Commonly Used Subjective Effort Scales May Not Predict Directly Measured Physical Workloads and Fatigue in Hispanic Farmworkers
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Ergonomic Exposure Parameter Selection
2.2.1. Overall Exertion
2.2.2. Local Body Fatigue
2.2.3. Subjective Measures
2.3. Data Collection
2.3.1. Heart Rate Monitors
2.3.2. Electromyography
2.3.3. Subjective Ratings: Borg RPE, Omni RPE, and Borg CR10
2.4. Data Processing
2.4.1. Metabolic Load: Percentage of Heart Rate Reserve
2.4.2. Muscle Fatigue: EMG Median Power Frequency
2.4.3. Subjective Ratings: Borg RPE, Omni RPE, and Borg CR10
2.5. Statistical Analysis
3. Results
3.1. Sociodemographic Characteristics of the Respondents
3.2. Overall Effort: % HRR as Metabolic Load, Borg RPE, and Omni RPE
3.3. Association between Metabolic Load and Subjective Overall Effort
3.4. Local Discomfort: EMG MPF as Muscle Fatigue and Borg CR10
3.5. Association between Muscle Fatigue and Subjective Local Discomfort
4. Discussion
4.1. Interpretations and Implications from Negative or No Correlation
4.2. Comparisons to Previous Studies and Directions for Future Work
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castillo, F.; Mora, A.M.; Kayser, G.L.; Vanos, J.; Hyland, C.; Yang, A.R.; Eskenazi, B. Environmental Health Threats to Latino Migrant Farmworkers. Annu. Rev. Public Health 2021, 42, 257–276. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.; Schenker, M.B. Hired farmworkers in the US: Demographics, work organisation, and services. Am. J. Ind. Med. 2016, 59, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Clouser, J.M.; Bush, A.; Gan, W.; Swanberg, J. Associations of Work Stress, Supervisor Unfairness, and Supervisor Inability to Speak Spanish with Occupational Injury among Latino Farmworkers. J. Immigr. Minor. Health 2018, 20, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Panikkar, B.; Barrett, M.-K. Precarious Essential Work, Immigrant Dairy Farmworkers, and Occupational Health Experiences in Vermont. Int. J. Environ. Res. Public Health 2021, 18, 3675. [Google Scholar] [CrossRef]
- Cooper, S.; Burau, K.; Frankowski, R.; Shipp, E.; Ddeljunco, D.; Whitworth, R.; Sweeney, A.; Macnaughton, N.; Wellor, N.; Hanis, C. A Cohort Study of Injuries in Migrant Farm Worker Families in South Texas. Ann. Epidemiol. 2006, 16, 313–320. [Google Scholar] [CrossRef]
- McCurdy, S.A.; Samuels, S.J.; Carroll, D.J.; Beaumont, J.J.; Morrin, L.A. Agricultural injury in California migrant Hispanic farm workers. Am. J. Ind. Med. 2003, 44, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Mora, D.C.; Miles, C.M.; Chen, H.; Quandt, S.A.; Summers, P.; Arcury, T.A. Prevalence of musculoskeletal disorders among immigrant Latino farmworkers and non-farmworkers in North Carolina. Arch. Environ. Occup. Health 2016, 71, 136–143. [Google Scholar] [CrossRef]
- Hennebry, J.; McLaughlin, J.; Preibisch, K. Out of the Loop: (In)access to Health Care for Migrant Workers in Canada. J. Int. Migr. Integr. 2016, 17, 521–538. [Google Scholar] [CrossRef]
- Viveros-Guzmán, A.; Gertler, M. Latino farmworkers in Saskatchewan: Language barriers and health and safety. J. Agromed. 2015, 20, 341–348. [Google Scholar] [CrossRef]
- Landry, V.; Semsar-Kazerooni, K.; Tjong, J.; Alj, A.; Darnley, A.; Lipp, R.; Guberman, G.I. The systemized exploitation of temporary migrant agricultural workers in Canada: Exacerbation of health vulnerabilities during the COVID-19 pandemic and recommendations for the future. J. Migr. Health 2021, 3, 100035. [Google Scholar] [CrossRef]
- Shah, D.J.; Shipp, E.M.; Cooper, S.P.; Huber, J.C.; del Junco, D.J.; Rene, A.A.; Moore, J.S. Hand Problems in Migrant Farmworkers. J. Agric. Saf. Health 2009, 15, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.; Rask, K.; Stenberg, M. Piece rates and their effects on health and safety—A literature review. Appl. Ergon. 2010, 41, 607–614. [Google Scholar] [CrossRef]
- Boriboonsuksri, P.; Taptagaporn, S.; Kaewdok, T. Ergonomic Task Analysis for Prioritization of Work-Related Musculoskeletal Disorders among Mango-Harvesting Farmers. Safety 2022, 8, 6. [Google Scholar] [CrossRef]
- Cristi-Montero, C. Considerations regarding the use of metabolic equivalents when prescribing exercise for health: Preventive medicine in practice. Physician Sportsmed. 2016, 44, 109–111. [Google Scholar] [CrossRef]
- Haskel, W.L.; Lee, I.-M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical Activity and Public Health. Med. Sci. Sport. Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.A.; James, D.A.; Rowlands, D.; Lee, J.B. Impact of Centre-of-Mass Acceleration on Perceived Exertion, the Metabolic Equivalent and Heart Rate Reserve in Triathlete Spin Cycling: A Pilot Study. J. Hum. Kinet. 2022, 81, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Izumi, S.; Nagayoshi, S.; Kawaguchi, H.; Yoshimoto, M.; Shiga, T.; Ando, T.; Nakae, S.; Usui, C.; Aoyama, T.; et al. Estimating metabolic equivalents for activities in daily life using acceleration and heart rate in wearable devices. BioMedical Eng. OnLine 2018, 17, 100. [Google Scholar] [CrossRef]
- Caballero, Y.; Ando, T.J.; Nakae, S.; Usui, C.; Aoyama, T.; Nakanishi, M.; Nagayoshi, S.; Fujiwara, Y.; Tanaka, S. Simple Prediction of Metabolic Equivalents of Daily Activities Using Heart Rate Monitor without Calibration of Individuals. Int. J. Environ. Res. Public Health 2019, 17, 216. [Google Scholar] [CrossRef]
- Keytel, L.R.; Goedecke, J.H.; Noakes, T.D.; Hiiloskorpi, H.; Laukkanen, R.; van der Merwe, L.; Lambert, E.V. Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J. Sport. Sci. 2005, 23, 289–297. [Google Scholar] [CrossRef]
- Bedny, G.Z.; Karwowski, W.; Seglin, M.H. A Heart Rate Evaluation Approach to Determine Cost-Effectiveness an Ergonomics Intervention. Int. J. Occup. Saf. Ergon. 2001, 7, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Ghosh, T.; Gangopadhyay, S. Child Work in Agriculture in West Bengal, India: Assessment of Musculoskeletal Disorders and Occupational Health Problems. J. Occup. Health 2013, 55, 244–258. [Google Scholar] [CrossRef]
- Sahu, S.; Sett, M.; Kjellstrom, T. Heat Exposure, Cardiovascular Stress and Work Productivity in Rice Harvesters in India: Implications for a Climate Change Future. Ind. Health 2013, 51, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gautam, U.S.; Singh, R.; Paliwal, D. Ergonomic study of farm women during wheat harvesting by improved sickle. Afr. J. Agric. Res. 2014, 9, 1386–1390. [Google Scholar] [CrossRef]
- Thamsuwan, O.; Galvin, K.; Tchong-French, M.; Kim, J.H.; Johnson, P.W. A feasibility study comparing objective and subjective field-based physical exposure measurements during apple harvesting with ladders and mobile platforms. J. Agromed. 2019, 24, 268–278. [Google Scholar] [CrossRef]
- Hiilloskorpi, H.; Fogelholm, M.; Laukkanen, R.; Pasanen, M.; Oja, P.; Mänttäri, A.; Natri, A. Factors Affecting the Relation Between Heart Rate and Energy Expenditure During Exercise. Int. J. Sport. Med. 1999, 20, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Cunha FA da Farinatti P de, T.V.; Midgley, A.W. Methodological and practical application issues in exercise prescription using the heart rate reserve and oxygen uptake reserve methods. J. Sci. Med. Sport 2011, 14, 46–57. [Google Scholar] [CrossRef]
- Guimarães, G.C.; Farinatti, P.T.V.; Midgley, A.W.; Vasconcellos, F.; Vigário, P.; Cunha, F.A. Relationship Between Percentages of Heart Rate Reserve and Oxygen Uptake Reserve During Cycling and Running: A Validation Study. J. Strength Cond. Res. 2019, 33, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, H.; Mukaino, M.; Otaka, Y.; Kagaya, H.; Aoshima, Y.; Suzuki, T.; Inukai, A.; Hattori, E.; Ogasawara, T.; Saitoh, E. Validity of simplified, calibration-less exercise intensity measurement using resting heart rate during sleep: A method-comparison study with respiratory gas analysis. BMC Sports Sci. Med. Rehabil. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Dewi, N.S.; Komatsuzaki, M. On-body personal assist suit for commercial farming: Effect on heart rate, EMG, trunk movements, and user acceptance during digging. Int. J. Ind. Ergon. 2018, 68, 290–296. [Google Scholar] [CrossRef]
- Hägg, G.M.; Luttmann, A.; Jäger, M. Methodologies for evaluating electromyographic field data in ergonomics. J. Electromyogr. Kinesiol. 2000, 10, 301–312. [Google Scholar] [CrossRef]
- Luttmann, A.; Jäger, M.; Laurig, W. Electromyographical indication of muscular fatigue in occupational field studies. Int. J. Ind. Ergon. 2000, 25, 645–660. [Google Scholar] [CrossRef]
- Van Galen, G.P.; Liesker, H.; de Haan, A. Effects of a vertical keyboard design on typing performance, user comfort and muscle tension. Appl. Ergon. 2007, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Aulck, L.; Thamsuwan, O.; Bartha, M.C.; Johnson, P.W. The effect of key size of touch screen virtual keyboards on productivity, usability, and typing biomechanics. Hum. Factors 2014, 56, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Aulck, L.; Thamsuwan, O.; Bartha, M.C.; Johnson, P.W. The effects of virtual keyboard key sizes on typing productivity and physical exposures. Proc. Hum. Factors Ergon. Soc. 2013, 57, 887–891. [Google Scholar] [CrossRef]
- Bangaru, S.S.; Wang, C.; Busam, S.A.; Aghazadeh, F. ANN-based automated scaffold builder activity recognition through wearable EMG and IMU sensors. Autom. Constr. 2021, 126, 103653. [Google Scholar] [CrossRef]
- Østensvik, T.; Nilsen, P.; Veiersted, K.B. Muscle Activity Patterns in the Neck and Upper Extremities Among Machine Operators in Different Forest Vehicles. Int. J. For. Eng. 2008, 19, 11–20. [Google Scholar] [CrossRef]
- Fethke, N.B.; Schall, M.C.; Chen, H.; Branch, C.A.; Merlino, L.A. Biomechanical factors during common agricultural activities: Results of on-farm exposure assessments using direct measurement methods. J. Occup. Environ. Hyg. 2020, 17, 85–96. [Google Scholar] [CrossRef]
- Douphrate, D.I.; Fethke, N.B.; Nonnenmann, M.W.; Rodriguez, A.; Hagevoort, R.; Gimeno Ruiz de Porras, D. Full-shift and task-specific upper extremity muscle activity among US large-herd dairy parlour workers. Ergonomics 2017, 60, 1042–1054. [Google Scholar] [CrossRef]
- Thamsuwan, O.; Johnson, P.W. Machine learning methods for electromyography error detection in field research: An application in full-shift field assessment of shoulder muscle activity in apple harvesting workers. Appl. Ergon. 2022, 98, 103607. [Google Scholar] [CrossRef]
- Thamsuwan Ornwipa Milosavljevic, S.; Srinivasan, D.; Trask, C. Potential exoskeleton uses for reducing low back muscular activity during farm tasks. Am. J. Ind. Med. 2020, 63, 1017–1028. [Google Scholar] [CrossRef]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- McGorry, R.W.; Lin, J.-H.; Dempsey, P.G.; Casey, J.S. Accuracy of the Borg CR10 Scale for Estimating Grip Forces Associated with Hand Tool Tasks. J. Occup. Environ. Hyg. 2010, 7, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.; Gerberich, S.G.; Kim, H.; Ryan, A.D.; Church, T.R.; Albin, T.J.; McGovern, P.M.; Erdman, A.E.; Green, D.R.; Arauz, R.F. Janitor ergonomics and injuries in the safe workload ergonomic exposure project (SWEEP) study. Appl. Ergon. 2019, 81, 102874. [Google Scholar] [CrossRef]
- Vieira, E.R.; Kumar, S.; Coury HJ, C.G.; Narayan, Y. Low back problems and possible improvements in nursing jobs. J. Adv. Nurs. 2006, 55, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Spielholz, P. Calibrating Borg scale ratings of hand force exertion. Appl. Ergon. 2006, 37, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Cabral, L.L.; Nakamura, F.Y.; Stefanello JM, F.; Pessoa LC, V.; Smirmaul BP, C.; Pereira, G. Initial Validity and Reliability of the Portuguese Borg Rating of Perceived Exertion 6-20 Scale. Meas. Phys. Educ. Exerc. Sci. 2020, 24, 103–114. [Google Scholar] [CrossRef]
- Haddad, M.; Chaouachi, A.; Castagna, C.; Hue, O.; Wong, D.P.; Tabben, M.; Behm, D.G.; Chamari, K. Validity and psychometric evaluation of the French version of RPE scale in young fit males when monitoring training loads. Sci. Sport. 2013, 28, e29–e35. [Google Scholar] [CrossRef]
- Leung, R.W.; Leung, M.-L.; Chung, P.-K. Validity and Reliability of a Cantonese-Translated Rating of Perceived Exertion Scale among Hong Kong Adults. Percept. Mot. Ski. 2004, 98, 725–735. [Google Scholar] [CrossRef]
- Lea JW, D.; O’Driscoll, J.M.; Hulbert, S.; Scales, J.; Wiles, J.D. Convergent Validity of Ratings of Perceived Exertion During Resistance Exercise in Healthy Participants: A Systematic Review and Meta-Analysis. Sport. Med. Open 2022, 8, 2. [Google Scholar] [CrossRef]
- Hummel, A.; Läubli, T.; Pozzo, M.; Schenk, P.; Spillmann, S.; Klipstein, A. Relationship between perceived exertion and mean power frequency of the EMG signal from the upper trapezius muscle during isometric shoulder elevation. Eur. J. Appl. Physiol. 2005, 95, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Dedering, Å.; Németh, G.; Harms-Ringdahl, K. Correlation between electromyographic spectral changes and subjective assessment of lumbar muscle fatigue in subjects without pain from the lower back. Clin. Biomech. 1999, 14, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Kankaanpaa, M.; Taimela, S.; Webber, C.L.; Airaksinen, O.; Hanninen, O. Lumbar paraspinal muscle fatigability in repetitive isoinertial loading: EMG spectral indices, Borg scale and endurance time. Eur. J. Appl. Physiol. 1997, 76, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Kuijt-Evers LF, M.; Bosch, T.; Huysmans, M.A.; de Looze, M.P.; Vink, P. Association between objective and subjective measurements of comfort and discomfort in hand tools. Appl. Ergon. 2007, 38, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Groenesteijn, L.; Eikhout, S.M.; Vink, P. One set of pliers for more tasks in installation work: The effects on (dis)comfort and productivity. Appl. Ergon. 2004, 35, 485–492. [Google Scholar] [CrossRef]
- Shafti, A.; Lazpita, B.U.; Elhage, O.; Wurdemann, H.A.; Althoefer, K. Analysis of comfort and ergonomics for clinical work environments. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1894–1897. [Google Scholar] [CrossRef]
- Öberg, T.; SANDSJö, L.; Kadefors, R. Subjective and objective evaluation of shoulder muscle fatigue. Ergonomics 1994, 37, 1323–1333. [Google Scholar] [CrossRef]
- Huang, D.-H.; Chiou, W.-K. Validation of a facial pictorial rating of perceived exertion scale for evaluating physical tasks. J. Ind. Prod. Eng. 2013, 30, 125–131. [Google Scholar] [CrossRef]
- Kung, S.M.; Fink, P.W.; Legg, S.J.; Ali, A.; Shultz, S.P. Age-Related Differences in Perceived Exertion While Walking and Running Near the Preferred Transition Speed. Pediatr. Exerc. Sci. 2020, 32, 227–232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thamsuwan, O.; Galvin, K.; Palmandez, P.; Johnson, P.W. Commonly Used Subjective Effort Scales May Not Predict Directly Measured Physical Workloads and Fatigue in Hispanic Farmworkers. Int. J. Environ. Res. Public Health 2023, 20, 2809. https://doi.org/10.3390/ijerph20042809
Thamsuwan O, Galvin K, Palmandez P, Johnson PW. Commonly Used Subjective Effort Scales May Not Predict Directly Measured Physical Workloads and Fatigue in Hispanic Farmworkers. International Journal of Environmental Research and Public Health. 2023; 20(4):2809. https://doi.org/10.3390/ijerph20042809
Chicago/Turabian StyleThamsuwan, Ornwipa, Kit Galvin, Pablo Palmandez, and Peter W. Johnson. 2023. "Commonly Used Subjective Effort Scales May Not Predict Directly Measured Physical Workloads and Fatigue in Hispanic Farmworkers" International Journal of Environmental Research and Public Health 20, no. 4: 2809. https://doi.org/10.3390/ijerph20042809
APA StyleThamsuwan, O., Galvin, K., Palmandez, P., & Johnson, P. W. (2023). Commonly Used Subjective Effort Scales May Not Predict Directly Measured Physical Workloads and Fatigue in Hispanic Farmworkers. International Journal of Environmental Research and Public Health, 20(4), 2809. https://doi.org/10.3390/ijerph20042809