Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stainless Steel
3.2. Ti-Mo
3.3. NiTi
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paúl, A.; Ábalos, C.; Mendoza, A.; Solano, E.; Gil, F. Relationship between the surface defects and the manufacturing process of orthodontic Ni–Ti archwires. Mater. Lett. 2011, 65, 3358–3361. [Google Scholar] [CrossRef]
- Kararia, V.; Jain, P.; Chaudhary, S.; Kararia, N. Estimation of changes in nickel and chromium content in nickel-titanium and stainless steel orthodontic wires used during orthodontic treatment: An analytical and scanning electron microscopic study. Contemp. Clin. Dent. 2015, 6, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.; Espinar, E.; Llamas, J.; Manero, J.; Ginebra, M. Variation of the superelastic properties and nickel release from original and reused NiTi orthodontic archwires. J. Mech. Behav. Biomed. Mater. 2011, 6, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Trapalis, C.; Eliades, G.; Katsavrias, E. Salivary metal levels of orthodontic patients: A novel methodological and analytical approach. Eur. J. Orthod. 2003, 25, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.S.; Pazzini, C.A.; Pantuzo, M.C.G. Nickel: Humoral and periodontal changes in orthodontic patients. Dent. Press J. Orthod. 2012, 17, 15–17. [Google Scholar] [CrossRef]
- Schiff, N.; Grosgogeat, B.; Lissac, M.; Dalard, F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires. Biomaterials 2004, 25, 4535–4542. [Google Scholar] [CrossRef]
- Cerroni, S.; Pasquantonio, G.; Condò, R.; Cerroni, L. Orthodontic Fixed Appliance and Periodontal Status: An Updated Sys-tematic Review. Open Dent. J. 2018, 12, 614–622. [Google Scholar] [CrossRef]
- Gursoy, U.K.; Sokucu, O.; Uitto, V.-J.; Aydin, A.; Demirer, S.; Toker, H.; Erdem, O.; Sayal, A. The role of nickel accumulation and epithelial cell proliferation in orthodontic treatment-induced gingival overgrowth. Eur. J. Orthod. 2007, 29, 555–558. [Google Scholar] [CrossRef]
- Fors, R.; Persson, M. Nickel in dental plaque and saliva in patients with and without orthodontic appliances. Eur. J. Orthod. 2006, 28, 292–297. [Google Scholar] [CrossRef]
- Petoumenou, E.; Arndt, M.; Keilig, L.; Reimann, S.; Hoederath, H.; Eliades, T.; Jäger, A.; Bourauel, C. Nickel concentration in the saliva of patients with nickel-titanium orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 59–65. [Google Scholar] [CrossRef]
- Thylstrup, A. Clinical Evidence of the Role of Pre-eruptive Fluoride in Caries Prevention. J. Dent. Res. 1990, 69, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Juanito, G.M.P.; Morsch, C.S.; Benfatti, C.A.; Fredel, M.C.; Magini, R.S.; Souza, J.C.M. Effect of Fluoride and Bleaching Agents on the Degradation of Titanium: Literature Review. Dentistry 2015, 5, 273. [Google Scholar] [CrossRef]
- Borzabadi-Farahani, A.; Alavi, S.; Barooti, S. An in vitro assessment of the mechanical characteristics of nickel-titanium orthodontic wires in Fluoride solutions with different acidities. J. Orthod. Sci. 2015, 4, 52–56. [Google Scholar] [CrossRef]
- Eliades, T.; Zinelis, S.; Papadopoulos, M.A.; Eliades, G.; Athanasiou, A.E. Nickel content of as-received and retrieved NiTi and stainless steel archwires: Assessing the nickel release hypothesis. Angle Orthod. 2004, 74, 151–154. [Google Scholar] [CrossRef]
- Michiardi, A.; Aparicio, C.; Planell, J.; Gil, F. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 77B, 249–256. [Google Scholar] [CrossRef]
- Nakagawa, M.; Shigeki, M.; Koich, U. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent. Mater. 2001, 20, 305–314. [Google Scholar] [CrossRef]
- Bellini, H.; Moyano, J.; Gil, J.; Puigdollers, A. Comparison of the superelasticity of different nickel–titanium orthodontic archwires and the loss of their properties by heat treatment. J. Mater. Sci. Mater. Med. 2016, 27, 158. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.J.; Planell, J.A. Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic appli-cations. J. Biomed. Mater. Res. 1999, 48, 682–688. [Google Scholar] [CrossRef]
- Gil, F.J.; Solano, E.; Peña, J.; Engel, E.; Mendoza, A.; Planell, J.A. Microstructural. Mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J. Mater. Sci. Mater. Med. 2004, 15, 1181–1185. [Google Scholar] [CrossRef]
- Gil, F.J.; Solano, E.; Mendoza, A.; Pena, J. Inhibition of Ni release from NiTi and NiTiCu orthodontic archwires by nitrogen diffusion treatment. J. Appl. Biomater. Funct. Mater. 2010, 2, 151–155. [Google Scholar]
- Peña, J.; Solano, E.; Mendoza, A.; Casals, J.; Planell, J.A.; Gil, F.J. Effect of the M(s) transformation temperature on the wear behaviour of NiTi shape memory alloys for articular prosthesis. Bio-Med. Mater. Eng. 2005, 15, 289–293. [Google Scholar]
- Gil, F.; Manero, J.; Arcas, R.; Planell, J. Grain growth in austenite NiTi shape memory alloys. Scr. Met. Mater. 1994, 31, 483–486. [Google Scholar] [CrossRef]
- Gil, F.; Cenizo, M.; Espinar, E.; Rodriguez, A.; Rúperez, E.; Manero, J. NiTi superelastic orthodontic wires with variable stress obtained by ageing treatments. Mater. Lett. 2013, 104, 5–7. [Google Scholar] [CrossRef]
- Briceño, J.; Romeu, A.; Espinar, E.; Llamas, J.M.; Gil, F.J. Influence of the microstructure on electrochemical corrosion and nickel release in NiTi orthodontic archwires. Mater. Sci. Eng. 2013, C.33, 4989–4993. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, M.V.; Espinar, E.; Llamas, J.M.; Ruperez, E.; Manero, J.M.; Barrera, J.M.; Solano, E.; Gil, F.J. Friction coefficients and wear rates of different orthodontic archwires in artificial saliva. J. Mater. Sci. Mater. Med. 2013, 24, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, D.; Pattanaik, S. Nanoparticles in dentistry. In Advanced Nanomaterials for Point of Care Diagnosis and Therapy; Elsevier: London, UK, 2022; pp. 335–358. [Google Scholar]
- Carrouel FViennot SOttolenghi LGaillard, C.; Bourgeois, D. Nanoparticles as anti-microbial. anti-inflammatory. and remineralizing agents in oral care cosmetics: A review of the current situation. Nanomaterials 2020, 10, 140. [Google Scholar]
- Borg, W.; Cassar, G. Surface microstructural changes and re-lease of ions from dental metal alloy removable prostheses inpatients suffering from acid reflux. J. Prosthodontic. 2016, 27, 115–119. [Google Scholar] [CrossRef]
- Valdivia, S.; Tapia, A.; Astrid, C. Fluoride concentration in mouth rinses marketed in Chile and Brazil. and a discussion regarding their legislations. Braz. Oral Res. 2021, 35, 234–245. [Google Scholar] [CrossRef]
- Jafari, K.; Rahimzadeh, S.; Hekmatfar, S. Nickel ion release from dental alloys in two different mouthwashes. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019, 13, 19–23. [Google Scholar] [CrossRef]
- Park, H.Y.; Shearer, T.R. In vitro release of nickel and chromium for simulated orthodontic appliances. Am. J. Orthod. 1983, 84, 156–159. [Google Scholar] [CrossRef]
- Hwang, C.-J.; Shin, J.-S.; Cha, J.Y. Metal release from simulated fixed orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Park, H.G.; Yeo, M.K. Nanomaterial regulatory policy for human health and environment. Mol. Cell. Toxicol. 2016, 12, 223–236. [Google Scholar] [CrossRef]
- Møretrø, T.; Langsrud, S. Effects of materials containing antimicrobial compounds on food hygiene. J. Food Prot. 2011, 74, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Fernandez, J.C.; Pastor, F.; Barrera Mora, J.M.; Brizuela, A.; Puigdollers, A.; Espinar, E.; Gil, J. Bacteriostatic Poly Ethylene Glycol Plasma Coatings for Orthodontic Titanium Mini-Implants. Materials 2022, 15, 7487. [Google Scholar] [CrossRef]
- Lee, T.-H.; Huang, T.-K.; Lin, S.-Y.; Chen, L.-K.; Chou, M.-Y.; Huang, H.-H. Corrosion Resistance of Different Nickel-Titanium Archwires in Acidic Fluoride-containing Artificial Saliva. Angle Orthod. 2010, 80, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Pratsinis, H.; Kletsas, D.; Eliades, G.; Makou, M. Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys. Am. J. Orthod. Dentofac. Orthop. 2004, 125, 24–29. [Google Scholar] [CrossRef]
- Matasa, C.G. Attachment corrosion and its testing. J. Clin. Orthod. JCO 1995, 29, 16–23. [Google Scholar]
- Arends, J.; Christoffersen, J. Nature and role of loosely bound fluoride in dental caries. J. Dent. Res. 1990, 69 (Suppl. S2), 601–605. [Google Scholar] [CrossRef]
- Featherstone, J.D.B. Prevention and reversal of dental caries: Role of low level fluoride. Community Dent. Oral Epidemiol. 1999, 27, 31–40. [Google Scholar] [CrossRef]
- Shruthi, D.; Patil, G.; Prithviraj, D.R. Comparative evaluation of ion release in bonded and nonbonded stainless steel brackets with use of different mouthwashes: An In vitro study. Contemp. Clin. Dent. 2020, 11, 15–19. [Google Scholar] [CrossRef]
- Condò, R.; Carli, E.; Cioffi, A.; Cataldi, M.E.; Quinzi, V.; Casaglia, A.; Giancotti, A.; Pirelli, P.; Lucarini, I.; Maita, F.; et al. Fluorinated Agents Effects on Orthodontic Alloys: A Descriptive In Vitro Study. Materials 2022, 15, 4612. [Google Scholar] [CrossRef] [PubMed]
- Chitra, P.; Prashantha, G.S.; Rao, A. Long-term evaluation of metal ion release in orthodontic patients using fluoridated oral hygiene agents: An in vivo study. J. World Fed. Orthod. 2019, 8, 107–111. [Google Scholar] [CrossRef]
- Danaei, S.M.; Safavi, A.; Roeinpeikar, S.M.; Oshagh, M.; Iranpour, S.; Omidekhoda, M. Ion release from orthodontic brackets in 3 mouthwashes: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 730–734. [Google Scholar] [CrossRef]
- Kerosuo, H.; Moe, G.; Kelven, E. In vitro release of nickel and chromium for different types of simulated orthodontic appliances. Angle Orthod. 1995, 65, 111–116. [Google Scholar]
- Pascual, B.; Gurruchaga, M.; Ginebra, M.P.; Gil, F.J.; Planell, J.A.; Goñi, I. Influence of the modification of P/L ratio on a new formulation of acrylic bone cement. Biomaterials 1999, 20, 465–474. [Google Scholar] [CrossRef]
- Hoyos-Nogues, M.; Gil, F.J.; Mas-Moruno, C. Antimicrobial peptides: Powerful biorecognition elements to detect bacteria in Biosensing Technologies. Molecules 2018, 23, 1683. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; Román, J.; Padilla, S.; Doadrio, J.C.; Gil, F.J. Bioactivity and mechanical properties of SiO2-CaO-P2O5 glass-ceramics. J. Mater. Chem. 2005, 15, 1353–1359. [Google Scholar] [CrossRef]
- Nespoli, A.; Passaretti, F.; Szentmiklósi, L.; Maróti, B.; Placidi, E.; Cassetta, M.; Yada, R.Y.; Farrar, D.H.; Tian, K.V. Biomedical NiTi and β-Ti Alloys: From Composition, Microstructure and Thermo-Mechanics to Application. Metals 2022, 12, 406. [Google Scholar] [CrossRef]
- Tian, K.V.; Festa, G.; Basoli, F.; Laganà, G.; Scherillo, A.; Andreani, C.; Bollero, P.; Licoccia, S.; Senesi, R.; Cozza, P. Orthodontic archwire composition and phase analyses by neutron spectroscopy. Dent. Mater. J. 2017, 36, 282–288. [Google Scholar] [CrossRef]
- Tian, K.V.; Passaretti, F.; Nespoli, A.; Placidi, E.; Condò, R.; Andreani, C.; Licoccia, S.; Chass, G.A.; Senesi, R.; Cozza, P. Composition―Nanostructure Steered Performance Predictions in Steel Wires. Nanomaterials 2019, 9, 1119. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.V.; Festa, G.; Szentmiklósi, L.; Maróti, B.; Arcidiacono, L.; Laganà, G.; Andreani, C.; Licoccia, S.; Senesi, R.; Cozza, P. Compositional studies of functional orthodontic archwires using prompt-gamma activation analysis at a pulsed neutron source. J. Anal. At. Spectrom. 2017, 32, 1420–1427. [Google Scholar] [CrossRef]
- Kassapidou, M.; Hjalmarsson, L.; Johansson, C.B.; Johansson, P.H.; Morisbak, E.; Wennerberg, A.; Stenport, V.F. Cobalt–chromium alloys fabricated with four different techniques: Ion release, toxicity of released elements and surface rough-ness. Dent. Mater. 2020, 36, e352–e363. [Google Scholar] [CrossRef]
- Cunningham, B.; Engstrom, A.M.; Harper, B.J.; Harper, S.L.; Mackiewicz, M.R. Silver nanoparticles stable to oxidation and silver ion release show size-dependent toxicity in vivo. Nanomaterials 2021, 11, 1516. [Google Scholar] [CrossRef] [PubMed]
- Mulenos, M.R.; Liu, J.; Lujan, H.; Guo, B.; Lichtfouse, E.; Sharma, V.K.; Sayes, C.M. Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles. Environ. Chem. Lett. 2020, 18, 1319–1328. [Google Scholar] [CrossRef]
- Kang, J.S.; Park, J.W. Silver ion release accelerated in the gastrovascular cavity of Hydra vulgaris increases the toxicity of silver sulfide nanoparticles. Environ. Toxic. Chem. 2021, 40, 1662–1672. [Google Scholar] [CrossRef] [PubMed]
- Haugli, K.H.; Syverud, M.; Samuelsen, J.T. Ion release from three different dental alloys–effect of dynamic loading and toxicity of released elements. Biomat. Investig. Dent. 2020, 7, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Lin, Z.; Wang, T.; Yao, Z.; Qin, M.; Zheng, S.; Lu, W. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? J. Hazard. Mater. 2016, 308, 328–334. [Google Scholar] [CrossRef]
Materials | Brand | Ni | Ti | Mo | Cr | Fe | C |
---|---|---|---|---|---|---|---|
Stainless steel | American Orthodontics. Sheboygan, WI, USA | 14.8 | 3.0 | 18.0 | 64.2 | 0.02 | |
Ti-Mo | Beta Blue. Highland Metals, Bangkok, Thailand | 87.0 | 13.0 | ||||
Ni-Ti | Neo Sentalloy. GAC, West Columbia, USA | 55.8 | 44.2 |
Mouthwahes | NaF (ppm) |
---|---|
0 | 0 |
1 | 130 |
2 | 200 |
3 | 380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastor, F.; Rodriguez, J.C.; Barrera, J.M.; García-Menocal, J.A.D.; Brizuela, A.; Puigdollers, A.; Espinar, E.; Gil, J. Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires. Int. J. Environ. Res. Public Health 2023, 20, 2780. https://doi.org/10.3390/ijerph20042780
Pastor F, Rodriguez JC, Barrera JM, García-Menocal JAD, Brizuela A, Puigdollers A, Espinar E, Gil J. Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires. International Journal of Environmental Research and Public Health. 2023; 20(4):2780. https://doi.org/10.3390/ijerph20042780
Chicago/Turabian StylePastor, Francisco, Juan Carlos Rodriguez, José María Barrera, José Angel Delgado García-Menocal, Aritza Brizuela, Andreu Puigdollers, Eduardo Espinar, and Javier Gil. 2023. "Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires" International Journal of Environmental Research and Public Health 20, no. 4: 2780. https://doi.org/10.3390/ijerph20042780
APA StylePastor, F., Rodriguez, J. C., Barrera, J. M., García-Menocal, J. A. D., Brizuela, A., Puigdollers, A., Espinar, E., & Gil, J. (2023). Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires. International Journal of Environmental Research and Public Health, 20(4), 2780. https://doi.org/10.3390/ijerph20042780