Modeling the Dynamics of Children’s Musculoskeletal Fitness
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pate, R.; Oria, M.; Pillsbury, L. Fitness Measures and Health Outcomes in Youth. In Fitness Measures and Health Outcomes in Youth; Pate, R., Oria, M., Pillsbury, L., Eds.; National Academies Press (US): Washington, DC, USA, 2012. [Google Scholar]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Kaioglou, V.; Dania, A.; Kambas, A.; Venetsanou, F. Associations of Motor Competence, Cardiorespiratory Fitness, and Physical Activity. The Mediating Role of Cardiorrespiratory Fitness. Res. Q. Exerc. Sport 2022, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Utesch, T.; Bardid, F.; Büsch, D.; Strauss, B. The Relationship between Motor Competence and Physical Fitness from Early Childhood to Early Adulthood: A Meta-Analysis. Sports Med. 2019, 49, 541–551. [Google Scholar] [CrossRef]
- Lo, K.-Y.; Wu, M.-C.; Tung, S.-C.; Hsieh, C.C.; Yao, H.-H.; Ho, C.-C. Association of School Environment and After-School Physical Activity with Health-Related Physical Fitness among Junior High School Students in Taiwan. Int. J. Environ. Res. Public Health 2017, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Roche, A.; Sun, S. Human Growth: Assessment and Interpretation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Fraser, B.J.; Blizzard, L.; Buscot, M.J.; Schmidt, M.D.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. Muscular strength across the life course: The tracking and trajectory patterns of muscular strength between childhood and mid-adulthood in an Australian cohort. J. Sci. Med. Sport 2021, 24, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, H. Multilevel Statistical Models, 2nd ed.; Arnold: London, UK, 1995. [Google Scholar]
- Ruedl, G.; Niedermeier, M.; Posch, M.; Kirschner, W.; Wirnitzer, K.; Cocca, A.; Greier, K. Association of modifiable factors with the development of physical fitness of Austrian primary school children: A 4-year longitudinal study. J. Sport. Sci. 2022, 40, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.P.; Stodden, D.F.; Lopes, V.P. Developmental pathways of change in fitness and motor competence are related to overweight and obesity status at the end of primary school. J. Sci. Med. Sport 2016, 19, 87–92. [Google Scholar] [CrossRef]
- Haugen, T.; Johansen, B.T. Difference in physical fitness in children with initially high and low gross motor competence: A ten-year follow-up study. Hum. Movment Sci. 2018, 62, 143–149. [Google Scholar] [CrossRef]
- Bai, Y.; Saint-Maurice, P.F.; Welk, G.J. Fitness Trends and Disparities among School-Aged Children in Georgia, 2011–2014. Public Health Rep. 2017, 132, 39S–47S. [Google Scholar] [CrossRef]
- Reyes, A.C.; Chaves, R.; Baxter-Jones, A.D.G.; Vasconcelos, O.; Tani, G.; Maia, J. A mixed-longitudinal study of children’s growth, motor development and cognition. Design, methods and baseline results on sex-differences. Ann. Hum. Biol. 2018, 45, 376–385. [Google Scholar] [CrossRef]
- Ministério da Segurança Social e do Trabalho. Decreto-Lei, n.o 176/2003 de 2 de Agosto; Ministério da Segurança Social e do Trabalho: Lisboa, Portugal, 2003. [Google Scholar]
- Kiphard, E.; Schilling, F. Körperkoordinationstest für Kinder; Beltz Test GmbH: Weinheim, Germany, 1974. [Google Scholar]
- Barreira, T.V.; Schuna, J.M., Jr.; Mire, E.F.; Katzmarzyk, P.T.; Chaput, J.-P.; Leduc, G.; Tudor-Locke, C. Identifying Children’s Nocturnal Sleep Using 24-h Waist Accelerometry. Med. Sci. Sport. Exerc. 2015, 47, 937–943. [Google Scholar] [CrossRef]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sport. Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef]
- Hedeker, D.; Gibbons, R. Longitudinal Data Analysis; Wiley Interscience: New York, NY, USA, 2006. [Google Scholar]
- Hedeker, D.; Gibbons, R.; du Toit, M.; Cheng, Y. Supermix: Mixed Effects Models, Version 1.0.; Scientific Software International: Lincolnwood, IL, USA, 2008. [Google Scholar]
- Branta, C.; Haubenstricker, J.; Seefeldt, V. Age changes in motor skills during childhood and adolescence. Exerc. Sport Sci. Rev. 1984, 12, 467–520. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Barnett, L.M.; van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Gender Differences in Motor Skill Proficiency from Childhood to Adolescence. Res. Q. Exerc. Sport 2010, 81, 162–170. [Google Scholar] [CrossRef]
- Nyquist, A.; Moser, T.; Jahnsen, R. Fitness, Fun and Friends through Participation in Preferred Physical Activities: Achievable for Children with Disabilities? Int. J.Disabil. Dev. Educ. 2016, 63, 334–356. [Google Scholar] [CrossRef]
- Stodden, D.F.; Gao, Z.; Goodway, J.D.; Langendorfer, S.J. Dynamic relationships between motor skill competence and health-related fitness in youth. Pediatr. Exerc. Sci. 2014, 26, 231–241. [Google Scholar] [CrossRef]
- Asmussen, E. Growth in Muscular Strength and Power, in Physical Activity, Human Growth and Development, 1st ed.; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Corlett, J.T. Power function analysis of physical performance by Tswana children. J. Sport. Sci. 1984, 2, 131–137. [Google Scholar] [CrossRef]
- Béghin, L.; Vanhelst, J.; Drumez, E.; Kersting, M.; Molnar, D.; Kafatos, A.; De Henauwn, S.; Wildhalm, K.; Karaglani, E.; Moreno, L.A.; et al. Birth weight and breastfeeding are differentially associated with physical fitness components. Eur. J. Clin. Nutr. 2022, 76, 871–878. [Google Scholar] [CrossRef]
- Robič Pikel, T.; Starc, G.; Strel, J.; Kovač, M.; Babnik, J.; Golja, P. Impact of prematurity on exercise capacity and agility of children and youth aged 8 to 18. Early Hum. Dev. 2017, 110, 39–45. [Google Scholar] [CrossRef]
- Augste, C.; Lämmle, L.; Künzell, S. Does current behaviour predict the course of children’s physical fitness? Eur. J. Sport Sci. 2015, 15, 429–435. [Google Scholar] [CrossRef]
- Breau, B.; Brandes, M.; Veidebaum, T.; Tornaritis, M.; Moreno, L.A.; Molnár, D.; Lissner, L.; Eiben, G.; Lauria, F.; Kaprio, J.; et al. Longitudinal association of childhood physical activity and physical fitness with physical activity in adolescence: Insights from the IDEFICS/I.Family study. Int. J. Behaviral Nutr. Phys. Act. 2022, 9, 147. [Google Scholar] [CrossRef] [PubMed]
- Prahl-Andersen, B.; Kowalski, C.J. A mixed longitudinal, interdisciplinary study of the growth and development of Dutch children. Growth 1973, 37, 281–295. [Google Scholar] [PubMed]
Cohorts | Ages of Follow-Up | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Cohort 1 | 4 | 5 | 6 | 41 | |||||
Cohort 2 | 5 | 6 | 7 | 65 | |||||
Cohort 3 | 6 | 7 | 8 | 58 | |||||
Cohort 4 | 7 | 8 | 9 | 59 | |||||
Cohort 5 | 8 | 9 | 10 | 58 | |||||
Cohort 6 | 9 | 10 | 11 | 67 | |||||
348 |
Tests | Girls | ||||||
5 years (n = 28) | 6 years (n = 58) | 7 years (n = 73) | 8 years (n = 73) | 9 years (n = 86) | 10 years (n = 47) | 11 years (n = 23) | |
Physical fitness | |||||||
Handgrip strength (kgf) | 6.2 ± 1.1 | 8.0 ± 2.0 | 10.0 ± 2.5 | 12.7 ± 3.1 | 14.1 ± 2.9 | 16.4 ± 3.3 | 19.4 ± 3.5 |
Standing long jump (cm) | 76.3 ± 16.3 | 93.7 ± 17.3 | 102.7 ± 16.5 | 113.8 ± 16.9 | 120.9 ± 18.2 | 131.3 ± 18.3 | 135.1 ± 17.6 |
Shuttle run (s) | 16.6 ± 2.0 | 14.9 ± 1.5 | 14.0 ± 1.2 | 13.3 ± 1.1 | 12.9 ± 1.1 | 12.1 ± 1.0 | 11.8 ± 1.0 |
Gestational Information | |||||||
Birth weight (kg) | 3.0 ± 0.6 | 3.0 ± 0.5 | 3.1 ± 0.5 | 3.2 ± 0.5 | 3.2 ± 0.5 | 3.2 ± 0.5 | 3.4 ± 0.4 |
Anthropometry | |||||||
BMI (kg·m−2) | 16.7 ± 1.8 | 16.9 ± 2.0 | 17.7 ± 2.9 | 18.2 ± 3.2 | 19.0 ± 3.3 | 19.3 ± 3.4 | 20.2 ± 3.4 |
Gross Motor Coordination | |||||||
GMCTS (points) | 69.2 ± 22.5 | 103.0 ± 27.9 | 127.9 ± 28.8 | 155.8 ± 31.2 | 173.7 ± 32.4 | 207.1 ± 36.7 | 216.5 ± 42.7 |
Physical activity | |||||||
MVPA (min∙day−1) | 64.6 ± 21.1 | 61.6 ± 18.9 | 60.3 ± 18.1 | 58.9 ± 19.3 | 54.0 ± 15.8 | 58.2 ± 17.8 | 64.2 ± 32.2 |
Socioeconomic status | |||||||
A (up to EUR 2.934 per year−1) | 32.1% | 15.5% | 21.9% | 20.5% | 22.1% | 21.3% | 26.1% |
B (EUR 2.934 to EUR 5.896 per year−1) | 32.1% | 36.2% | 37.0% | 26.0% | 26.7% | 21.3% | 30.4% |
C (≥EUR 5.870 per year−1) | 35.7% | 48.3% | 41.1% | 53.4% | 51.2% | 57.4% | 43.5% |
Tests | Boys | ||||||
5 years (n = 44) | 6 years (n = 62) | 7 years (n = 67) | 8 years (n = 60) | 9 years (n = 60) | 10 years (n = 39) | 11 years (n = 15) | |
Physical fitness | |||||||
Handgrip strength (kgf) | 7.0 ± 2.3 | 9.1 ± 2.4 | 11.5 ± 2.5 | 13.8 ± 3.4 | 15.5 ± 3.5 | 17.8 ± 4.4 | 20.1 ± 4.4 |
Standing long jump (cm) | 85.6 ± 21.4 | 99.2 ± 19.2 | 114.7 ± 16.8 | 123.6 ± 18.6 | 130.4 ± 16.9 | 139.6 ± 15.3 | 143.5 ± 27.0 |
Shuttle run (s) | 15.8 ± 2.1 | 14.7 ± 1.7 | 13.4 ± 1.1 | 13.0 ± 1.1 | 12.4 ± 1.1 | 11.7 ± 0.7 | 11.6 ± 1.1 |
Gestational Information | |||||||
Birth weight (kg) | 3.3 ± 0.6 | 3.4 ± 0.5 | 3.4 ± 0.5 | 3.3 ± 0.5 | 3.2 ± 0.5 | 3.3 ± 0.6 | 3.4 ± 0.5 |
Anthropometry | |||||||
BMI (kg·m−2) | 17.0 ± 1.9 | 17.0 ± 2.1 | 17.2 ± 2.3 | 17.9 ± 3.7 | 18.5 ± 3.9 | 18.8 ± 4.3 | 19.0 ± 3.1 |
Gross Motor Coordination | |||||||
GMCTS (points) | 66.7 ± 27.0 | 103.1 ± 33.4 | 129.9 ± 37.1 | 156.0 ± 33.2 | 174.6 ± 38.2 | 201.5 ± 28.3 | 215.5 ± 44.4 |
Physical activity | |||||||
MVPA (min∙day−1) | 83.7 ± 23.5 | 82.6 ± 22.0 | 77.2 ± 24.1 | 74.8 ± 22.9 | 71.7 ± 20.8 | 68.5 ± 22.6 | 71.4 ± 19.8 |
Socioeconomic status | |||||||
A (up to EUR 2.934 per year−1) | 15.9% | 14.5% | 14.9% | 11.7% | 15.0% | 7.7% | - |
B (EUR 2.934 to EUR 5.896 per year−1) | 18.2% | 24.2% | 23.9% | 25.0% | 23.3% | 33.3% | 46.7% |
C (≥EUR 5.870 per year−1) | 65.9% | 61.3% | 61.2% | 63.3% | 61.7% | 59.0% | 53.3% |
Schools (n = 19) | Mean ± SD | Min–Max |
---|---|---|
School Characterization | ||
School size | ||
Number of children | 23 ± 22 | 5–87 |
Number of teachers | 4 ± 3 | 1–8 |
Ratio teachers/students | 0.13 ± 0.11 | 0.05–0.55 |
n (%) | ||
School setting | ||
Rural | 12 (63.2) | |
Semi-urban | 7 (36.8) | |
Policies and Practices for PA | ||
Policies and practices | 10 (52.6) | |
Policies | 5 (26.3) | |
Practices | 4 (21.1) | |
Physical Structure of the School | ||
Playground | ||
Yes | 19 (100) | |
No | 0 (0) | |
Playground area | ||
With obstacles | 19 (100) | |
Without obstacles | 0 (0) | |
Playground dimension | ||
Smaller (10 m2 to 39 m2) | 2 (10.5) | |
Medium (40 m2 to 69 m2) | 4 (21.1) | |
Large (>70 m2) | 13 (68.4) | |
Multi-sports roofed | ||
Yes | 5 (26.3) | |
No | 14 (73.7) | |
Number of Infrastructures | ||
One Infrastructure | 15 (78.9) | |
Two Infrastructures | 4 (21.1) | |
Equipment for PA | ||
Yes | 15 (78.9) | |
No | 4 (21.1) | |
PE Classes | ||
Duration of PE classes | ||
45 min | 6 (31.6) | |
60 min | 13 (68.4) | |
Active in PE classes | ||
30 min | 6 (31.6) | |
40 min | 4 (21.1) | |
50 min | 9 (47.3) | |
Human Resources | ||
Academic Degree (all graduated) | 19 (100) |
Handgrip Strength (kgf) | Standing Long Jump (cm) | Shuttle-Run Test (s) | |
---|---|---|---|
Regression coefficients (fixed effects—β) | |||
Intercept (5 years) | 7.74 (0.43) *** | 88.95 (2.72) *** | 15.49 (0.19) *** |
Age (velocity) | 1.43 (0.19) *** | 12.29 (1.20) *** | −0.93 (0.09) *** |
Age2 (acceleration) | 0.06 (0.03) * | −1.08 (0.17) *** | 0.07 (0.01) *** |
Sex (boys) | 1.13 (0.25) *** | 7.88 (1.48) *** | −0.33 (0.09) *** |
CE_c2_1 | −0.80 (0.32) * | −8.81 (2.38) *** | 0.18 (0.21) ns |
CE_c3_2 | −0.87 (0.44) ns | −12.48 (2.91) *** | 0.62 (0.24) ** |
CE_c4_3 | −1.18 (0.49) * | −8.18 (2.90) ** | 0.68 (0.22) ** |
CE_c5_4 | −1.25 (0.46) ** | −5.27 (2.52) * | 0.62 (0.18) *** |
CE_c6_5 | −1.36 (0.35) *** | −4.35 (1.73) * | 0.50 (0.11) *** |
Birth weight (kg) | 0.43 (0.23) ns | 0.25 (1.41) ns | −0.18 (0.09) * |
SES (level B) | −0.35 (0.35) ns | −0.55 (2.13) ns | −0.10 (0.13) ns |
SES (Level C) | −0.50 (0.32) ns | −0.94 (1.93) ns | 0.02 (0.12) ns |
BMI (kg·m−2) | 0.35 (0.04) *** | −0.93 (0.23) *** | 0.06 (0.01) *** |
GMCTS (points) | 0.02 (0.003) *** | 0.23 (0.02) *** | −0.02 (0.001) *** |
MVPA (min·day−1) | 0.001 (0.003) ns | 0.08 (0.02) ** | −0.003 (0.002) * |
Variance components (random effects—σ2) | |||
Child Level Intercept | 1.90 (0.58) ** | 217.67 (36.43) *** | 2.01 (0.27) *** |
Age | 0.21 (0.10) * | 9.36 (3.42) ** | 0.06 (0.02) *** |
Covariance (intercept/age) Residual Level Intercept | 0.09 (0.23) ns 1.95 (0.16) *** | −33.36 (10.79) ** 74.79 (6.25) *** | −0.34 (0.06) *** 0.44 (0.03) *** |
Model Summary | |||
Number of estimated parameters | 19 | 19 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, A.; Chaves, R.; Vasconcelos, O.; Pereira, S.; Tani, G.; Stodden, D.; Hedeker, D.; Maia, J.; Baxter-Jones, A. Modeling the Dynamics of Children’s Musculoskeletal Fitness. Int. J. Environ. Res. Public Health 2023, 20, 2938. https://doi.org/10.3390/ijerph20042938
Reyes A, Chaves R, Vasconcelos O, Pereira S, Tani G, Stodden D, Hedeker D, Maia J, Baxter-Jones A. Modeling the Dynamics of Children’s Musculoskeletal Fitness. International Journal of Environmental Research and Public Health. 2023; 20(4):2938. https://doi.org/10.3390/ijerph20042938
Chicago/Turabian StyleReyes, Ana, Raquel Chaves, Olga Vasconcelos, Sara Pereira, Go Tani, David Stodden, Donald Hedeker, José Maia, and Adam Baxter-Jones. 2023. "Modeling the Dynamics of Children’s Musculoskeletal Fitness" International Journal of Environmental Research and Public Health 20, no. 4: 2938. https://doi.org/10.3390/ijerph20042938
APA StyleReyes, A., Chaves, R., Vasconcelos, O., Pereira, S., Tani, G., Stodden, D., Hedeker, D., Maia, J., & Baxter-Jones, A. (2023). Modeling the Dynamics of Children’s Musculoskeletal Fitness. International Journal of Environmental Research and Public Health, 20(4), 2938. https://doi.org/10.3390/ijerph20042938