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Abstract: Dental fluorosis in children is a prevalent disease in many regions of the world. One of its
root causes is excessive exposure to high concentrations of fluoride in contaminated drinking water
during tooth formation. Typically, the disease causes undesirable chalky white or even dark brown
stains on the tooth enamel. To help dentists screen the severity of fluorosis, this paper proposes an
automatic image-based dental fluorosis segmentation and classification system. Six features from
red, green, and blue (RGB) and hue, saturation, and intensity (HIS) color spaces are clustered using
unsupervised possibilistic fuzzy clustering (UPFC) into five categories: white, yellow, opaque, brown,
and background. The fuzzy k-nearest neighbor method is used for feature classification, and the
number of clusters is optimized using the cuckoo search algorithm. The resulting multi-prototypes
are further utilized to create a binary mask of teeth and used to segment the tooth region into three
groups: white–yellow, opaque, and brown pixels. Finally, a fluorosis classification rule is created
based on the proportions of opaque and brown pixels to classify fluorosis into four classes: Normal,
Stage 1, Stage 2, and Stage 3. The experimental results on 128 blind test images showed that the
average pixel accuracy of the segmented binary tooth mask was 92.24% over the four fluorosis classes,
and the average pixel accuracy of segmented teeth into white–yellow, opaque, and brown pixels was
79.46%. The proposed method correctly classified four classes of fluorosis in 86 images from a total
of 128 blind test images. When compared with a previous work, this result also indicates 10 out of
15 correct classifications on the blind test images, which is equivalent to a 13.33% improvement over
the previous work.

Keywords: dental fluorosis; Dean’s index; possibilistic; c-means clustering; cuckoo search; Lévy flights

1. Introduction

Dental fluorosis—a condition where the appearance of the tooth enamel changes—results
from an excessive intake of fluoride during the tooth development period. Fluorosis occurs
in many regions of the world [1–3], with a global prevalence of over 20 million cases as
estimated by [4]. Although fluoride is known for its benefits in preventing dental caries,
its use requires a balance between caries protection and the risk of dental fluorosis. It is
evident from the existing literature that excessive fluoride exposure can take place due to
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the consumption of fluoride-contaminated groundwater [1]. Occurrences of fluorosis also
depend on various factors, such as the dose, the duration of exposure, individual health
conditions, and so on. The swallowing of fluoridated toothpastes is also a risk factor for
fluorosis in young children under the age of six years [5]. Many studies have found that
the disease is most prevalent between 5 and 8 years of age, with both genders equally
affected [6].

Although mild dental fluorosis does not degrade the health of teeth, the aesthetic
appearance of teeth is commonly a major concern in many people. Young people may
make negative psychosocial judgements of other young people based on their enamel
appearance [7]. It has been reported that dental fluorosis can diminish their happiness
and self-confidence. In addition, several negative attributes—such as being seen as less
attractive, less clean, less healthy, less intelligent, less reliable, and less social—are attached
to people with severe fluorosis compared to normal people [8,9]. Moreover, children with
severe fluorosis can also experience significant psychosocial suffering [10]. Fortunately,
treatments for dental fluorosis exist—such as microabrasion in mild cases, or tooth restora-
tion in severe cases (tooth grinding with composite filling, composite veneer, or ceramic
veneer)—and can significantly improve patients’ quality of life [11]. Traditionally, the
diagnosis of dental fluorosis relies upon a visual examination of teeth, together with var-
ious pathological grading systems for fluorosis. The most commonly used classification
system is Dean’s index [12], developed by H. T. Dean in 1934, which divides the cosmetic
deviations of the teeth into six levels, as described in Table 1. Other alternative indices,
such as the Thylstrup—Fejerskov (TF) index [13], are also widely used.

Table 1. Severity of dental fluorosis according to Dean’s index and Yeesarapat et al. [14].

Dean’s Index Description of Tooth Enamel Yeesarapat et al.

Normal Smooth, glossy, pale creamy-white translucent surface. Normal

Questionable A few white flecks or white spots that cannot be determined as very mild or normal. Stage 1

Very mild
Small, opaque, paper-white areas covering less than 25% of the tooth surface. This also
includes teeth showing no more than about 1–2 mm of white opacity at the tips of the

summits of the cusps of the bicuspids or second molars.
Stage 1

Mild Opaque white areas covering less than 50% of the tooth surface. Stage 1

Moderate All tooth surfaces affected; marked wear on biting surfaces; brown stains may be present. Stage 2

Severe All tooth surfaces affected; discrete or confluent pitting; brown stains present. Stage 3

In the dental fluorosis screening process, clinical grading of tooth enamel is subject to
subjective biases by examiners due to various factors—for example, knowing the vicinity
where a subject resides possibly hints at the subject’s fluoridation status. Such a bias can
be addressed by using a standardized image-based method, where examiners remotely
evaluate clinical photographs without prior knowledge of the subject’s location. However,
the examination of clinical photographs is still prone to biases, because individual examin-
ers inherently choose different grading thresholds. As a result, there has been interest in
developing an image-based automated system for examining the severity of fluorosis. One
of the pioneering works on dental fluorosis image analysis is by Pretty et al. [15], where the
authors utilized image processing techniques to quantify dental fluorosis levels in fluores-
cence imaging and experimentally showed that the quantity has a good correlation with the
TF index. McGrady et al. [16] also further showed that populations with different levels of
fluoride exposure could be discriminated by fluorescence imaging. A dual-camera system
that can simultaneously capture both a fluorescence image and a polarized white-light
image was used by Liu et al. [17] as a part of an automatic fluorosis classification system. In
their work, both image modalities were used to extract five-dimensional fluorosis feature
vectors, and then TF index predictions were obtained by RUSBoost [18], with a decision
tree as a base learner.
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The existing literature on automatic fluorosis classification typically relies on fluo-
rescence images acquired from a quantitative light-induced fluorescence (QLF) imaging
device, as it can measure the percentage of fluorescence change in demineralized enamel,
which becomes lower due to fluorosis. Other approaches based on techniques such as
Raman spectroscopy [19] can also be found in the literature. However, those pieces of
specialty equipment come with a disadvantage, due to their non-ubiquity. Alternatively,
handheld digital cameras—including smartphone cameras—are more accessible to the
public. According to [20], photographic assessments of dental fluorosis, where the photos
were taken using a digital SLR camera, exhibited good agreement with clinical assessments
using Dean’s index. As a result, it is intuitively tempting to develop an automated dental
fluorosis classification tool to assess the severity of dental fluorosis in photographic images
of teeth. Such a device could help reduce examiners’ workload in the screening process,
which is normally time-consuming, laborious, and prone to human error.

Although photographic image analysis has been introduced to solve some dentistry
problems such as dental plaque detection [20–26] in the past, a few studies have been
conducted on the automatic dental fluorosis classification of photographic images. One
example includes the work by Yeesarapat et al. [14], where the authors proposed an image-
based dental fluorosis classification system using multi-prototype fuzzy c-means (FCM) to
classify dental fluorosis into four classes adapted from Dean’s index: Normal, Fluorosis
Stage 1, Fluorosis Stage 2, and Fluorosis Stage 3. Their Normal, Fluorosis Stage 2, and
Fluorosis Stage 3 classes correspond to Normal, Moderate, and Severe in Dean’s index,
respectively, while Fluorosis Stage 1 was created to cover three classes: Questionable, Very
Mild, and Mild, as summarized in Table 1. FCM was used to cluster six-dimensional pixel
values in the red, green, and blue (RGB) and hue, saturation, and intensity (HIS) color
spaces for each of three groups: normal white (either white or yellow), opaque white, and
brown pixels. A total of 1600 prototypes were obtained, and the nearest prototype classifier
was used to assign each pixel value to one of these three groups. The classification criteria
based on the amount of pixel values found in each group were then applied to classify
an image of tooth enamel into four dental fluorosis conditions. Their proposed method
yielded a correct classification rate of 42.85% for the training set and 53.33% for the blind
test set. However, the process required dentists to manually select the tooth regions in the
image. Their model selection was also performed manually, and the number of clusters
was suboptimal.

Inspired by the work by Yeesarapat et al. [14], this paper proposes an image-based
automatic system for dental fluorosis classification based on image segmentation through
multi-prototype unsupervised possibilistic fuzzy clustering (UPFC). Feature vectors com-
posed of pixel values in the RGB and HSI color spaces were clustered into five classes: white,
yellow, opaque, brown, and background, where the number of clusters was optimized
using the cuckoo Search (CS) algorithm. A set of pixels from seven images were used for
training, and the best prototypes were chosen by 10-fold cross-validation. After that, tooth
segmentation was implemented based on these clusters through the fuzzy k-nearest neigh-
bor (FKNN) method. The proportions of opaque and brown pixels in the tooth region were
used to determine four stages of fluorosis: Normal, Stage 1, Stage 2, and Stage 3, with the
same severity levels defined by Yeesarapat et al. [14]. We evaluated our proposed method
on 128 blind test images taken from 128 subjects in both segmentation and classification
tasks. In overall, the proposed system provided a correct dental fluorosis classification for
86 out of 128 images, which is 13.33% better than that obtained in the prior work [14].

Although this image-based fluorosis detection system does not include other tooth
deficiency factors—for example, mineralized tissue loss causing cavitation—the dentist can
use this system in a pre-screening process to grade the condition before treating the patient.
According to the dentist, the treatment rules based on the tooth condition according to the
Table 1 are as follows:

1. If there are some opaque white areas (Stage 1 fluorosis), the treatment can be whitening
or microabrasion.
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2. If there are a lot of opaque white areas and some brown areas (Stage 2 fluorosis),
the treatment can be tooth restoration, e.g., tooth grinding with composite filling,
composite veneer, or ceramic veneer.

3. If there are a lot of brown areas (Stage 3 fluorosis), the treatment can be similar to
the Stage 2 treatment. However, the ceramic used in the treatment might need to be
more opaque to cover all of the underlying color. In addition, a restorative dentistry
specialist is needed in this case, rather than a general practice dentist.

However, this system can be used in rural areas where there are not enough dentists.
Moreover, the pictures can be taken by non-professional personnel with no mouth retractor
or the need for a process to dry the teeth. If any mild/severe cases are detected, those
patients can be sent to the dentist to recheck for a definitive diagnosis of their teeth before
the treatment.

The rest of this paper is organized as follows: Section 2 describes the related back-
grounds—HSI color space, UPFC, CS, and FKNN. The dataset and the pipeline of our pro-
posed method (i.e., clustering, segmentation, and classification) are described in Section 3,
followed by the experimental results and discussions in Section 4. Finally, our concluding
remarks are provided in Section 5.

2. Relevant Background

This section describes the four main ingredients of the proposed dental fluorosis
classification system, including the transformation of the RGB color space to the HSI
color space, the unsupervised possibilistic fuzzy clustering algorithm, the cuckoo search
algorithm, and the fuzzy k-nearest neighbor algorithm.

2.1. HSI Color Space

The HSI color space [27] is a very important color space that separates color informa-
tion from intensity information. The hue (H) component represents color information, and
the human vision system can distinguish different hues as different colors. The saturation
(S) component describes color information in terms of how much the hue is diluted with
white light—or, in other words, the purity of the color. The intensity (I) component rep-
resents the amount of light, or the brightness, in an image. One interesting feature of the
HSI color system is that it represents colors similar to how they are perceived by humans.
The nonlinear transformation from the RGB color space to the HSI color space (H, S, I) is
mathematically defined as follows [27]:

H = arctan

( √
3(G− B)

(R− G) + (R− B)

)
, S = 1− 3min(R, G, B)

R + G + B
, I =

R + G + B
3

(1)

where R, G, B ∈ [0, 1] represent the red, green, and blue components of the RGB color space,
respectively, while H ∈ [0, 2π] and S, I ∈ [0, 1] represent the components of the HSI color
space. In this paper, the color components of one pixel in both the RGB and HSI color
spaces are considered as feature vectors.

2.2. Unsupervised Possibilistic Fuzzy Clustering (UPFC)

UPFC [28,29] is a hybrid fuzzy clustering method that integrates the benefits of fuzzy
c-means clustering (FCM) [30] and the possibilistic clustering algorithm (PCA) [31]. FCM
is a well-known fuzzy algorithm proposed by Bezdek that works by assigning a fuzzy
membership degree to each sample in the dataset, according to a sample’s distances to
the cluster centers. A sample will have a high degree of membership to a cluster if it
is close to that cluster’s center, or vice versa. One major drawback of FCM is that it is
sensitive to outliers or noises in the dataset. Several approaches have been proposed
to address the noise sensitivity issue. For example, possibilistic c-means (PCM) [32]—a
possibilistic approach to clustering proposed by Krishnapuram and Keller—tried relaxing
the probabilistic constraints of FCM to lessen the problem.
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Although PCM can improve robustness, some parameter computations still require
the implementation of FCM. Yang and Wu [31] also argued that the parameters of PCM
were hard to handle and, consequently, proposed another possibilistic clustering approach
called the possibilistic clustering algorithm (PCA). PCA is considered to be an improvement
over FCM and PCM. While FCM produces memberships, PCA produces possibilities. Its
resulting membership function in the form of an exponential function makes it robust to
noise; however, it is unfortunately sensitive to the initialization and possible generation
of coincident clusters. As a result, UPFC [28] was proposed as an extension of the PCA. It
simultaneously generates both memberships and possibilities, and it also overcomes the
noise sensitivity problem in FCM and the coincident cluster problem in PCA.

The UPFC algorithm can be briefly described as follows: Let X =
{

x1, x2, . . . , xNS

}
be

a dataset of NS samples, where each sample is a p-dimensional vector (Rp). Suppose that
the number of clusters is NC, and let C =

{
c1, c2, . . . , cNC

}
be the set of cluster centers. The

goal of UPFC is to minimize the objective function

JUPFC(µ, c) =
NS

∑
i=1

NC

∑
j=1

(a · µm
ij,FCM + b · µn

ij,PCA)‖xi − cj‖2 +
β

n2
√

c

NS

∑
i=1

NC

∑
j=1

(µn
ij,PCA log µn

ij,PCA − µn
ij,PCA) (2)

with the constraints

NC
∑

j=1
µij,FCM = 1, for i = 1, 2, . . . , NS

0 ≤ µij,FCM ≤ 1, for i = 1, 2, . . . , NS and j = 1, 2, . . . , NC

where µij,FCM and µij,PCA are the fuzzy membership value and the possibilistic value of
vector xi in cluster j, respectively. The weighting exponents m > 1 and n > 1 are called the
fuzzifier and the typicality, respectively. The multipliers a > 0 and b > 0 define the relative
importance of the fuzzy membership and possibilistic values, respectively. The first term
in (2) minimizes the distances from the feature vectors to the cluster centers, while the
second term is added for the purposes of partition entropy (PE) and partition coefficient
(PC) validity indices [31]. When b = 0, UPFC simply becomes PCA.

The objective function (2) can be iteratively solved by Algorithm 1, beginning with the
prototype initializations. For each iteration, the fuzzy membership values, the possibilistic
degrees, and the cluster centroids are updated using (3), (4) and (5), respectively, until the
computed cluster centers converge.

µij,FCM =

 NC

∑
k=1

( ‖xi − cj‖
‖xi − ck‖

) 2
m−1

−1

, ∀i, j (3)

µij,PCA = exp

(
−

bn
√

c‖xi − cj‖2

β

)
, ∀i, j (4)

cj =

NS
∑

i=1

(
a · µm

ij,FCM + b · µn
ij,PCA

)
xi

NS
∑

i=1

(
a · µm

ij,FCM + b · µn
ij,PCA

) , ∀j (5)

Furthermore, as suggested in [31], the parameter β > 0 in (2) results in the update
Equation (4), where it measures the degree of separation of the dataset. Therefore, it is
reasonable to define β as a sample variance computed from the distances between data
samples and the vector of sample means (xavg) of the dataset, as shown in (6).

β =
1

NS

NS

∑
i=1
‖xi − xavg‖2, xavg =

1
NS

NS

∑
i=1

xi (6)
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Algorithm 1. Unsupervised possibilistic fuzzy clustering (UPFC) [28].

1: Set c, m, n, a, b where 1 < c < NC, and m, n > 1, and a, b > 0
2: Initiate prototypes, i.e., cj, µij,FCM, and µij,PCA, ∀i, j
3: Compute β using (6)
4: repeat
5: Update µij,FCM and µij,PCA using (3) and (4)
6: Update the cluster centers using (5)
7: until prototypes stabilized

2.3. Cuckoo Search (CS)

Cuckoo search (CS) [33,34], a nature-inspired metaheuristic algorithm proposed by
Yang and Deb in 2009, is based on the obligate brood parasitic behavior of some cuckoo
species in combination with the Lévy flights behavior of some birds and fruit flies. Naturally,
some cuckoo species deploy an aggressive reproduction strategy by laying their eggs in
the nests of other host birds. A host bird may be of another species. If it discovers that the
eggs in its nest are not its own, it might throw the alien eggs away, or simply abandon its
nest and build a new one. The CS algorithm, along with its variants, provides promising
efficiency and has been shown to solve many real-world optimization problems [35,36].

According to [33], three idealized rules of CS can be described as follows:

1. Each cuckoo lays one egg at a time and dumps its egg in a randomly chosen nest.
2. The best nests with high quality of eggs will carry over to the next generations.
3. The number of available host nests is fixed, and the egg laid by a cuckoo is discovered

by the host bird with a probability pa ∈ [0, 1]. In this case, the host bird can either
throw the egg away or abandon the nest and build a completely new nest.

Based on these rules, the generalized pseudocode of CS is summarized in Algorithm 2.
Given an objective function to be minimized, each egg represents a solution stored in a nest,
and a cuckoo egg represents a new solution. An egg is considered to be of higher quality
(i.e., its solution is closer to an optimal value) if it has more resemblance to the host bird’s
eggs; thus, it has a higher chance to survive or become the next generation. A Lévy flight is
used to model the search for a suitable nest by a cuckoo. The newly laid cuckoo egg (or the
new solution) will replace the existing egg in the nest if it has higher quality. Furthermore,
a fraction (pa) of the worst nests are discarded, and new ones are randomly built.

Algorithm 2. Cuckoo search via Lévy flights [33].

1: Initialize N host nests, N = {x1, x2, . . . , xN}
2: while (t < Tmax) or (stop criterion) do
3: Get a cuckoo randomly by Lévy flights, evaluate its fitness Fi
4: Randomly choose a nest (say j) among N nests
5: if Fj < Fi then
6: Replace j with the new solution
7: end if
8: A fraction pa of the worst nests are abandoned, and new ones are built
9: Keep the best solutions
10: Rank the solutions and find the current best
11: end while

The CS algorithm uses Lévy flights—a type of random walk—to randomly update
each cuckoo, with the following update equation:

xt+1
i = xt

i + s (7)
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where xt+1
i is the i-th cuckoo at generation t + 1, and s is the step size of the Lévy flights. It

can be computed based on Mantegna’s algorithm [37] as follows:

s = α(xt
i − xt

best)⊕ Lévy(β) (8)

Lévy(β) =
u

|v|1/β
(9)

where α is a constant and β is the Lévy exponent, where 0 < β ≤ 2. The operator ⊕ is the
element-wise product. xt

i and xt
best are the i-th cuckoo and the best cuckoo at generation

t, respectively. Lévy(β) is the Lévy distribution, where its parameters u and v are the
zero-centered normally distributed random variables, u ∼ N (0, σ2

u) and v ∼ N (0, σ2
v ).

Their standard deviations are defined as follows:

σu =

[
Γ(1 + β) · sin(πβ

2 )

Γ( 1+β
2 ) · β · 2(β−1)/2

]1/β

, σv = 1 (10)

where Γ is the standard gamma function.

2.4. Fuzzy K-Nearest Neighbor (FKNN)

To assign a feature vector to one prototype, the fuzzy k-nearest neighbor (FKNN) algo-
rithm [38] is intensively applied in this paper. Let a set of vectors C = {c1

1, . . . , c1
N1

, c2
1, . . . , c2

N2
,

cc
1, . . . , cc

Nc
} be the multiple prototypes, where ci

j for j ∈ {1, 2, . . . , Ni} represents prototype
j in class I, c is the number of classes, and Ni is the number of prototypes in class i. Given an
example x ∈ Rp, after the k-nearest prototypes of input vector x are found, the membership
value of x in class i—denoted as ui(x)—can be computed as follows [38]:

ui(x) =
∑K

j=1 uij

(
1/‖x− xj‖2/(m−1)

)
∑K

j=1

(
1/‖x− xj‖2/(m−1)

) , i = 1, 2, . . . , Nc (11)

where x1, x2, . . . , xK are the k-nearest prototypes, while m is the scaling parameter, whose
value is set to 1.5 in this paper. The membership value of prototype xj in class i is denoted
as uij. Since each prototype belongs to a known class, the membership value uij is simply
defined as an indicator function:

uij =

{
1, if xj ∈ class i
0, otherwise.

(12)

After the membership values of x are obtained for all classes, the classification rule is as
follows: x is assigned to class i if ui(x) > uj(x) for i 6= j.

3. Materials and Methods

The proposed automatic system for dental fluorosis classification is based on semantic
segmentation of tooth enamel, where each pixel is labeled into five color classes: white,
yellow, opaque, brown, and background. The white and light-yellow colors, in general,
belong to healthy tooth enamel, while opaque-white and brown colors are considered
to be indicators of dental fluorosis in Dean’s index. The background class is assigned
to all pixels not in the tooth region. A feature vector was formed by considering a pixel
value in both the RGB and HSI color spaces, where the HSI features were computed by
(1). The multi-prototype UPFC was used to generate clusters of feature vectors, and the
optimal number of clusters was determined by the CS algorithm. One class of colors might
consist of multiple clusters. The resulting clusters were used for tooth segmentation to
extract a binary mask of the tooth region. Fluorosis severity was graded by evaluating the
proportions of opaque and brown pixels in the tooth region. In this paper, four levels of



Int. J. Environ. Res. Public Health 2023, 20, 3394 8 of 18

fluorosis are considered, as defined by Yeesarapat et al. [14] in Table 1. The ground truth in
the experiments was generated by a D.D.S. dentist with more than 10 years of experience.

3.1. Multi-Prototype Generation

Given a set of pixel values from the training images, the multi-prototype UPFC was
used to generate clusters of RGB and HSI feature vectors. The overall training process was
as presented in Algorithm 3, where the CS algorithm was used to determine the optimal
number of clusters (NC). The training process started by randomly initializing a set of N
nests, N = {n1, n2, . . . , nN}, where ni is the i-th nest. Each nest ni contains a randomly
chosen integer

ni = randint(η), Lb ≤ η ≤ Ub, ∀i = 1, 2, . . . , N (13)

representing the number of clusters between Lb and Ub. The fitness value of a nest ni,
denoted as Fi, was defined by the squared error

Fi = (yi − ŷ)2 (14)

where ŷ is the expected clustering accuracy and yi is the predicted clustering accuracy for
choosing the cluster size ni in the UPFC. Note that each cluster was assigned one label
(out of five color labels) according to a majority vote, and the cluster accuracy yi could
be computed by comparing the trained clusters with the pixels in the validation set. The
experiment described in Section 4.1 used 10-fold cross validation—one fold for training
and the remaining folds for validation. Therefore, for N nests, we had a set of fitness
values, F = {F1, F2, . . . , FN}. Among all nests, one nest nj was randomly selected to obtain
cuckoos with Lévy flights, as well as their fitness Fj.

A fraction pa of the worst nests were discovered and abandoned according to a binary
random vector whose element was Pi ∈ {0, 1}, where

Pi =

{
1, if rand > pa

0, otherwise
(15)

for i = 1, 2, . . . , N. Here, rand is a random number in the range [0, 1], and pa is known as
the probability of discovery. A nest was rebuilt when Pi = 1; otherwise, it was kept for the
next generation. This process was repeated until the minimum fitness of the best nest was
less than a specified threshold value ε or the number of iterations exceeded Tmax. Finally,
the optimal clusters or multiple prototypes were obtained.

Algorithm 3. UPFC via cuckoo search algorithm.

1: Initialize N host nests, N = {n1, n2, . . . , nN}
2: Randomly choose the number of clusters ni for each nest as shown in (13)
3: Get the best nest ni and its fitness Fi for the current best nest
4: while (t < Tmax) or (Fi < ε) do
5: Get cuckoos by Lévy flights using (7) to (10)
6: Calculate the fitness Fj using (14) by performing UPFC on each nest. Keep

the centroids
7: A fraction pa of the worst nests are abandoned, and new ones are built
8: Calculate the fitness Fj using (14) by performing UPFC on each nest. Keep

the centroids
9: if Fj < Fi then
10: Replace Fi with Fj and keep nj as the new best nest
11: end if
12: end while
13: return the centroid of each prototype
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3.2. Dental Fluorosis Classification

The multiple prototypes obtained as described in Section 3.1 were used for tooth
segmentation to separate teeth from gums. The severity of fluorosis was later classified
based on the proportions of opaque and brown pixels in the tooth region.

To perform tooth segmentation, the pixel values of a given image were first computed
against all prototypes and then assigned to one of five classes (white, yellow, opaque,
brown, and background) using FKNN with K = 1 according to (11). Since the tooth region
was composed of white, yellow, opaque, and brown pixels, a binary mask of the tooth
region could be created. Morphological operators, including opening and dilation, were
further used to remove undesired artifacts and enhance the tooth areas. After that, in the
resulting binary image, if there were pixels in the tooth area that were misclassified as
the background, these pixels would be reclassified again using FKNN with K = 5. The
segmented binary mask (tooth pixel vs. background) was evaluated for its accuracy as
described in Section 4.2.

An extracted tooth region could be used to determine the severity of fluorosis based
on the classes of pixel values that fell under the region. Among the four classes, white
and yellow pixels are natural colors of normal teeth, so they were considered together
as the class of white–yellow pixels. On the other hand, opaque and brown pixels were
apparent indicators to quantify fluorosis. As a result, further image segmentation was
performed only in the tooth region by considering three classes of pixels: white–yellow,
opaque, and brown.

Since fluorosis could be graded by the numbers of opaque and brown pixels appearing
in the tooth region, and there might still exist a few tiny areas of opaque or brown pixels
after the previous image processing steps, we further processed those tiny objects by
removing them if their areas were less than 0.55% of the tooth region for the opaque areas,
or less than 0.05% of the tooth region for the brown areas. The resulting tooth segmentation
was also evaluated as described in Section 4.2 for pixel accuracy in predicting white–yellow,
opaque, and brown pixels.

Upon completion of the image segmentation task, the numbers of white–yellow,
opaque, and brown pixels in the tooth region could be determined. As a result, we designed
a fluorosis classification rule (Algorithm 4) based on these quantities, where ropaque and
rbrown are the percentages of opaque and brown pixels in the tooth area, respectively. The
idea behind this rule closely followed the enamel description in Table 1, i.e., the size of
opaque and brown areas increased as fluorosis became more severe. Furthermore, Stage 2
and Stage 3 fluorosis not only involved brown pixels alone, but were also associated with
a reasonably large area of opaque pixels. The choices of parameters used in this rule are
discussed in Section 3.3. Its experimental results are shown in Section 4.3. Although this
rule was motivated by Yeesarapat et al. [14], there was one key aspect of difference, as
discussed in Section 4.4.

Algorithm 4. Fluorosis classification rule.

1: Given 0 ≤ θ1 < θ2 < θ3 ≤ 1 and 0 ≤ δ ≤ 1
2: function FLUOROSISCLASSIFIER(ropaque, rbrown)
3: if ropaque ≤ θ1 then return Normal
4: else if ropaque ≤ θ2 and rbrown ≤ δ then return Normal
5: else if ropaque ≤ θ3 and rbrown ≤ δ then return Stage 1
6: else if rbrown ≤ δ then return Stage 2
7: else return Stage 3
8: end if
9: end function

3.3. Dataset and Parameter Settings

To evaluate the performance of the proposed fluorosis classification algorithm as well
as its tooth segmentation steps, we used the dataset of Yeesarapat et al. [14], which was
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collected by the Intercountry Centre for Oral Health (ICOH), Ministry of Public Health,
from children in the rural areas of Chiang Mai province, Thailand. The images were
taken with a RICOH Caplio RX camera without any advance preparation. In the study of
Yeesarapat et al., experiments were conducted with a total of 22 images, where 7 images and
15 images were assigned for the training and test sets, respectively. In this paper, we used
the same 7-image training set for training the UPFC. Furthermore, an additional 113 images
were added to the original 15 test set images, resulting in a blind test set of 128 images. Each
collected image was taken from each child. Although the number of teeth in each image
was different, according to the dentist, this does not affect the performance of the fluorosis
stage detection. This is because the detection rule is set based on the treatment condition
(mentioned in the Introduction section), where the ratio of the opaque or brown area to
the whole teeth area is considered. In addition, this system can be used as a pre-screening
system before the patient is sent to see the dentist.

All images were cropped to the mouth region, to clearly show the teeth of each subject,
where the final image sizes spanned from 815 × 517 to 1784 × 825 pixels. In addition,
these collected images had varied resolutions to show that the proposed system is size- and
resolution-invariant. One expert—a dentist with more than 10 years of experience—was
asked to grade the severity of fluorosis in all of the images: Normal (no fluorosis), Stage
1 (questionable/mild), Stage 2 (moderate), and Stage 3 (severe). The same expert also
provided five classes of pixel-level labels: white, yellow, opaque, brown, and background,
where the background encompasses lips, tongues, and gums. The white class also includes
reflected light spots in the images.

The parameter settings for the UPFC and cuckoo search in the experiment are shown in
Table 2. However, for the fluorosis classifier, the parameters were manually set as follows:
θ1 = 0.05, θ2 = 0.1, θ3 = 0.3, δ = 0.007. The choice of these parameters was based on
practical observations. If there was a very small number of opaque pixels (≤ 5%), or a
slightly larger number of opaque pixels (≤ 10%) together with a very small number of
brown pixels (δ ≤ 0.7%), the image would be graded as Normal. As the number of opaque
pixels became higher, fluorosis became more severe, as seen by the values θ1 < θ2 < θ3. A
large number of opaque pixels (θ3 > 30%) but a small number of brown pixels (δ ≤ 0.7%)
was classified as Stage 2, while the most severe level was indicated by a large number of
brown pixels (δ > 0.7%). These parameter settings were based on the treatment condition
according to the experienced dentist mentioned in the Introduction section.

Table 2. List of UPFC and cuckoo search parameters.

Algorithm Parameter Description Value

UPFC m Fuzzifier 1.5
n Typicality 1.5
a Relative importance of fuzzy membership 0.5
b Relative importance of possibilistic value 0.5

Cuckoo Search N Number of nests 30
[Lb, Ub] Lower/upper bounds of the number of clusters [1000, 2500]

ŷ Expected accuracy of clustering 0.99
α Step size scaling factor 0.1
β Lévy exponent 1.5
pa Discovery probability 0.25
ε Tolerance 0.001

Tmax Maximum number of generations 100

The performance [39,40] of the system in pixel-wise and fluorosis classifications was
evaluated in term of true positive (TP), true negative (TN), false positive (FP), false negative
(FN), true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), false
negative rate (FNR), positive predictive value (PPV), negative predictive value (NPV), and
accuracy (Acc).
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4. Experimental Results and Discussion
4.1. Experiments on Multi-Prototype Generation

A subset of pixels from the training images, in both the RGB and HSI color spaces,
were split into 10 folds. In total, there were approximately 4000, 4000, 2000, 1000, and
1800 selected pixels labeled as white, yellow, opaque, brown, and background, respec-
tively. One fold was used to create multiple prototypes by the UPFC via cuckoo search
(Algorithm 3), as described in Section 3.1, while the rest were used for the cluster validation.
The parameters involved in these algorithms are described in Table 2. Since each pixel
belonged to one of five color classes, each prototype was assigned to a particular class
based on a majority vote in that particular cluster. The accuracy of the clustering was
evaluated on the remaining nine folds, where we used FKNN with K = 1 to predict the label
of each pixel. From the experiment, we found that the 10-fold cross-validation accuracy
of pixel-wise classification was 91.81%. The performance of the best model from one fold
yielded 92.96% pixel-wise accuracy. The number of prototypes generated by this model was
2500, where 662, 610, 414, 257, and 557 prototypes belonged to the white, yellow, opaque,
brown, and background classes, respectively. The performances of this model are also
presented in Tables 3 and 4, where we can observe that the value of FNR is particularly
high for the opaque class. This is because its colors look relatively similar to the white and
yellow classes, posing a challenge for fluorosis classification, since the opaque white color
on tooth enamel can be a sign of fluorosis.

Table 3. Performance of pixel-wise classification based on multiple prototypes.

Class TP FN FP TN TPR TNR FPR FNR PPV NPV ACC

White 405 21 54 856 95.07 94.07 5.93 4.93 88.24 97.61 94.39
Yellow 386 18 33 899 95.54 96.46 3.54 4.46 92.12 98.04 96.18

Opaque 181 37 3 1115 83.03 99.73 0.27 16.97 98.37 96.79 97.01
Brown 96 7 4 1229 93.20 99.68 0.32 6.80 96.00 99.43 99.18

Background 174 11 0 1151 94.05 100.00 0.00 5.95 100.00 99.05 99.18

Table 4. Confusion matrix of pixel-wise classification based on multiple prototypes.

Actual Class
Predicted Class

White Yellow Opaque Brown Background

White 405 18 3 0 0
Yellow 18 386 0 0 0

Opaque 31 4 181 2 0
Brown 4 3 0 96 0

Background 1 8 0 2 174

4.2. Experiments on Tooth Segmentation

The best multi-prototype model obtained from Section 4.1 was used to extract a
binary tooth mask for each image, as described in Section 3.2. For each image in the
training set, there were 2, 2, 2, and 1 images diagnosed as Normal, Stage 1, Stage 2, and
Stage 3, respectively. The segmentation performances of the generated tooth masks for
these images are presented in Table 5, where Accmask is the pixel-wise accuracy of the
binary mask, and Acc3 is the accuracy of classifying each pixel in the tooth area into three
classes: white–yellow, opaque, and brown pixels. Some of the training images and their
segmentation results are shown in Figure 1.
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Table 5. Segmentation performance on each image in the training set, the percentages of opaque and
brown pixels, and the comparison between predicted fluorosis stage vs. expert’s opinion.

ID Expert’s Opinion Accmask(%) Acc3(%) ropaque(%) rbrown(%) Prediction

N1 Normal 94.54 92.75 7.25 0.00 Normal
N2 Normal 96.03 84.93 15.07 0.00 Stage 1

F1_1 Stage 1 90.05 82.18 12.59 0.00 Stage 1
F1_2 Stage 1 95.02 86.58 11.16 0.00 Stage 1
F2_1 Stage 2 78.34 62.63 37.85 0.00 Stage 2
F2_2 Stage 2 78.62 53.26 9.20 1.19 Stage 3
F3_1 Stage 3 98.40 69.64 36.37 1.67 Stage 3
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Figure 1. Examples of each fluorosis class from the training set and their segmented images: (a) Image
N2 (Normal); (b) Image F1_2 (Stage 1); (c) Image F2_2 (Stage 2); (d) Image F3_1 (Stage 3). The left
column presents the expert’s labels of opaque pixels and brown pixels, encircled in black and red,
respectively. The center column presents the predicted binary tooth masks. The right column presents
the predicted white–yellow, opaque, and brown pixels in blue, green, and red colors, respectively.

For example, image F1_2 in Figure 1b was segmented to 280,326 white–yellow pixels
and 22,737 opaque pixels with no brown pixels, resulting in the Acc3 = 86.58% correct
classification rate in Table 5.

According to Table 5, the Accmask score for each image is relatively high. It is worth
noting that the segmentation accuracy of the training images in Stage 2 (F2_1 and F2_2)
is clearly lower than that of the other classes. This is because a portion of the tooth was
shaded, causing its appearance to resemble the background class, as depicted in Figure 1c,
where the leftmost incisors are segmented as background. The low Acc3 score of image
F2_2 (53.26%) also exhibited a case of segmentation errors, where a shadow in the image
caused a pixel to be classified as a brown pixel.

To further evaluate the segmentation performance of the multi-prototype model, we
tested the model with 128 blind test images. The results are shown in Table 5, where
Accmask and Acc3 are reported per fluorosis class. Among the 128 images, there were 44,
41, 23, and 20 images diagnosed as Normal, Stage 1, Stage 2, and Stage 3, respectively,
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as shown in Table 6. The segmentation results on these images demonstrated a good
generalization performance of the multi-prototype UPFC model in conjunction with the
cuckoo search algorithm, as the average segmentation accuracy was 92.24% and 79.46%
for Accmask and Acc3, respectively. The results were also consistent with the results from
the training set, reflecting that Stage 2 fluorosis was a challenging case. The reasons for
some misclassifications might have been due to reflected light or malocclusion in the image
caused by the image acquisition process, or the presence of some artifacts (such as saliva
and dental plaque) in the tooth area.

Table 6. Segmentation performance on 128 images in the blind test set.

Expert’s Opinion No. of Images Accmask(%) Acc3(%)

Normal 44 91.97 91.57
Stage 1 41 93.71 79.55
Stage 2 23 89.52 67.74
Stage 3 20 92.93 66.08

Average - 92.24 79.46

4.3. Experiments on Dental Fluorosis Classification

The severity of fluorosis in each image was classified using Algorithm 4, where the
percentages of opaque and brown pixels in the tooth area (ropaque and rbrown, respectively)
were obtained from the image segmentation. For example, the segmentation result of image
F3_1 (Figure 1d) had 200,431 white–yellow pixels, 117,650 opaque pixels, and 5397 brown
pixels; thus, we had rbrown = 1.67%, as shown in Table 5.

The classification results from the training set and the blind test set are reported in
Tables 5 and 7, respectively. The predicted accuracy on the training set was five images from
a total of seven images (71.43%) for the training set. For the blind test set, the performance
on each individual class in terms of accuracy was between 81% and 86%, as shown in
Table 7. The classification accuracy for all four fluorosis classes was 86 images out of
128 images (67.19%) according to the confusion matrix in Table 8. Some examples of correct
prediction of fluorosis classes are provided in Figure 2, where it can be observed that the
percentages of opaque pixels (green color) increase from Figure 2a to Figure 2c, with no
brown pixels present. The only figure that has brown pixels (red color) is Figure 2d.

Table 7. Fluorosis classification accuracy on 128 blind test images.

Class TP FN FP TN TPR TNR FPR FNR PPV NPV ACC

Normal 34 10 13 71 77.27 84.52 15.48 22.73 72.34 87.65 82.03
Stage 1 26 15 9 78 63.41 89.66 10.34 36.59 74.29 83.87 81.25
Stage 2 15 8 11 94 65.22 89.52 10.48 34.78 57.69 92.16 85.16
Stage 3 11 9 9 99 55.00 91.67 8.33 45.00 55.00 91.67 85.94

Table 8. Confusion matrix of fluorosis classification on 128 blind test images.

Actual Class
Predicted Class

Normal Stage 1 Stage 2 Stage 3

Normal 34 5 2 3
Stage 1 9 26 2 4
Stage 2 4 2 15 2
Stage 3 0 2 7 11



Int. J. Environ. Res. Public Health 2023, 20, 3394 14 of 18

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 14 of 19 
 

 

Expert’s Opinion No. of Images maskAcc (%)  3Acc (%)  

Normal 44 91.97 91.57 
Stage 1 41 93.71 79.55 
Stage 2 23 89.52 67.74 
Stage 3 20 92.93 66.08 

Average - 92.24 79.46 

4.3. Experiments on Dental Fluorosis Classification 
The severity of fluorosis in each image was classified using Algorithm 4, where the 

percentages of opaque and brown pixels in the tooth area ( opaquer  and brownr , respectively) 

were obtained from the image segmentation. For example, the segmentation result of 
image F3_1 (Figure 1d) had 200,431 white–yellow pixels, 117,650 opaque pixels, and 5397 
brown pixels; thus, we had =brownr 1.67% , as shown in Table 5. 

The classification results from the training set and the blind test set are reported in 
Tables 5 and 7, respectively. The predicted accuracy on the training set was five images 
from a total of seven images (71.43%) for the training set. For the blind test set, the 
performance on each individual class in terms of accuracy was between 81% and 86%, as 
shown in Table 7. The classification accuracy for all four fluorosis classes was 86 images 
out of 128 images (67.19%) according to the confusion matrix in Table 8. Some examples 
of correct prediction of fluorosis classes are provided in Figure 2, where it can be observed 
that the percentages of opaque pixels (green color) increase from Figure 2a to Figure 2c, 
with no brown pixels present. The only figure that has brown pixels (red color) is Figure 
2d. 

   
(a) Prediction: Normal with =opaquer 1.34%  and =brownr 0% . 

   
(b) Prediction: Normal with =opaquer 17.09%  and =brownr 0% . 

   
(c) Prediction: Normal with =opaquer 52.37%  and =brownr 0% . 

   
(d) Prediction: Normal with =opaquer 12.12%  and =brownr 2.46% . 

Figure 2. Examples with correct prediction of each fluorosis class from the blind test set and their 
segmented images: (a) Normal; (b) Stage 1; (c) Stage 2; (d) Stage 3. The left column presents the 
expert’s labels of opaque pixels and brown pixels, encircled in black and red, respectively. The 
center column presents the predicted binary tooth masks. The right column presents the predicted 
white–yellow, opaque, and brown pixels in blue, green, and red colors, respectively. 

Figure 2. Examples with correct prediction of each fluorosis class from the blind test set and their
segmented images: (a) Normal; (b) Stage 1; (c) Stage 2; (d) Stage 3. The left column presents the
expert’s labels of opaque pixels and brown pixels, encircled in black and red, respectively. The
center column presents the predicted binary tooth masks. The right column presents the predicted
white–yellow, opaque, and brown pixels in blue, green, and red colors, respectively.

In addition, we also investigated misclassifications on the blind test set, some of
which are summarized in Figure 3. According to Figure 3a, the misclassification was due
to the malocclusion of the right lower incisor, where the shaded area was assigned to
brown pixels. In Figure 3b, the expert annotated the pixels in the lower left molar as the
white–yellow class; however, our system largely assigned these pixels to the opaque class.
This segmentation error caused our system to incorrectly report higher severity of fluorosis
as Stage 2, instead of Stage 1.
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4.4. Comparison with Prior Works

The fluorosis classification rule used by Yeesarapat et al. [14] was rather similar to
Algorithm 4. However, one major difference is in Line 3 of our algorithm, which did not
appear in Yeesarapat et al.’s. In fact, our paper used the parameters θ1 = 0.05, θ2 = 0.1,
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θ3 = 0.3, δ = 0.007, while θ2 = 0.05, θ3 = 0.4, δ = 0.0065 were used by Yeesarapat et al. In
order to investigate the importance of Line 3 in Algorithm 4, we illustrate a sample case in
Figure 4, where the input image has no sign of fluorosis. According to the results of image
segmentation, opaque and brown areas in this image contributed to 1.63% and 1.35% of
the entire tooth region, as shown in Figure 4. Consequently, it was misclassified as Stage 3
by Yeesarapat et al. The cause of this misclassification was because pixels in the shaded
area behind the lower lip were incorrectly labeled as brown pixels. In fact, any brown area
is considered to be sign of fluorosis if there are also a fair number of opaque pixels in the
tooth region. Consequently, incorporating Line 3 into our classification rule helped reflect
this condition, allowing our algorithm to correctly classify Figure 4 as Normal.
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Figure 4. An image in the class Normal was misclassified as Stage 3 if Line 3 in Algorithm 4 was
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One contribution of our paper over the work of Yeesarapat et al. is in the creation of
binary tooth masks through the UPFC, CS, and FKNN algorithms, instead of using manual
selection. In addition, to demonstrate another improvement of our method over that of
Yeesarapat et al., we compared the classification performance on the 7 training images and
15 blind test images used by Yeesarapat et al., as reported in Table 9. It should be noted that
their training images were the same set used in our experiment. Their blind test images
were also a subset of the 128 blind test images discussed in Sections 4.2 and 4.3. The results
of fluorosis classification are shown in Table 9, where our model achieved agreement with
the expert’s opinion for 5 out of 7 images (71.43%) and 10 out of 15 images (66.67%) for
the training and blind test sets, respectively. However, the model of Yeesarapat et al. only
achieved agreement for 3 out of 7 images (42.86%) and 8 out of 15 images (53.33%) for
the training and blind test sets, respectively. These results could be interpreted as 28.57%
and 13.33% improvements for the training and blind test sets, respectively. Consequently,
these results demonstrate that our approach to fluorosis classification is superior to that of
Yeesarapat et al.

Table 9. Comparison of the proposed fluorosis classification approach with that of Yeesara-
pat et al. [14] on 7 training images and 15 blind test images.

ID Set Expert Prior Work Ours ID Set Expert Prior Work Ours

N1 Train Normal Stage 1 Normal F1_7 Test Stage 1 Stage 1 Stage 1
N2 Train Normal Stage 1 Stage 1 F2_1 Train Stage 2 Stage 1 Stage 2
N3 Test Normal Normal Normal F2_2 Train Stage 2 Stage 3 Stage 3
N4 Test Normal Normal Normal F2_3 Test Stage 2 Normal Normal
N5 Test Normal Normal Normal F2_4 Test Stage 2 Stage 1 Stage 3

F1_1 Train Stage 1 Stage 1 Stage 1 F2_5 Test Stage 2 Stage 2 Stage 2
F1_2 Train Stage 1 Stage 1 Stage 1 F2_6 Test Stage 2 Stage 1 Stage 1
F1_3 Test Stage 1 Stage 3 Stage 3 F2_7 Test Stage 2 Stage 1 Stage 2
F1_4 Test Stage 1 Stage 2 Stage 2 F3_1 Train Stage 3 Stage 3 Stage 3
F1_5 Test Stage 1 Stage 1 Stage 1 F3_2 Test Stage 3 Stage 1 Stage 3
F1_6 Test Stage 1 Stage 1 Stage 1 F3_3 Test Stage 3 Stage 3 Stage 3
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5. Conclusions

In this paper, we proposed an automatic system of dental fluorosis classification using
six color features from the RGB and HSI color spaces as feature vectors. Unsupervised possi-
bilistic fuzzy clustering (UPFC) was used to cluster these features, since each feature vector
had a label in one of five classes—white, yellow, opaque, brown, or background—based on
the color of that pixel and whether the pixel was in the tooth area. We applied the cuckoo
search algorithm to optimize the numbers of clusters in each class. A set of pixels from
seven training images, trained with these algorithms, resulted in a set of optimal proto-
types, where tooth segmentation was then performed using the fuzzy k-nearest neighbor
(FKNN) algorithm, together with some morphological operations. We classified the stages
of fluorosis into Normal, Stage 1, Stage 2, and Stage 3, based on the proportions of opaque
and brown pixels in the tooth area. Our experimental results showed that the proposed
method was superior to prior works, as it correctly classified four fluorosis classes for 86 out
of 128 images in the blind test set. In addition, the average pixel accuracy of the segmented
binary tooth masks was 92.24%, and the average pixel accuracy of teeth segmented into
white–yellow, opaque, and brown pixels was 79.46%.

In future works, it will be possible to improve the performance of the proposed
method by replacing the fluorosis classification rule with a learning algorithm. Increasing
the size of the training set—especially with more variations in fluorosis conditions and
light conditions—would also be another way to enhance the performance. Moreover, to
improve the efficiency of the system, the results need to be confirmed with clinical tests.
Otherwise, the fluorosis stage detections from the system might be mistaken for other
enamel hypoplasias or pigmentations due to drugs or smoking, etc. In addition, to increase
the performance of the application from the point of view of a homogeneous application,
we could develop a system that requires a captured image to cover the vestibular surface
of at least four upper and lower incisors.

As our proposed model is lightweight, one practical direction would be to deploy
our model to mobile devices and evaluate its real-world performance in both clinical and
non-clinical settings.
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