Physical Demands during Official Competitions in Elite Handball: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection and Eligibility Criteria
2.2. Literature Search
2.3. Systematic Review Protocol
2.4. Data Extraction and Management
2.5. Study Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Summary of Scientific Evidence (Qualitative Analysis)
3.1.1. Sample Characteristics and Methods
3.1.2. External Load
3.1.3. Internal Load
3.1.4. Technical Activity
3.2. Study Selection and Quality Assessment (Qualitative Analysis)
4. Discussion
4.1. External Load
4.1.1. Total Distance Covered
4.1.2. Running Pace
4.1.3. High-Intensity Running and Sprinting
4.1.4. Acceleration, Deceleration and PlayerLoad
4.1.5. Contextual Factors
4.2. Internal Load
4.3. Technical Activity
4.4. Limitations
4.5. Practical Applications
4.6. Future Lines of Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wagner, H.; Finkenzeller, T.; Würth, S.; von Duvillard, S.P. Individual and team performance in team-handball: A review. J. Sports Sci. Med. 2014, 13, 808–816. [Google Scholar]
- Michalsik, L.B. On-Court Physical Demands and Physiological Aspects in Elite Team Handball. In Handball Sports Medicine; Laver, L., Landreau, P., Seil, R., Popovic, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Karcher, C.; Buchheit, M. On-court demands of elite handball, with special reference to playing positions. Sports Med. 2014, 44, 797–814. [Google Scholar] [CrossRef] [PubMed]
- Côté, J.; Gilbert, W. An Integrative Definition of Coaching Effectiveness and Expertise. Int. J. Sports Sci. Coach. 2009, 4, 307–323. [Google Scholar] [CrossRef]
- Manchado, C.; Tortosa-Martínez, J.; Vila, H.; Ferragut, C.; Platen, P. Performance factors in women’s team handball: Physical and physiological aspects—A review. J. Strength Cond. Res. 2013, 27, 1708–1719. [Google Scholar] [CrossRef]
- Chelly, M.S.; Hermassi, S.; Aouadi, R.; Khalifa, R.; Van den Tillaar, R.; Chamari, K.; Shephard, R.J. Match analysis of elite adolescent team handball players. J. Strength Cond. Res. 2011, 25, 2410–2417. [Google Scholar] [CrossRef] [PubMed]
- Corvino, M.; Tessitore, A.; Minganti, C.; Sibila, M. Effect of Court Dimensions on Players’ External and Internal Load during Small-Sided Handball Games. J. Sports Sci. Med. 2014, 13, 297–303. [Google Scholar] [PubMed]
- Soligard, T.; Schwellnus, M.; Alonso, J.M.; Bahr, R.; Clarsen, B.; Dijkstra, H.P.; Gabbett, T.; Gleeson, M.; Hutchinson, M. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br. J. Sports Med. 2016, 50, 1030–1041. [Google Scholar] [CrossRef] [PubMed]
- Manchado, C.; Pers, J.; Navarro, F.; Han, A.; Sung, E.; Platen, P. Time-motion analysis in women’s team handball: Importance of aerobic performance. J. Hum. Sport Exerc. 2013, 8, 376–390. [Google Scholar] [CrossRef]
- Cardinale, M.; Whiteley, R.; Ahmed, H.A.; Popovic, N. Activity profiles and positional differences of handball players during the World Championships in Qatar 2015. Int. J. Sports Physiol. Perform. 2017, 12, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Manchado, C.; Martínez, J.T.; Pueo, B.; Tormo, J.M.C.; Vila, H.; Ferragut, C.; Sánchez, F.S.; Busquier, S.; Amat, S.; Ríos, L.J.C. High-performance handball player’s time-motion analysis by playing positions. Int. J. Environ. Res. Public Health 2020, 17, 6768. [Google Scholar] [CrossRef]
- Manchado, C.; Pueo, B.; Chirosa-Rios, L.J.; Tortosa-Martínez, J. Time–Motion Analysis by Playing Positions of Male Handball Players during the European Championship 2020. Int. J. Environ. Res. Public Health 2021, 18, 2787. [Google Scholar] [CrossRef]
- Luteberget, L.S.; Spencer, M. High-intensity events in international women’s team handball matches. Int. J. Sports Physiol. Perform. 2017, 12, 56–61. [Google Scholar] [CrossRef]
- Scott, M.T.U.; Scott, T.J.; Kelly, V.G. The Validity and Reliability of Global Positioning Systems in Team Sport. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef]
- Font, R.; Karcher, C.; Reche, X.; Carmona, G.; Tremps, V.; Irurtia, A. Monitoring external load in elite male handball players depending on playing positions. Biol. Sport 2021, 38, 475–481. [Google Scholar] [CrossRef]
- Fleureau, A.; Lacome, M.; Buchheit, M.; Couturier, A.; Rabita, G. Validity of an ultra-wideband local positioning system to assess specific movements in handball. Biol. Sport 2020, 37, 351–357. [Google Scholar] [CrossRef]
- Bastida-Castillo, A.; Gómez-Carmona, C.; De la Cruz-Sánchez, E.; Reche-Royo, X.; Ibáñez, S.; Pino Ortega, J. Accuracy and Inter-Unit Reliability of Ultra-Wide-Band Tracking System in Indoor Exercise. Appl. Sci. 2019, 9, 939. [Google Scholar] [CrossRef]
- Vazquez-Guerrero, J.; Reche, X.; Cos, F.; Casamichana, D.; Sampaio, J. Changes in External Load When Modifying Rules of 5-on-5 Scrimmage Situations in Elite Basketball. J. Strength Cond. Res. 2020, 34, 3217–3224. [Google Scholar] [CrossRef]
- Ribeiro, J.N.; Gonçalves, B.; Coutinho, D.; Brito, J.; Sampaio, J.; Travassos, B. Activity Profile and Physical Performance of Match Play in Elite Futsal Players. Front. Psychol. 2020, 11, 1709. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ronda, L.; Beanland, E.; Whitehead, S.; Sweeting, A.; Clubb, J. Tracking Systems in Team Sports: A Narrative Review of Applications of the Data and Sport Specific Analysis. Sports Med. Open. 2022, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; Ibáñez, S.J.; Pino-Ortega, J. Accelerometry as a method for external workload monitoring in invasion team sports. A systematic review. PLoS ONE 2020, 15, 0236643. [Google Scholar] [CrossRef]
- Bastida-Castillo, A.; Gómez-Carmona, C.D.; Hernández-Belmonte, A.; Pino-Ortega, J. Validity and reliability of an inertial device (WIMU PROTM) to tracking analysis in handball. EBm JSS 2018, 14, 9–16. [Google Scholar]
- Luteberget, L.S.; Holme, B.R.; Spencer, M. Reliability of Wearable Inertial Measurement Units to Measure Physical Activity in Team Handball. Int. J. Sports Physiol. Perform. 2018, 13, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Luteberget, L.S.; Spencer, M.; Gilgien, M. Validity of the Catapult ClearSky T6 local positioning system for team sports specific drills, in indoor conditions. Front. Physiol. 2018, 9, 115. [Google Scholar] [CrossRef]
- Hodder, R.W.; Ball, K.A.; Serpiello, F.R. Criterion validity of Catapult ClearSky T6 local positioning system for measuring inter-unit distance. Sensors 2020, 20, 3693. [Google Scholar] [CrossRef] [PubMed]
- Luteberget, L.S.; Trollerud, H.P.; Spencer, M. Physical demands of game-based training drills in women’s team handball. J. Sports Sci. 2018, 36, 592–598. [Google Scholar] [CrossRef]
- Oliveira, T.; Abade, E.; Gonçalves, B.; Gomes, I.; Sampaio, J. Physical and physiological profiles of youth elite handball players during training sessions and friendly matches according to playing positions. Int. J. Perform. Anal. Sports 2014, 14, 162–173. [Google Scholar] [CrossRef]
- Barbero, J.C.; Granda-Vera, J.; Calleja-González, J.; Del Coso, J. Physical and physiological demands of elite team handball players. Int. J. Perform. Anal. Sports 2014, 14, 921–933. [Google Scholar] [CrossRef]
- Ortega-Becerra, M.; Belloso-Vergara, A.; Pareja-Blanco, F. Physical and Physiological Demands During Handball Matches in Male Adolescent Players. J. Hum. Kinet. 2020, 72, 253–263. [Google Scholar] [CrossRef]
- González-Haro, P.J.; Gómez-Carmona, C.D.; Bastida-Castillo, A.; Rojas-Valverde, D.; Gómez-López, M.; Pino-Ortega, J. Analysis of playing position and match status-related differences in external load demands on amateur handball: A case study. Rev. Bras. Cineantropom. Desempenho Hum. 2020, 22, 1–13. [Google Scholar] [CrossRef]
- Mancha-Triguero, D.; González-Espinosa, S.; Córdoba, L.G.; García-Rubio, J.; Feu, S. Differences in the physical demands between handball and beach handball players. Rev. Bras. Cineantropom. Desempenho Hum. 2020, 22. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; García-Santos, D.; Mancha-Triguero, D.; Antúnez, A.; Ibáñez, S.J. Analysis of sex-related differences in external load demands on beach handball. Rev. Bras. Cineantropom. Desempenho Hum. 2020, 22. [Google Scholar] [CrossRef]
- Iannaccone, A.; Fusco, A.; Skarbalius, A.; Kniubaite, A.; Cortis, C.; Conte, D. Relationship Between External and Internal Load Measures in Youth Beach Handball. Int. J. Sports Physiol. Perform. 2022, 17, 256–262. [Google Scholar] [CrossRef]
- Müller, C.; Willberg, C.; Reichert, L.; Zentgraf, K. External Load Analysis in Beach Handball Using a Local Positioning System and Inertial Measurement Units. Sensors 2022, 22, 3011. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sáez, J.A.; Sánchez-Sánchez, J.; Martínez-Rodríguez, A.; Felipe, J.L.; García-Unanue, J.; Lara-Cobos, D. Global Positioning System Analysis of Physical Demands in Elite Women’s Beach Handball Players in an Official Spanish Championship. Sensors 2021, 21, 850. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Swann, C.; Moran, A.; Piggott, D. Defining elite athletes: Issues in the study of expert performance in sport psychology. Psychol. Sport Exerc. 2015, 16, 3–14. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; Von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. PLoS Med. 2007, 4, 1628–1654. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Belka, J.; Hülka, K.; Šafár, M.; Weisser, R. External and internal load of playing positions of elite female handball players (U19) during competitive matches. Acta Gymn. 2016, 46, 12–20. [Google Scholar] [CrossRef]
- Kniubaite, A.; Skarbalius, A.; Clemente, F.M.; Conte, D. Quantification of external and internal match loads in elite female team handball. Biol. Sport 2019, 36, 311–316. [Google Scholar] [CrossRef]
- Michalsik, L.B.; Aagaard, P.; Madsen, K. Locomotion characteristics and match-induced impairments in physical performance in male elite team handball players. Int. J. Sports Med. 2013, 34, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Michalsik, L.B.; Madsen, K.; Aagaard, P. Match performance and physiological capacity of female elite team handball players. Int. J. Sports Med. 2014, 35, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Michalsik, L.B.; Madsen, K.; Aagaard, P. Physiological capacity and physical testing in male elite team handball. J. Sports Med. Phys. Fitness 2015, 55, 415–429. [Google Scholar] [PubMed]
- Michalsik, L.B.; Aagaard, P.; Madsen, K. Technical activity profile and influence of body anthropometry on playing performance in female elite team handball. J. Strength Cond. Res. 2015, 29, 1126–1138. [Google Scholar] [CrossRef]
- Michalsik, L.B.; Madsen, K.; Aagaard, P. Technical match characteristics and influence of body anthropometry on playing performance in male elite team handball. J. Strength Cond. Res. 2015, 29, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Póvoas, S.; Seabra, A.; Ascensao, A.; Magalhraes, J.; Soares, J.; Rebelo, A. Physical and Physiological demands of elite team handball. J. Strength Cond. Res. 2012, 26, 3366–3376. [Google Scholar] [CrossRef]
- Póvoas, S.C.A.; Ascensaõ, A.A.M.R.; Magalhães, J.; Seabra, A.F.; Krustrup, P.; Soares, J.M.C.; Rebelo, A.N.C. Physiological demands of elite team handball with special reference to playing position. J. Strength Cond. Res. 2014, 28, 430–442. [Google Scholar] [CrossRef]
- Póvoas, S.C.A.; Ascensaõ, A.A.M.R.; Magalhães, J.; Seabra, A.F.; Krustrup, P.; Soares, J.M.C.; Rebelo, A.N.C. Analysis of fatigue development during elite male handball matches. J. Strength Cond. Res. 2014, 28, 2640–2648. [Google Scholar] [CrossRef]
- Wik, E.H.; Luteberget, L.S.; Spencer, M. Activity profiles in international women’s team handball using PlayerLoad. J. Sports Physiol. Perform. 2017, 12, 934–942. [Google Scholar] [CrossRef]
- Petersen, C.J.; Pyne, D.B.; Dawson, B.; Portus, M.; Kellett, A. Movement patterns in cricket vary by both position and game format. J. Sports Sci. 2010, 28, 45–52. [Google Scholar] [CrossRef]
- Coutts, A.J.; Quinn, J.; Hocking, J.; Castagna, C.; Rampinini, E. Match running performance in elite Australian Rules Football. J. Sci. Med. Sport 2010, 13, 543–548. [Google Scholar] [CrossRef]
- Petway, A.J.; Freitas, T.T.; Calleja-González, J.; Medina Leal, D.; Alcaraz, P.E. Training load and match-play demands in basketball based on competition level: A systematic review. PLoS ONE 2020, 15, e0229212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalen, T.; Aune, T.K.; Hjelde, G.H.; Ettema, G.; Sandbakk, Ø.; McGhie, D. Player load in male elite soccer: Comparisons of patterns between matches and positions. PLoS ONE 2020, 15, e0239162. [Google Scholar] [CrossRef]
- Þorgeirsson, S.; Pic, M.; Lozano, D.; Sigurgeirsson, O.; Sekulic, D.; Saavedra, J.M. Gender-based differences in game-related statistics between winning and losing teams in an amateur handball league. Acta Gymnica 2022, 52, e2022.001. [Google Scholar] [CrossRef]
- Saavedra, J.M.; Þorgeirsson, S.; Kristjánsdóttir, H.; Chang, M.; Halldórsson, K. Handball game-related statistics in men at Olympic Games (2004-2016): Differences and discriminatory power. Retos 2017, 32, 260–263. [Google Scholar] [CrossRef]
- Saavedra, J.M.; Þorgeirsson, S.; Chang, M.; Kristjánsdóttir, H.; García-Hermoso, A. Discriminatory Power of Women’s Handball Game-Related Statistics at the Olympic Games (2004-2016). J. Hum. Kinet. 2018, 62, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, K. Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med. 2014, 44, S167–S173. [Google Scholar] [CrossRef]
- Harris, R.C.; Edwards, R.H.; Hultman, E.; Nordesjö, L.O.; Nylind, B.; Sahlin, K. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch. 1976, 367, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.A.; Cummins, C.J.; Thornton, H.R.; Duthie, G.M. Importance, Reliability, and Usefulness of Acceleration Measures in Team Sports. J. Strength Cond. Res. 2018, 32, 3485–3493. [Google Scholar] [CrossRef] [PubMed]
- Upton, D.E. The effect of assisted and resisted sprint training on acceleration and velocity in Division IA female soccer athletes. J. Strength Cond Res. 2011, 25, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Roman, J.D. Tactical collective of group in attack: The models spanish handball. EBm JSS 2008, 4, 29–51. [Google Scholar]
- Harper, D.J.; Carling, C.; Kiely, J. High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies. Sports Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.J.; McBurnie, A.J.; Santos, T.D.; Eriksrud, O.; Evans, M.; Cohen, D.; Rhodes, D.; Carling, C.; Kiely, J. Biomechanical and Neuromuscular Performance Requirements of Horizontal Deceleration: A Review with Implications for Random Intermittent Multi-Directional Sports. Sports Med. 2022, 52, 2321–2354. [Google Scholar] [CrossRef] [PubMed]
- Markus, I.; Constantini, K.; Hoffman, J.R.; Bartolomei, S.; Gepner, Y. Exercise-induced muscle damage: Mechanism, assessment and nutritional factors to accelerate recovery. Eur. J. Appl. Physiol. 2021, 121, 969–992. [Google Scholar] [CrossRef] [PubMed]
- Bredt, S.D.G.T.; Chagas, M.H.; Peixoto, G.H.; Menzel, H.J.; de Andrade, A.G.P. Understanding Player Load: Meanings and Limitations. J. Hum. Kinet. 2020, 71, 5–9. [Google Scholar] [CrossRef]
- Marin, D.P.; dos Santos, R.C.; Bolin, A.P.; Guerra, B.A.; Hatanaka, E.; Otton, R. Cytokines and oxidative stress status following a handball game in elite male players. Oxid. Med. Cell. Longev. 2011, 2011, 804873. [Google Scholar] [CrossRef]
- Dello Iacono, A.; Karcher, C.; Michalsik, L.B. Physical Training in Team Handball. In Handball Sports Medicine; Laver, L., Landreau, P., Seil, R., Popovic, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Spriet, L.L.; Overgaard, K.; Mohr, M. Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review. Sports Med. 2021, 51, 1855–1874. [Google Scholar] [CrossRef]
- Billat, V.L. Use of Blood Lactate Measurements for Prediction of Exercise Performance and for Control of Training. Sports Med. 1996, 22, 157–175. [Google Scholar] [CrossRef]
- Goodwin, M.L.; Harris, J.E.; Hernández, A.; Gladden, L.B. Blood lactate measurements and analysis during exercise: A guide for clinicians. J. Diabetes Sci. Technol. 2007, 1, 558–569. [Google Scholar] [CrossRef]
- Mónaco, M.; Rincón, J.A.G.; Ronsano, B.J.M.; Whiteley, R.; Sanz-Lopez, F.; Rodas, G. Injury incidence and injury patterns by category, player position, and maturation in elite male handball elite players. Biol. Sports 2019, 36, 67–74. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.H.; Bahr, R.; Clarsen, B.; Myklebust, G. Preventing overuse shoulder injuries among throwing athletes: A cluster-randomised controlled trial in 660 elite handball players. Br. J. Sports Med. 2017, 51, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, M.; Nielsen, R.O.; Attermann, J.; Wedderkopp, N.; Lind, M.; Sørensen, H.; Myklebust, G. Handball load and shoulder injury rate: A 31-week cohort study of 679 elite youth handball players. Br. J. Sports Med. 2017, 51, 231–237. [Google Scholar] [CrossRef]
- Myklebust, G.; Maehlum, S.; Engebretsen, L.; Strand, T.; Solheim, E. Registration of cruciate ligament injuries in Norwegian top level team handball. A prospective study covering two seasons. Scand. J. Med. Sci. Sports 1997, 7, 289–292. [Google Scholar] [CrossRef]
- Myklebust, G.; Maehlum, S.; Holm, I.; Bahr, R. A prospective cohort study of anterior cruciate ligament injuries in elite Norwegian team handball. Scand. J. Med. Sci. Sports 1998, 8, 149–153. [Google Scholar] [CrossRef]
- Myklebust, G.; Engebretsen, L.; Braekken, I.H.; Skjølberg, A.; Olsen, O.E.; Bahr, R. Prevention of anterior cruciate ligament injuries in female team handball players: A prospective intervention study over three seasons. Clin. J. Sports Med. 2003, 13, 71–78. [Google Scholar] [CrossRef]
- Achenbach, L.; Krutsch, V.; Weber, J.; Nerlich, M.; Luig, P.; Loose, O.; Angele, P.; Krutsch, W. Neuromuscular exercises prevent severe knee injury in adolescent team handball players. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1901–1908. [Google Scholar] [CrossRef]
- Petushek, E.J.; Sugimoto, D.; Stoolmiller, M.; Smith, G.; Myer, G.D. Evidence-Based Best-Practice Guidelines for Preventing Anterior Cruciate Ligament Injuries in Young Female Athletes: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2019, 47, 1744–1753. [Google Scholar] [CrossRef]
- Mokhtarzadeh, H.; Yeow, C.H.; Hong Goh, J.C.; Oetomo, D.; Malekipour, F.; Lee, P.V. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. J. Biomech. 2013, 46, 1913–1920. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. Biomechanical Effects of a 6-Week Change-of-Direction Technique Modification Intervention on Anterior Cruciate Ligament Injury Risk. J. Strength Cond. Res. 2021, 35, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- McBurnie, A.J.; Harper, D.J.; Jones, P.A.; Dos’Santos, T. Deceleration Training in Team Sports: Another Potential ‘Vaccine’ for Sports-Related Injury? Sports Med. 2022, 52, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Benjaminse, A.; Webster, K.E.; Kimp, A.; Meijer, M.; Gokeler, A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med. 2019, 49, 565–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Blaiser, C.; Roosen, P.; Willems, T.; Danneels, L.; Bossche, L.V.; De Ridder, R. Is core stability a risk factor for lower extremity injuries in an athletic population? A systematic review. Phys. Ther. Sport 2018, 30, 48–56. [Google Scholar] [CrossRef] [Green Version]
Sample Characteristics | Methods | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Authors | N | Playing Position | Competitive Level | Gender | Age (Years) | Body Mass (kg) | Height (cm) | Body Fat (%) | Experience | Data Records | Technology |
Belka et al. [40] | 14 | Wings (n = 5) | 3rd Level (Czech Republic’s elite juniors’ handball league) | Female | 17.8 ± 0.4 | 62.4 ± 3.0 | 169.4 ± 6.7 | - | 10 years of experience in the sport | 6 matches (3 home and 3 away) | HR and TMA |
Pivots (n = 2) | 18.0 ± 0.0 | 68.0 ± 3.0 | 166.0 ± 4.0 | ||||||||
Backs (n = 7) | 17.9 ± 0.3 | 66.7 ± 8.7 | 170.9 ± 7.3 | ||||||||
Cardinale et al. [10] | 384 | Undefined | 1st Level (24 National Teams from WCH 2015) | Male | 27.9 ± 4.4 | 67.8 ± 35.2 | 191 ± 10.0 | - | - | 2505 records in 88 matches | TMA |
Font et al. [15] | 16 | Wings (n = 5) | 2nd Level (First Division Spain) | Male | 26.6 ± 6.3 | 83.2 ± 4.1 | 183.1 ± 4.4 | - | - | 188 records in 14 official home matches | LPS (WimuTM) |
Pivots (n = 3) | 28.3 ± 4.0 | 198.0 ± 8.4 | 101.5 ± 4.9 | ||||||||
Backs (n = 8) | 29.1 ± 5.9 | 194.1 ± 1.9 | 95.8 ± 5.0 | ||||||||
Kniubaite et al. [41] | 8 | Undefined | 2nd Level (LMRL and WBHL) | Female | 23.0 ± 2.1 | 67.8 ± 6.8 | 173.5 ± 4.9 | 20.4 ± 3.9 | - | 112 records in 14 matches (7 LMRL and 7 WBHL) | HR and LPS (CatapultTM) |
Luteberget et al. [13] | 20 | Undefined | 1st Level (Golden League Tournament) | Female | 25 ± 3.8 | - | 175.3 ± 4.5 | - | - | 97 records in 9 matches | LPS (CatapultTM) |
Manchado et al. [9] | 25 | Wings (n = 8) | 1st Level (Norway National Team) and 2nd Level (First Division Germany) | Female | 25.2 ± 3.2 | 67.8 ± 4.8 | 175.2 ± 6.3 | - | - | 2 matches (1 match of an international tournament and 1 match of German First League) | HR and TMA |
Pivots (n = 5) | |||||||||||
Backs (n = 9) | |||||||||||
Goalkeepers (n = 3) | |||||||||||
Manchado et al. [11] | 40 | Undefined | 1st Level (4 Teams from EHF Champions League 2019/2020) | Male | 29.7 ± 4.9 | 91.2 ± 12.5 | 191.1 ± 8.6 | - | - | 133 records in 4 matches | LPS (KinexonTM) |
Manchado et al. [12] | 414 | Left wing (n = 48) | 1st Level (24 National Teams from EURO 2020) | Male | 28.3 ± 4.6 | 84.4 ± 7.9 | 186.9 ± 5.7 | - | - | 1865 records in 71 matches | LPS (KinexonTM) |
Left back (n = 73) | 26.8 ± 4.7 | 97.2 ± 6.5 | 196.1 ± 4.2 | ||||||||
Center back (n = 55) | 27.5 ± 5.0 | 97.2 ± 6.5 | 189.7 ± 5.8 | ||||||||
Right back (n = 52) | 27.9 ± 4.8 | 95.7 ± 8.9 | 194.4 ± 5.8 | ||||||||
Right wing (n = 50) | 28.0 ± 4.4 | 83.1 ± 6.3 | 184.6 ± 5.4 | ||||||||
Pivots (n = 79) | 28.5 ± 4.7 | 105.3 ± 8.5 | 196.8 ± 4.6 | ||||||||
Michalsik et al. [42] | 26 | Wings (n = 9) | 1st Level (24 National Teams from EURO 2020) | Male | 24.9 ± 2.6 | 185.8 ± 5.3 | 80.9 ± 5.5 | - | 7.2 ± 3.6 years of playing experience at senior elite level | 82 records in 62 matches | TMA |
Pivots (n = 7) | 27.7 ± 2.3 | 194.7 ± 2.1 | 101.4 ± 8.3 | ||||||||
Backs (n = 7) | 26.2 ± 3.4 | 187.0 ± 6.4 | 91.7 ± 6.7 | ||||||||
Goalkeepers (n = 3) | 26.8 ± 2.4 | 188.7 ± 5.5 | 94.3 ± 6.8 | ||||||||
Michalsik et al. [43] | 24 | Wings (n = 10) | 2nd Level (First Division Denmark) | Female | 25.4 ± 4.6 | 65.2 ± 2.7 | 170.6 ± 5.0 | - | 6.9 ± 3.3 years of playing experience at adult elite level | 180 single-player recordings in 46 matches | TMA |
Pivots (n = 7) | 26.3 ± 3.2 | 76.5±8.1 | 178.8 ± 3.4 | ||||||||
Backs (n = 7) | 26.2 ± 3.8 | 71.4 ± 6.1 | 175.1 ± 5.3 | ||||||||
Michalsik et al. [44] | 26 | Wings (n = 9) | 2nd Level (First Division Denmark) | Male | 24.9 ± 2.6 | 185.8 ± 5.3 | 80.9 ± 5.5 | - | 7.2 ± 3.6 years of playing experience at senior elite level | 41 HR samples and 38 BLC samples | HR and BLC |
Pivots (n = 7) | 27.7 ± 2.3 | 194.7 ± 2.1 | 101.4 ± 8.3 | ||||||||
Backs (n = 7) | 26.2 ± 3.4 | 187.0 ± 6.4 | 91.7 ± 6.7 | ||||||||
Goalkeepers (n = 3) | 26.8 ± 2.4 | 188.7 ± 5.5 | 94.3 ± 6.8 | ||||||||
Michalsik et al. [45] | 24 | Wings (n = 10) | 2nd Level (First Division Denmark) | Female | 25.4 ± 4.6 | 65.2 ± 2.7 | 170.6 ± 5.0 | - | 6.9 ± 3.3 years of playing experience at adult elite level | 180 single-player recordings in 46 tournament matches | TMA |
Pivots (n = 7) | 26.3 ± 3.2 | 76.5±8.1 | 178.8 ± 3.4 | ||||||||
Backs (n = 7) | 26.2 ± 3.8 | 71.4 ± 6.1 | 175.1 ± 5.3 | ||||||||
Michalsik et al. [46] | 26 | Wings (n = 9) | 2nd Level (First Division Denmark) | Male | 24.9 ± 2.6 | 185.8 ± 5.3 | 80.9 ± 5.5 | - | 7.2 ± 3.6 years of playing experience at senior elite level | 82 records in 62 tournament matches | TMA |
Pivots (n = 7) | 27.7 ± 2.3 | 194.7 ± 2.1 | 101.4 ± 8.3 | ||||||||
Backs (n = 7) | 26.2 ± 3.4 | 187.0 ± 6.4 | 91.7 ± 6.7 | ||||||||
Goalkeepers (n = 3) | 26.8 ± 2.4 | 188.7 ± 5.5 | 94.3 ± 6.8 | ||||||||
Povoas et al. [47] | 30 | Wings (n = 10) | 2nd Level (First Division Portugal) | Male | 25.2 ± 3.6 | 87.7 ± 9.0 | 186.5 ± 7.9 | - | At least 5 years of experience in the First Portuguese League | 60 HR samples and 60 TMA records in 10 matches | HR and TMA |
Pivots (n = 10) | |||||||||||
Backs (n = 10) | |||||||||||
Povoas et al. [48] | 40 | Wings (n = 10) | 2nd Level (First Division Portugal) | Male | 24.6 ± 2.8 | 80.5 ± 6.1 | 177.3 ± 5.0 | 10.5 ± 3.2 | At least 5 years of experience in the top Portuguese handball professional league | 70 HR samples and 70 TMA records in 10 matches | HR and TMA |
Pivots (n = 10) | 24.4 ± 3.9 | 98.6 ± 4.9 | 192.0 ± 2.7 | 10.0 ± 2.4 | |||||||
Backs (n = 10) | 25.7 ± 4.1 | 89.8 ± 7.4 | 191.0 ± 5.6 | 8.9 ± 1.5 | |||||||
Goalkeepers (n = 10) | 26.2 ± 4.1 | 87.4 ± 8.7 | 189.8 ± 2.2 | 10.0 ± 0.8 | |||||||
Povoas et al. [49] | 40 | Wings (n = 13) | 2nd Level (First Division Portugal) | Male | |||||||
Pivots (n = 14) | |||||||||||
Backs (n = 13) | |||||||||||
Wik et al. [50] | 18 | Undefined | 1st Level (Golden League International Tournament) | Female | 25.1 ± 3.8 | - | - | - | - | 85 records in 9 matches | LPS (CatapultTM) |
24.3 ± 2.9 | |||||||||||
26.0 ± 4.1 |
External Load | Author | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Font et al. [15] | Kniubaite et al. [41] | |||||||||
Wings (n = 5) | Pivots (n = 3) | Backs (n = 8) | Undefined | |||||||
DISTANCE | Playing time (min:s) | 60.8 ± 6.9 | 56.3 ± 12.0 | 60.7 ± 12.5 | - | |||||
Total distance covered (m) | 3903.0 ± 1224.0 | 3149 ± 630.0 | 3688 ± 899.0 | - | ||||||
Running pace (m∙min−1) | 64.5 ± 10.4 | 56.5 ± 6.6 | 61.9 ± 8.8 | - | ||||||
High-intensity running (m) | 410.3 ± 193.2 | 172.4 ± 96.0 | 182.1 ± 115.1 | - | ||||||
Sprinting (m) | 98.0 ± 75.4 | 40.0 ± 30.0 | 42.6 ± 52.9 | - | ||||||
ACCEL | HIA/game (n) | 134.8 ± 60.7 | 112.0 ± 33.6 | 121.1 ± 55.2 | - | |||||
HID/game (n) | 112.9 ± 56.0 | 99.6 ± 28.9 | 114.6 ± 51.7 | - | ||||||
HIE∙min (n∙min−1) | - | - | - | - | ||||||
LOAD | PlayerLoad (u.a.) | 68.1 ± 23.1 | 59.5 ± 12.0 | 64.5 ± 16.4 | 335.0 ± 142.3 | |||||
PlayerLoad∙min (u.a.∙min−1) | 1.1 ± 0.2 | 1.1 ± 0.2 | 1.1 ± 0.2 | 9.3 ± 2.1 | ||||||
Notes: ACCEL (accelerometery); Undefined = no specified playing position; high-intensity running: distance covered from 5.9 to 6.7 m∙s−1; sprinting: distance covered faster than 6.7 m∙s−1; HIA/game (high-intensity accelerations) = total number of accelerations greater than 2.0 g during a game; HID/game (high-intensity decelerations) = total number of decelerations greater than 2.0 g during a game; HIE∙min (high-intensity events per minute) = it is calculated from the sum of the accelerations, decelerations and changes of direction greater than 2.5 m∙s−2; U.A. (arbitrary units). | ||||||||||
External Load | Author | |||||||||
Luteberget et al. [13] | Manchado et al. [11] | |||||||||
Wings (n = 25 Records) | Pivots (n = 14 Records) | Backs (n = 44 Records) | Goalkeepers (n = 14 Records) | Offensive Players (n = 66 Records) | Defensive Players (n = 67 Records) | |||||
DISTANCE | Playing time (min:s) | 31.4 ± 14.7 | 34.4 ± 12.5 | 30.9 ± 16.0 | 42.2 ± 16.6 | 15.6 ± 8.0 | 15.4 ± 8.9 | |||
Total distance covered (m) | - | - | - | - | 1388.2 ± 2627.1 | 1305.4 ± 5059.6 | ||||
Running pace (m∙min−1) | - | - | - | - | 88.4 ± 20.7 | 80.8 ± 27.1 | ||||
High-intensity running (m) | - | - | - | - | - | - | ||||
Sprinting (m) | - | - | - | - | - | - | ||||
ACCEL | HIA/game (n) | - | - | - | - | - | - | |||
HID/game (n) | - | - | - | - | - | - | ||||
HIE∙min (n∙min−1) | 3.9 ± 1.5 | - | - | |||||||
LOAD | PlayerLoad (u.a.) | - | - | - | - | - | - | |||
PlayerLoad∙min (u.a.∙min−1) | 8.8 ± 2.1 | - | - | |||||||
Notes: ACCEL (accelerometery); HIA/game (high-intensity accelerations) = total number of accelerations greater than 2.0 g during a game; HID/game (high-intensity decelerations) = total number of decelerations greater than 2.0 g during a game; HIE∙min (high-intensity events per minute) = it is calculated from the sum of the accelerations, decelerations and changes of direction greater than 2.5 m∙s−2; U.A. (arbitrary units). | ||||||||||
External Load | Author | |||||||||
Manchado et al. [12] | Wik et al. [50] | |||||||||
Left Wing (n = 213 Records) | Left Back (n = 320 Records) | Center Back (n = 248 Records) | Right Back (n = 246 Records) | Right Wing (n = 230 Records) | Pivots (n = 374 Records) | Wings (n = 24 Records) | Pivots (n = 15 Records) | Backs (n = 46 Records) | ||
DISTANCE | Playing time (min:s) | 32.0 ± 17.0 | 23.7 ± 12.5 | 24.9 ± 13.6 | 24.4 ± 13.3 | 29.9 ± 18.4 | 24.5 ± 13.8 | 29.5 ± 14.1 | 28.7 ± 15.0 | 30.9 ± 14.6 |
Total distance covered (m) | 2547.1 ± 1309.5 | 1887.9 ± 962.2 | 2194.3 ± 1093.9 | 1943.2 ± 1003.0 | 2371.8 ± 1456.8 | 1835.2 ± 979.1 | - | - | - | |
Running pace (m∙min−1) | 83.6 ± 23.5 | 90.8 ± 35.5 | 98.3 ± 36.1 | 86.5 ± 30.1 | 85.1 ± 32.9 | 91.2 ± 42.7 | - | - | - | |
High-intensity running (m) | 337.9 ± 202.4 | 73.8 ± 73.7 | 103.9 ± 74.4 | 70.8 ± 50.9 | 320.5 ± 221.4 | 92.1 ± 62.9 | - | - | - | |
Sprinting (m) | 52.2 ± 46.5 | 4.3 ± 10.7 | 5.4 ± 9.4 | 2.9 ± 6.3 | 40.7 ± 40.5 | 1.5 ± 4.7 | - | - | - | |
ACCEL | HIA/game (n) | - | - | - | - | - | - | - | - | - |
HID/game (n) | - | - | - | - | - | - | - | - | - | |
HIE∙min (n∙min−1) | - | - | - | - | - | - | - | - | ||
LOAD | PlayerLoad (u.a.) | - | - | - | - | - | - | - | - | - |
PlayerLoad∙min (u.a.∙min−1) | - | - | - | - | - | - | 9.1 ± 0.6 | 9.7 ± 1.4 | 9.3 ± 0.8 | |
Notes: ACCEL (accelerometery); high-intensity running: distance covered from 5.5 to 6.9 m∙s−1; sprinting: distance covered faster than 7.0 m∙s−1; HIA/game (high-intensity accelerations) = total number of accelerations greater than 2.0 g during a game; HID/game (high-intensity decelerations) = total number of decelerations greater than 2.0 g during a game; HIE∙min (high-intensity events per minute) = it is calculated from the sum of the accelerations, decelerations and changes of direction greater than 2.5 m∙s−2; U.A. (arbitrary units). |
Locomotive Categories | Authors | |||||||
---|---|---|---|---|---|---|---|---|
Belka et al. [40] | Cardinale et al. [10] | Manchado et al. [9] | Michalsik et al. [42] | Michalsik et al. [43] | Povoas et al. [47] | Povoas et al. [48] | ||
STANDING STILL | FT (%) | - | 1.1 ± NA | - | 36.8 ± NA | 10.8 ± NA | 43 ± 9.2 | 43 ± 6.9 |
TDC (m) | 0 | - | - | 0 | 0 | 0 | 0 | |
WALKING | FT (%) | - | 50.4 ± NA | 30.8 ± 5.9 | 39.6 ± NA | 62.3 ± NA | 35.0 ± 6.9 | 34.9 ± 5.1 |
TDC (m) | 444.4 ± 218.1 | - | 961 ± 539.0 | 1424 ± 265.0 | 2103 ± 334.0 | 2002 ± 427.2 | 2001 ± 313.0 | |
JOGGING | FT (%) | - | 26.6 ± NA | - | 8.6 ± NA | 18.8 ± NA | 8.8 ± 3.1 | 8.7 ± 2.4 |
TDC (m) | 1777 ± 268.1 | - | - | 618 ± 155.0 | 1114 ± 219.0 | 1014 ± 334.8 | 1014 ± 252.6 | |
RUNNING | FT (%) | - | 14.8 ± NA | 29.1 ± 3.8 | 4.4 ± NA | 4.9 ± NA | - | - |
TDC (m) | 1761.1 ± 269.7 | - | 761.0 ± 420.0 | 510 ± 121.0 | 496 ± 252.0 | - | - | |
HIGH-INTENSITY RUNNING | FT (%) | - | 6.1 ± NA | 29.7 ± 3.9 | 1.4 ± NA | 0.7 ± NA | 2.2 ± 1.2 | 2.1 ± 1.0 |
TDC (m) | 1223.7 ± 223.6 | - | 752.0 ± 484.0 | 207 ± 91.0 | 93 ± 67.0 | 508 ± 281.6 | 508 ± 245.6 | |
SPRINTING | FT (%) | - | 1 ± NA | 10.5 ± 4.1 | 0.4 ± NA | 0.2 ± NA | 0.4 ± 0.3 | 0.3 ± 0.2 |
TDC (m) | 1589.9 ± 233.4 | - | 272.0 ± 224.0 | 78 ± 91.0 | 10 ± 11.0 | 107 ± 87.3 | 107 ± 73.3 |
Author | Sample Characteristics | Internal Load | ||||
---|---|---|---|---|---|---|
Heart Rate Mean | Heart Rate Peak | Blood Lactate | ||||
Playing Position | %HRmax | Beats·min–1 | %HRmax | Beats·min–1 | mmol·L−1 | |
Belka et al. [40] | Wings (n = 5) | 89.9 ± 3.5 | 183.8 ± 6.2 | - | - | - |
Pivots (n = 2) | 90.1 ± 4.3 | 185.3 ± 9.2 | ||||
Backs (n = 7) | 89.2 ± 4.4 | 182.9 ± 8.4 | ||||
Kniubaite et al. [41] | Undefined | 84.8 ± 5.1 | - | - | - | - |
Manchado et al. [9] | Wings (n = 8) | 86.5 ± 4.5 | - | - | 195 ± 1.0 | - |
Pivots (n = 5) | ||||||
Backs (n = 9) | ||||||
Goalkeepers (n = 3) | 78.4 ± 5.9 | |||||
Michalsik et al. [44] | Wings (n = 9) | - | 163 ± 6.0 | - | - | Pre-match: 1.5 ± 0.5 After 1st half: 3.7 ± 1.6 After 2nd half: 4.8 ± 1.9 Post-match: 2.8 to 10.8 |
Pivots (n = 7) | ||||||
Backs (n = 7) | ||||||
Goalkeepers (n = 3) | ||||||
Povoas et al. [47] | Wings (n = 10) | - | 157 ± 18.0 | - | 185 ± 9.6 | - |
Pivots (n = 10) | ||||||
Backs (n = 10) | ||||||
Povoas et al. [48] | Wings (n = 10) | 79 ± 10.0 | - | 95 ± 4.0 | - | - |
Pivots (n = 10) | 83 ± 9.0 | - | 98 ± 2.0 | - | ||
Backs (n = 10) | 84 ± 9.0 | - | 96 ± 4.0 | - | ||
Goalkeepers (n = 10) | 70 ± 11.0 | - | 90 ± 7.0 | - | ||
Povoas et al. [49] | Wings (n = 13) Pivots (n = 14) Backs (n = 13) | 83 ± 8.0 | 159 ± 17.0 | 96 ± 4.0 | 187 ± 9.0 | After 1st half: 4.2 ± 2.3 After 2nd half: 3.1 ± 1.8 Mean: 3.6 ± 2.1 Peak: 8.0 ± 1.4 |
Reference | Title and Abstract | Introduction | Methods | Results | Discussion | Other Information | Strobe Points | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | ||
Belka et al. [40] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 18 |
Cardinale et al. [10] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 20 |
Font et al. [15] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 21 |
Kniubaite et al. [41] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 21 |
Luteberget et al. [13] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 17 |
Manchado et al. [9] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 18 |
Manchado et al. [11] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 21 |
Manchado et al. [12] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 21 |
Michalsik et al. [42] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 16 |
Michalsik et al. [43] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 16 |
Michalsik et al. [44] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 17 |
Michalsik et al. [45] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 19 |
Michalsik et al. [46] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 19 |
Povoas et al. [47] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 18 |
Povoas et al. [48] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 18 |
Povoas et al. [49] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 18 |
Wik et al. [50] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sánchez, C.; Navarro, R.M.; Karcher, C.; de la Rubia, A. Physical Demands during Official Competitions in Elite Handball: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 3353. https://doi.org/10.3390/ijerph20043353
García-Sánchez C, Navarro RM, Karcher C, de la Rubia A. Physical Demands during Official Competitions in Elite Handball: A Systematic Review. International Journal of Environmental Research and Public Health. 2023; 20(4):3353. https://doi.org/10.3390/ijerph20043353
Chicago/Turabian StyleGarcía-Sánchez, Carlos, Rafael Manuel Navarro, Claude Karcher, and Alfonso de la Rubia. 2023. "Physical Demands during Official Competitions in Elite Handball: A Systematic Review" International Journal of Environmental Research and Public Health 20, no. 4: 3353. https://doi.org/10.3390/ijerph20043353
APA StyleGarcía-Sánchez, C., Navarro, R. M., Karcher, C., & de la Rubia, A. (2023). Physical Demands during Official Competitions in Elite Handball: A Systematic Review. International Journal of Environmental Research and Public Health, 20(4), 3353. https://doi.org/10.3390/ijerph20043353