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Abstract: Although previous studies have presented that fine particulate matter (PM2.5) regulates liver
enzyme levels in the development of liver diseases, the evidence regarding the relationship between
PM2.5 exposure and liver enzyme is not robust. We further aimed to conduct a systematic review and
meta-analysis of observational studies to summarize the recent evidence on the effects of PM2.5 on
liver enzyme in humans. In the meta-analysis, we retrieved online databases including PubMed and
Web of Science database from 1982 up to 2022. A random-effects model was applied to evaluate the
correlation between PM2.5 and liver enzyme level. A total of 10 studies fulfilled the inclusion criteria,
including five prospective cohort studies, two cross-sectional studies, two longitudinal studies, and one
time-series analysis. Each 10 µg/m3 increase in PM2.5 concentration was significantly correlated with a
4.45% increase in alanine aminotransferase (ALT) level (95% CI: 0.51–8.38%, p = 0.03), a 3.99% increase in
aspartate transferase (AST) level (95% CI: 0.88–7.10%, p = 0.01), and a 2.91% increase in gamma-glutamyl
transferase (GGT) level (95% CI: 1.18–4.64%, p < 0.001), but this significant association was not observed
in alkaline phosphatase (ALP). Subgroup analysis revealed that PM2.5 has a significant correlation with
ALT (5.07%, 95% CI: 0.81–9.33%), AST (4.11%, 95% CI: 0.74–7.48%), and GGT (2.74%, 95% CI: 1.09–4.38%)
in Asia. Our meta-analysis showed that increments in PM2.5 exposure were significantly associated
with a higher level of ALT, AST, and GGT. In addition, investigations into liver enzyme subtypes and
specific chemical components of PM2.5 are important directions for future research.

Keywords: fine particulate matter; liver diseases; liver enzyme; meta-analysis

1. Introduction

Fine particulate matter (PM2.5) represents fine inhalable particles, with diameters
of generally 2.5 µm and smaller [1]. Because of the small diameters of PM2.5, it is easily
inhaled into the lungs and deposited in the alveoli and even the bloodstream, resulting
in an inflammatory response [2]. PM2.5 invades the alveoli, enters the blood circulation,
and reaches different organs thanks to its small particle size, consequently endangering
human health [3,4].

Air pollutants have been found to be involved in various oxidative stress mechanisms,
which leads to inflammation and affects the liver and other organs [5,6]. Increasing evidence
has shown that liver enzyme levels were significantly related to exposure to PM2.5 [7,8].
Epidemiologic studies found that PM2.5 exposure caused the change in alkaline phos-
phatase (ALP) level in the blood of obese children after bariatric surgery for treatment [9].
The relationship between PM2.5 and various disease was partly mediated by liver enzymes,
including liver diseases [10,11].

Liver enzymes are important parameters in the liver function examination [12], mainly
including alanine aminotransferase (ALT), aspartate transferase (AST), ALP, and gamma-
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glutamyl transferase (GGT) [13]. So far, accumulating studies have shown that people
exposed to air pollutants may experience liver injury and increased liver enzyme levels [5,14].
Abnormal elevation of ALT and AST levels may promote acute or chronic inflammation of
the liver and other chronic liver diseases [15,16].

Current meta-analyses primarily focus on the incidence and mortality of liver diseases
and PM2.5 [17,18]. In another meta-analyses, a PM2.5 increase of 10 µg/m3 was significantly
correlated with liver cancer (HR:1.22, 95% CI: 1.14–1.30, p < 0.05) [19]. Pritchett et al. [20]
reported a robust correlation between PM2.5 exposure and hepatocarcinogenesis. Some
epidemiological studies have confirmed the positive relationship between the concentration
of PM2.5 and the level of liver enzymes [21]. Kyung Nam Kim et al. reported that every
increase of one standard inter-quartile range (IQR = 13.2 µg/m3) of PM2.5 increased AST
(increased by 3.0% (95% CI: 0.9–5.1%), ALT (increased by 3.2% (95% CI: 0.3–6.2%)), and γ-
GTP (increased by 5.0% (95% CI: 1.5–8.7%)) levels [5]. In a cross-sectional study, every rise
of 10 µg/m3 in PM2.5 increased AST levels by 0.02% (95% CI: −0.04–0.08%), ALT levels by
0.61% (95% CI: 0.51–0.70%), and GGT levels by 1.60% (95% CI: 1.50–1.70%) [22]. Therefore,
our present meta-analysis aims to investigate the association between PM2.5 and the liver
enzyme level based on observational epidemiological studies to assess the impact of PM2.5
on liver disease.

2. Materials and Methods
2.1. Data Sources and Searches

We systematically searched the online database of PubMed and Web of Science for
PM2.5 induced air pollution and liver enzymes from 1982 to November 2022. The search
terms were as follows: “PM2.5”, “Air Pollution”, “Fine Particulate Matter”, “Particu-
late Matter”, “Liver Enzymes”, “Biological Marker”, “ALP”, “Alkaline Phosphatase”,
“ALT”, “Alanine Transaminase”, “Glutamic-Alanine Transaminase”, “AST”, “Aspartate
Aminotransferase”, “Aspartate Transaminase”, “GGT”, “Glutamyl Transpeptidase”, and
“gamma-Glutamyl Transferase”. Only publications in the English language were included
in the analysis. We also referred to the reference list of the original documents to determine
other relevant data.

2.2. Study Selection and Eligibility

Our selection criteria were (1) observational epidemiological study; (2) correlation
between PM2.5 concentration and liver enzyme level; (3) reported results measuring
the liver enzyme level, correlations, and 95% CI; and (4) data of PM2.5 exposure levels
were collected from monitoring station, horizontal–vertical locations, or satellite. When
two or more analysts shared data or have the same participants, we conducted a more
comprehensive analysis. When searching for articles, we excluded the following contents:
(1) case reports, letters, and reviews; (2) studies without PM2.5 increment; (3) relevant
data of animals or cells; (4) studies without subdividing particle types; and (5) studies
without liver enzyme level or relevant data. Two independent investigators (L.P. and Y.X.)
evaluated the eligibility of the study according to the inclusion criteria. The differences
involved in the evaluation were discussed and resolved by the third author (J.S.).

2.3. Data Extraction

Two reviewers (L.P. and Y.X.) independently extracted the year of publication, name
of the first author, research type, research location, number of participants, gender of
participants, liver enzyme type, adjusted variables, and adjusted 95% CI from the qualified
articles selected.

2.4. Literature Quality Assessment

We evaluated the quality of eligible literature works and scored all publications from
0 to 9 on the Newcastle–Ottawa Scale (NOS) [23]. Studies awarded higher scores than the
mean score were considered as high-quality studies.
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2.5. Statistical Analyses

Here, 10 µg/m3 is defined as the standardized increment of PM2.5. Regression coeffi-
cients were transformed to percent changes according to the equation [β× 10 ÷ M] × 100%
when β was not log-transformed. In this equation, β represents the regression coefficient
and M is the arithmetic mean of the liver enzyme level. Natural log-transformed data were
anti-log transformed. We use Cochran’s Q and I2 to test the heterogeneity in the study. I2

from 0 to 100% means that the research has changed from no observation to maximum
heterogeneity. I2 > 50% showed serious heterogeneity. We used the Begg funnel plot and
Egger test to calculate the publication bias. We used Stata statistical software 11.0 for all
statistical analyses.

3. Results
3.1. Eligible Studies

The article filtering process is shown in Figure 1. After the initial literature search, we
identified 16,183 studies. After excluding 885 repetitive literature works, 15,298 studies
were preliminarily screened. After that, we excluded 9536 articles on animals and cells.
According to the criteria for induction and exclusion, and the review of literature titles
and abstracts, 5601 articles did not meet the inclusion criteria. Finally, we reviewed the
remaining 161 articles and found that 151 articles did not qualify. The reasons were as
follows: articles that did not report percent change, regression coefficient, or fold change
(n = 108); no circulating biomarkers measure (n = 18); no PM2.5 data (n = 10); and no PM2.5-
increment data (n = 15). The remaining ten studies, including five cohort studies [3,5,9–11],
two cross-sectional studies [14,22], two longitudinal studies [24,25], and one time-series
analysis [26], were included in the final analysis.
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Figure 1. Flow diagram for the identification of relevant studies.

3.2. Characteristics of Studies Included in the Meta Analysis

The characteristics of 10 studies included in the final meta-analysis are shown in
Table 1. All studies were published between 2013 and 2022, including more than 14 million
participants. The relationship between PM2.5 and liver enzymes including ALP, ALT, AST,
and GCT levels were reported in the above studies. According to the continental division,
of 10 studies, 8 were conducted in Asia, 1 in Europe, and 1 in North America. The number
of participants in the study ranged from less than 100 to more than 13 million. According
to the NOS score, the score range of the nine studies was 6–9 and the average score was 8.1.
According to the criteria that the NOS score was ≥8, four studies were of high quality.
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3.3. Overall Meta Estimates and Publication Bias

Heterogeneity was observed among studies investigating ALP (I2 = 98.26%, p = 0.07),
ALT (I2 = 99.47%, p = 0.03), AST (I2 = 99.34%, p = 0.01), and GGT (I2 = 49.14%, p < 0.001).

Figure 2 shows the effects of an elevated PM2.5 concentration on the levels of four liver
enzymes. In the random-effects model, no statistical significance between PM2.5 and liver
ALP was observed. In general, however, every 10 µg/m3 increase in PM2.5 exposure was
related to a 6.28% (95% CI: −0.56–13.12%, p = 0.07) increase in the liver ALP level. There was
significant correlation between PM2.5 concentration and liver ALT, AST, and GGT levels.
PM2.5 rose every 10 µg/m3, ALT level increased by 4.45% (95% CI: 0.51–8.38%, p = 0.03),
AST level increased by 3.99% (95% CI: 0.88–7.10%, p = 0.01), and GGT level increased by
2.91% (95% CI: 1.18–4.64%, p < 0.001). The result of the Egger’s test for asymmetry showed
p > 0.05, indicating no publication bias in all types of liver enzymes.
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Figure 2. Association of PM2.5 exposure with levels of ALP (A), ALT (B), AST (C), and GGT (D) ac-
cording to a random-effects meta-analysis. CI, confidence interval (95% CI are for a 10 µg/m3 increase
in PM2.5); ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate transferase;
GGT, gamma-glutamyl transferase.

3.4. Subgroup Analysis of PM2.5 on Changes in Liver Enzyme Levels

The subgroup analysis of PM2.5 concentration on changes in liver enzyme level is
shown in Table 2. When exposed to PM2.5, sample size ≥ 1000 had a stronger significant
association with the GGT level (4.73%, 95%CI: 0.85–8.61%) than sample size < 1000 (2.25%,
95%CI: 0.30–4.20%). However, sample size ≥ 1000 had no significant association with AST
(3.40%, 95% CI: −0.28–7.09%), nor did sample size < 1000 (5.84%, 95% CI: −1.56–13.25%).
Regarding study design, PM2.5 had a lower significant effect on AST level (3.68%, 95%CI:
1.15–6.22%) in the prospective cohort study than others (4.30%, 95%CI: 0.50–9.11%). Whether
a prospective cohort study (ALT:6.28%, 95%CI: −3.34–15.90%) or another study (ALT: 4.18%,
95%CI: −2.52–10.88%), PM2.5 had no significant association with ALT and GGT. In addition,
the subgroup analysis of age revealed that age ≥ 60 (ALT: 6.79%, 95%CI: −1.66–15.23%;
AST:6.68%, 95%CI: −1.92–15.27%) and age < 60 (ALT: 2.02%, 95%CI: −1.56–5.61%; AST:4.47%,
95%CI: −4.87–14.34%) had no significant correlation with ALT level and AST level in per IQR
of PM2.5.
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Table 1. General characteristics of the included studies.

Studies Study Design Location Years Enrolled Age Range (Years) Gender Sample Size Liver Enzyme
Types Adjustment Variables NOS

Markevych et al.
[3] (2013)

Prospective
Cohort Study Europe 2004–2009 31–85 Male/female 5892 GGT, AST,

and ALT Socioeconomic, lifestyle, and clinical covariates. 9

Kim et al.
[5] (2015)

Prospective
Cohort Study Korea 2008–2010 ≥60 Male/female 545 GGT, AST,

and ALT

Age, sex, smoking status, mean temperature, dew
point, season, body mass index, alcohol
consumption, and amount of exercise.

9

Pan et al.
[10] (2016)

Prospective
Cohort Study Taiwan 1991–2009 30–65 Male/female 22,062 ALT

Age, sex, alcohol consumption, smoking, HBsAg
serostatus, anti-HCV serostatus, and county at

study entry.
8

Ghosh et al.
[9] (2018)

Prospective
Cohort Study USA 2005–2014 <18 Male/female 75 ALP Sex, age, race/ethnicity and weight at the time

of surgery. 6

Pejhan et al.
[14] (2019)

A
Cross-Sectional

Study
Iran 2018 average 27.7 ± 5.4 Female 150 AST, ALT, ALP,

and GGT

Age of mother, BMI of mother before pregnancy,
number of pregnancies, gestational age, percent of
illiterate per census tract, percent of unemployment

per census tract, paternal education, maternal
education, income, tobacco exposure at home,

newborn sex, newborn’s BMI, paternal education,
exposure to environmental tobacco smoke, car

ownership, home ownership, use the hood during
cooking, time of cooking in each day during

pregnancy, and time of exposure to cigarette smoke
at home during pregnancy.

8

Zhang et al.
[22] (2019)

Cross-Sectional
Study Taiwan 2001–2014 average 40.1 ± 13.1 Male/female 351,582 AST, ALT,

and GGT

Age, sex, educational level, smoking, alcohol
drinking, leisure-time physical activity,

occupational exposure to dust and organic solvent,
season, body mass index, hypertension, diabetes,

hyperlipidaemia, self-reported cardiovascular
disease or stroke, self-reported cancer and

self-reported liver disease (hepatitis and cirrhosis).

9

Deng et al.
[26] (2020)

Time-Series
Analysis China 2014–2016 all ages Male/female 13,045,629 AST and

ALT

Time trends, weather conditions (temperature and
humidity), days of the week, and the effects of other

air pollutants.
8
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Table 1. Cont.

Studies Study Design Location Years Enrolled Age Range (Years) Gender Sample Size Liver Enzyme
Types Adjustment Variables NOS

Wang et al.
[11] (2022)

Prospective
Cohort Study China 2018–2021 30–79 Male/female 7963 ALT, AST, ALP,

and GGT

Demographic characteristics, including age, sex,
annual household income, ethnic group, residential

type, lifestyle behaviors (smoking status,
secondhand smoke status, alcohol consumption,

indoor pollution, physical activity, and
Mediterranean diet score), and environmental

factors (season and nitrogen dioxide).

9

Li et al. [24] (2022) Longitudinal
Study China 2018–2020 65.0–120.4 Male/female 318,911 AST and ALT

Sex, age, race, educational attainment, cigarette
smoking, alcohol consumption, physical activity,
BMI categories, abdominal obesity, hypertension,

diabetes, dyslipidemia, year, and season.

8

Hu et al.
[25] (2022)

Longitudinal
Study China 2013–2020 18–99 Male/female 247,640 AST

Age, gender, body mass index, smoke status,
cardiometabolic diseases, yearly trends, region and

the gaseous pollutants, meteorological factors,
public holidays, intra-week variation, average

temperature, and relative humidity.

7

NOS, Newcastle–Ottawa Scale; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate transferase; GGT, gamma-glutamyl transferase; BMI, body mass index.

Table 2. Subgroup analyses of the % increase of ALP, ALT, AST, and GGT association with each 10 mg/m3 increase in PM2.5 concentration.

ALP ALT AST GGT

No. of
Study % (95% CI) I2(%) No. of

Study % (95% CI) I2(%) No. of
Study % (95% CI) I2(%) No. of

Study % (95% CI) I2(%)

Region
Asia 2 5.34 (−6.23, 16.90) 98.44 7 5.07 (0.81, 9.33) 99.59 7 4.11 (0.74, 7.48) 99.98 4 2.74 (1.09, 4.38) 52.20

Europe 0 NA NA 1 −3.53 (−15.76, 8.70) NA 1 2.52 (−5.85, 10.88) NA 1 19.44 (−1.57, 40.45) NA
USA 1 8.04 (6.79, 9.29) NA 0 NA NA 0 NA NA 0 NA NA

Sample size
<1000 2 3.79 (−4.70, 12.27) 97.14 2 2.93 (1.03, 4.83) 2 5.84 (−1.56, 13.25) 92.39 2 2.25 (0.30, 4.20) 59.79
≥1000 1 11.18 (9.90, 12.46) NA 6 5.94 (−1.84, 13.72) 6 3.40 (−0.28, 7.09) 99.98 3 4.73 (0.85, 8.61) 29.50

Age (years old)
≥60 0 NA NA 2 6.79 (−1.66, 15.23) 98.09 2 6.68 (−1.92, 15.27) 99.03 1 3.77 (1.07, 6.46) NA
<60 2 3.79 (−4.70, 12.27) 97.14 2 2.02 (−1.56, 5.61) 74.77 2 4.47 (−4.87, 14.34) 96.14 2 3.33 (−1.43, 8.10) 67.47

Multiple ages 1 11.18 (9.90, 12.46) NA 4 7.31 (−7.54, 22.16) 99.17 4 2.13 (−0.54, 4.79) 98.00 2 7.80 (−6.77, 22.37) 56.52
Exposure time

Short-term 0 NA NA 1 2.41 (0.20, 4.63) NA 2 1.08 (−0.91, 3.06) 84.52 1 3.77 (1.07, 6.46) NA
Long-term 3 6.28 (−0.56, 13.12) 98.26 7 5.17 (−0.19, 10.53) 99.72 6 5.02 (1.10, 8.94) 99.49 4 2.86 (0.62, 5.09) 50.30

Study design
Prospective
cohort study 2 9.61 (6.53, 12.68) 91.55 5 6.28 (−3.34, 15.90) 96.94 3 3.68 (1.15, 6.22) 74.25 2 8.00 (−5.63, 21.63) 52.43

Others 1 −0.62 (−3.21, 1.97) NA 3 4.18 (−2.52, 10.88) 99.88 5 4.30 (−0.50, 9.11) 99.99 3 2.49 (0.58, 4.40) 49.41

NA, not applicable; CI, confidence interval; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate transferase; GGT, gamma-glutamyl transferase.
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4. Discussion

At present, studies have pointed out that PM2.5 pollution is one of the main reasons
for the increase in the global incidence rate [27,28]. An increase in PM2.5 concentration
could cause damage to the liver [29]. Our meta-analysis involved 10 studies and more
than 14 million people in five countries. In our present meta-analysis, we found that
PM2.5 exposure was positively correlated with liver enzyme levels, including AST, ALT, or
GGT levels. However, there was no significant correlation between ALP level and PM2.5
exposure concentration.

PM2.5 exposure not only promoted the incidence rate and mortality of respiratory
diseases, but also had a significant impact on digestive diseases [30,31]. Liver enzymes were
reliable markers to judge whether the liver was damaged [32]. Studies have demonstrated
that liver enzymes played an important logical intermediary role in the association between
PM2.5 and some digestive diseases [11]. In our meta-analysis, liver ALT, AST, and GGT
concentrations were found to be positively correlated with PM2.5 exposure increase. Every
increment of 10 µg/m3 in PM2.5 was associated with a 4.45% increase in ALT (95% CI:
0.51–8.38%, p = 0.03), 3.99% increase in AST (95% CI: 0.88–7.10%, p = 0.01), and 2.91%
increase in GGT (95% CI: 1.18–4.64%, p < 0.001), respectively.

We tried to propose some mechanisms to explain the relationship between PM2.5 and
liver enzyme levels. The first mechanism involved oxidative stress causing liver function
damage. The increase in liver enzymes could indicate that PM2.5 causes liver system
diseases caused by oxidative stress [33,34]. Exposure to PM2.5 will lead to the production
of reactive oxygen species (ROS) and an increase in oxidative stress in the liver, increase the
level of liver enzymes, and affect the normal metabolism of the liver [35–37]. It has been
pointed out that liver serum biomarkers (ALT and AST) induced an increase in free radical
levels, which may cause oxidative stress [38]. PM2.5 exposure promoted the expression of
Nrf-2 and Nrf-2 regulated antioxidant genes, leading to the imbalance of oxidative stress
and redox in the liver [39].

Another important mechanism is inflammation. The induction of PM2.5 will aggra-
vate liver inflammation and lead to abnormal liver function [40]. As an important basis for
judging liver injury, changes in liver enzyme levels were highly susceptible to inflamma-
tion [41]. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and other inflammatory
factors activated by PM2.5 were accompanied by an increase in liver enzyme level [28,42,43].
Wei et al. [44] reported that PM2.5 would increase TNF-α. The production of IL-6 and IL-6
induced liver inflammation in mice. At the same time, it was accompanied by an increase
in ALT, AST, and GGT levels, leading to a severe inflammatory liver reaction in mice [44].

The advantage of our meta-analysis is that it covers more than 14 million participants
and analyzes the impact of PM2.5 exposure on different types of liver enzymes. At present,
meta-analyses on air pollution and liver focused on analyzing liver diseases caused by air
pollution. In this study, we focused on the mediating role of liver enzymes in various liver
system diseases. As far as we know, our meta-analysis is the first to explore the relationship
between PM2.5 and various liver enzyme levels, which will also be our greatest advantage.

Meanwhile, our study has some limitations. First, few articles focused on the relation-
ship between PM2.5 exposure and liver enzyme level, and only 10 articles were included
in the analysis. Therefore, there may be heterogeneity caused by differences between
individuals and different observation characteristics, which may affect the results. Second,
the number of studies in different groups included in the subgroup analysis was small, and
the results may be biased. Finally, because the increase in liver enzymes may be caused
by reasons other than liver cell damage, it is necessary to further explore biomarkers with
high liver specificity.

5. Conclusions

Our results indicated that there was a close relationship between air pollution and liver
enzyme levels. When the exposure concentration of PM2.5 increases, the level of human
liver enzymes will rise accordingly. Although specific liver enzyme data were limited,
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our data showed that PM2.5 exposure will increase the levels of ALT, AST, and GGT,
causing liver damage. Although increasingly more studies have focused on the impact
of air pollution on the liver system, there is a lack of research focusing on air pollution
and liver enzymes. Up to now, no meta-analysis of PM2.5 and liver enzymes has been
conducted, and our research attempts to propose two mechanisms to explain them. As
one of the important mediators of air pollution affecting liver disease, the relationships
between other air pollutants and liver enzymes need to be further studied.
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