; Ledwith, F.; Poulton, E.C. Complex reaction times at simulated cabin altitudes of 5,000 feet and 8,000 feet. Aerosp. Med. 1966, 37, 1010–1013. [Google Scholar]
- Fowler, B.; Paul, M.; Porlier, G.; Elcombe, D.D.; Taylor, M. A re-evaluation of the minimum altitude at which hypoxic performance decrements can be detected. Ergonomics 1985, 28, 781–791. [Google Scholar] [CrossRef]
- Paul, M.A.; Fraser, W.D. Performance during mild acute hypoxia. Aviat. Space Environ. Med. 1994, 65, 891–899. [Google Scholar]
- Medicine, I.O. Nutritional Needs in Cold and High-Altitude Environments: Applications for Military Personnel in Field Operations; The National Academies Press: Washington, DC, USA, 1996; p. 584. [Google Scholar]
- Heinrich, E.C.; Djokic, M.A.; Gilbertson, D.; DeYoung, P.N.; Bosompra, N.O.; Wu, L.; Anza-Ramirez, C.; Orr, J.E.; Powell, F.L.; Malhotra, A.; et al. Cognitive function and mood at high altitude following acclimatization and use of supplemental oxygen and adaptive servoventilation sleep treatments. PLoS One 2019, 14, e0217089. [Google Scholar] [CrossRef]
- Grover, R.F.; Weil, J.V.; Reeves, J.T. Cardiovascular adaptation to exercise at high altitude. Exerc. Sport Sci. Rev. 1986, 14, 269–302. [Google Scholar] [CrossRef] [PubMed]
- Squires, R.W.; Buskirk, E.R. Aerobic capacity during acute exposure to simulated altitude, 914 to 2286 meters. Med. Sci. Sport. Exerc. 1982, 14, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Welch, H.G. Effects of hypoxia and hyperoxia on human performance. Exerc. Sport Sci. Rev. 1987, 15, 191–221. [Google Scholar] [CrossRef]
- Fulco, C.S.; Rock, P.B.; Cymerman, A. Maximal and submaximal exercise performance at altitude. Aviat. Space Environ. Med. 1998, 69, 793–801. [Google Scholar]
- Taytard, J.; Gand, C.; Niérat, M.C.; Barthes, R.; Lavault, S.; Adler, D.; Morélot-Panzini, C.; Gatignol, P.; Campion, S.; Serresse, L.; et al. Impact of inspiratory threshold loading on brain activity and cognitive performances in healthy humans. J. Appl. Physiol. (1985) 2022, 132, 95–105. [Google Scholar] [CrossRef]
- Raux, M.; Ray, P.; Prella, M.; Duguet, A.; Demoule, A.; Similowski, T. Cerebral cortex activation during experimentally induced ventilator fighting in normal humans receiving noninvasive mechanical ventilation. Anesthesiology 2007, 107, 746–755. [Google Scholar] [CrossRef]
- Raux, M.; Tyvaert, L.; Ferreira, M.; Kindler, F.; Bardinet, E.; Karachi, C.; Morelot-Panzini, C.; Gotman, J.; Pike, G.B.; Koski, L.; et al. Functional magnetic resonance imaging suggests automatization of the cortical response to inspiratory threshold loading in humans. Respir. Physiol. Neurobiol. 2013, 189, 571–580. [Google Scholar] [CrossRef]
- Manning, J.E.; Griggs, T.R. Heart rates in fire fighters using light and heavy breathing equipment: Similar near-maximal exertion in response to multiple work load conditions. J. Occup. Med. 1983, 25, 215–218. [Google Scholar] [CrossRef]
- Kraut, J.A.; Madias, N.E. Lactic acidosis. N. Engl. J. Med. 2014, 371, 2309–2319. [Google Scholar] [CrossRef]
- Wasserman, K. The anaerobic threshold measurement to evaluate exercise performance. Am. Rev. Respir. Dis. 1984, 129, S35–S40. [Google Scholar] [CrossRef]
- Proia, P.; Di Liegro, C.M.; Schiera, G.; Fricano, A.; Di Liegro, I. Lactate as a Metabolite and a Regulator in the Central Nervous System. Int. J. Mol. Sci. 2016, 17, 1450. [Google Scholar] [CrossRef] [PubMed]
- Taher, M.; Leen, W.G.; Wevers, R.A.; Willemsen, M.A. Lactate and its many faces. Eur. J. Paediatr. Neurol. 2016, 20, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Brisswalter, J.; Collardeau, M.; René, A. Effects of acute physical exercise characteristics on cognitive performance. Sport. Med. 2002, 32, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D. Effects of acute bouts of exercise on cognition. Acta Psychol. 2003, 112, 297–324. [Google Scholar] [CrossRef]
- Critchley, H.D.; Eccles, J.; Garfinkel, S.N. Interaction between cognition, emotion, and the autonomic nervous system. Handb. Clin. Neurol. 2013, 117, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Pighin, S.; Bonini, N.; Savadori, L.; Hadjichristidis, C.; Antonetti, T.; Schena, F. Decision making under hypoxia: Oxygen depletion increases risk seeking for losses but not for gains. Judgm. Decis. Mak. 2012, 7, 472. [Google Scholar] [CrossRef]
- Gustafsson, C.; Gennser, M.; Ornhagen, H.; Derefeldt, G. Effects of normobaric hypoxic confinement on visual and motor performance. Aviat. Space Environ. Med. 1997, 68, 985–992. [Google Scholar]
- Aldrette, J.A.; Aldrette, L.E. Oxygen concentrations in commercial aircraft flights. South Med. J. 1983, 76, 12–14. [Google Scholar] [CrossRef]
- Love, R.G.; Muir, D.C.; Sweetland, K.F.; Bentley, R.A.; Griffin, O.G. Acceptable levels for the breathing resistance of respiratory apparatus: Results for men over the age of 45. Br. J. Ind. Med. 1977, 34, 126–129. [Google Scholar] [CrossRef]
- Ryan, K.L.; Cooke, W.H.; Rickards, C.A.; Lurie, K.G.; Convertino, V.A. Breathing through an inspiratory threshold device improves stroke volume during central hypovolemia in humans. J. Appl. Physiol. 2008, 104, 1402–1409. [Google Scholar] [CrossRef]
- Ando, S.; Komiyama, T.; Tanoue, Y.; Sudo, M.; Costello, J.T.; Uehara, Y.; Higaki, Y. Cognitive Improvement After Aerobic and Resistance Exercise Is Not Associated With Peripheral Biomarkers. Front. Behav. Neurosci. 2022, 16, 853150. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, H.; Suga, T.; Takenaka, S.; Tanaka, D.; Takeuchi, T.; Hamaoka, T.; Isaka, T.; Ogoh, S.; Hashimoto, T. Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiol. Behav. 2016, 160, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Tsukamoto, H.; Takenaka, S.; Olesen, N.D.; Petersen, L.G.; Sørensen, H.; Nielsen, H.B.; Secher, N.H.; Ogoh, S. Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. Faseb J. 2018, 32, 1417–1427. [Google Scholar] [CrossRef]
- Herold, F.; Behrendt, T.; Meißner, C.; Müller, N.G.; Schega, L. The Influence of Acute Sprint Interval Training on Cognitive Performance of Healthy Younger Adults. Int. J. Environ. Res. Public Health 2022, 19, 613. [Google Scholar] [CrossRef]
- Coco, M.; Buscemi, A.; Ramaci, T.; Tusak, M.; Corrado, D.D.; Perciavalle, V.; Maugeri, G.; Perciavalle, V.; Musumeci, G. Influences of Blood Lactate Levels on Cognitive Domains and Physical Health during a Sports Stress. Brief Review. Int. J. Environ. Res. Public Health 2020, 17, 9043. [Google Scholar] [CrossRef] [PubMed]
- Meier, T.B.; Bellgowan, P.S.; Singh, R.; Kuplicki, R.; Polanski, D.W.; Mayer, A.R. Recovery of cerebral blood flow following sports-related concussion. JAMA Neurol. 2015, 72, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Smith, D. Effect of work intensity on performance in a psychomotor task during exercise. Ergonomics 1986, 29, 601–606. [Google Scholar] [CrossRef]
- Chandra, S.; Sica, A.L.; Wang, J.; Lakticova, V.; Greenberg, H.E. Respiratory effort-related arousals contribute to sympathetic modulation of heart rate variability. Sleep Breath. 2013, 17, 1193–1200. [Google Scholar] [CrossRef]
- Sudo, M.; Costello, J.T.; McMorris, T.; Ando, S. The effects of acute high-intensity aerobic exercise on cognitive performance: A structured narrative review. Front. Behav. Neurosci. 2022, 16, 957677. [Google Scholar] [CrossRef]
- Seo, Y.; Powell, J.; Strauch, A.; Roberge, R.; Kenny, G.P.; Kim, J.H. Heat stress assessment during intermittent work under different environmental conditions and clothing combinations of effective wet bulb globe temperature (WBGT). J. Occup. Environ. Hyg. 2019, 16, 467–476. [Google Scholar] [CrossRef]
Base | Resting | Max | Rec | ||
---|---|---|---|---|---|
SpO2 (%) | R0 | 97.9 ± 0.8 | 93.3 ± 3.3 a | 92.8 ± 3.2 a | 93.3 ± 2.6 a |
R1.5 | 98.0 ± 0.9 | 92.8 ± 3.3 a | 95.1 ± 2.3 a | 95.0 ± 2.0 a | |
R4.5 | 97.8 ± 0.7 | 94.3 ± 3.4 a | 92.8 ± 2.6 a | 94.2 ± 2.2 a | |
R7.5 | 97.7 ± 0.5 | 93.8 ± 2.8 a | 93.3 ± 2.6 a | 94.2 ± 3.0 a | |
HR (beats/min) | R0 | 69.1 ± 8.2 | 68.7 ± 7.5 | 154.3 ± 21.4 a,b,c | 91.7 ± 8.4 a,b,c |
R1.5 | 66.1 ± 6.8 | 67.1 ± 7.4 | 143.2 ± 28.1 a,b,c | 86.9 ± 5.4 a,b,c | |
R4.5 | 63.1 ± 7.7 | 66.0 ± 10.3 | 141.1 ± 23.5 a,b,c | 88.9 ± 6.5 a,b,c | |
R7.5 | 66.1 ± 8.7 | 67.9 ± 9.4 | 131.1 ± 26.0 a,b,c | 87.3 ± 8.0 a,b,c | |
LAC (mmol/L) | R0 | 1.5 ± 0.5 | 1.3 ± 0.5 | 10.8 ± 1.7 a,b,c | 6.5 ± 3.2 a,b,c |
R1.5 | 1.6 ± 1.2 | 1.7 ± 1.2 | 10.9 ± 3.6 a,b,c | 6.3 ± 3.4 a,b,c | |
R4.5 | 1.4 ± 0.5 | 2.2 ± 1.5 | 10.2 ± 2.2 a,b,c | 6.4 ± 3.5 a,b,c | |
R7.5 | 1.9 ± 0.8 | 2.0 ± 1.1 | 9.1 ± 2.5 a,b,c | 4.5 ± 3.0 a,b,c | |
Power output (Watts) | R0 | - | - | 272.2 ± 44.1 | - |
R1.5 | - | - | 263.9 ± 41.7 | - | |
R4.5 | - | - | 255.6 ± 34.9 * | - | |
R7.5 | - | - | 241.7 ± 50.0 *,# | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y. Added Inspiratory Resistance Does Not Impair Cognitive Function and Mood State. Int. J. Environ. Res. Public Health 2023, 20, 2743. https://doi.org/10.3390/ijerph20032743
Seo Y. Added Inspiratory Resistance Does Not Impair Cognitive Function and Mood State. International Journal of Environmental Research and Public Health. 2023; 20(3):2743. https://doi.org/10.3390/ijerph20032743
Chicago/Turabian StyleSeo, Yongsuk. 2023. "Added Inspiratory Resistance Does Not Impair Cognitive Function and Mood State" International Journal of Environmental Research and Public Health 20, no. 3: 2743. https://doi.org/10.3390/ijerph20032743
APA StyleSeo, Y. (2023). Added Inspiratory Resistance Does Not Impair Cognitive Function and Mood State. International Journal of Environmental Research and Public Health, 20(3), 2743. https://doi.org/10.3390/ijerph20032743