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Abstract: The authors are currently conducting research on methods to estimate psychiatric and
neurological disorders from a voice by focusing on the features of speech. It is empirically known
that numerous psychosomatic symptoms appear in voice biomarkers; in this study, we examined the
effectiveness of distinguishing changes in the symptoms associated with novel coronavirus infection
using speech features. Multiple speech features were extracted from the voice recordings, and,
as a countermeasure against overfitting, we selected features using statistical analysis and feature
selection methods utilizing pseudo data and built and verified machine learning algorithm models
using LightGBM. Applying 5-fold cross-validation, and using three types of sustained vowel sounds
of /Ah/, /Eh/, and /Uh/, we achieved a high performance (accuracy and AUC) of over 88% in
distinguishing “asymptomatic or mild illness (symptoms)” and “moderate illness 1 (symptoms)”.
Accordingly, the results suggest that the proposed index using voice (speech features) can likely be
used in distinguishing the symptoms associated with novel coronavirus infection.

Keywords: voice biomarker; COVID-19; sustained vowel

1. Introduction

The novel coronavirus (COVID-19) is spreading worldwide, and, in some countries
and regions, individuals infected with COVID-19 are forced to recuperate at home, isolated
from the outside world, with restrictions on contact with others. Percutaneous oxygen
saturation (SpO2) measured by a pulse oximeter is used as one of the objective criteria
for determining the worsening of the symptoms associated with COVID-19 infection in
patients recuperating at home.

The severity of COVID-19 patients in Japan is classified into four stages, as shown in
Table 1, and moderate or severe symptoms require treatment at a medical institution [1].
Accordingly, distinguishing between moderate and mild symptoms is extremely important
because patients, upon becoming moderately ill while recuperating at home, may need to
be transported to a medical institution. As observed in Table 1, the SpO2 level measured
using a pulse oximeter is a key objective index for distinguishing between the stages.

However, it is difficult to provide pulse oximeters to all patients due to their huge
number. This calls for a simple symptom monitoring technology that can replace a pulse
oximeter. As an example of the effectiveness of vocal biomarkers in estimating symptoms
and diseases, we have reported on the differentiation of stress and mental illness using
voice [2,3]. Herein, [3] reported a significant negative correlation between voice indicators
and psychological test (Hamilton Rating Scale for Depression) scores (r = −0.33, p < 0.05),
and the voice indicator was able to discriminate between healthy and depressed speech data
with high accuracy (p = 0.0085, area under the receiver operating characteristic curve = 0.76).
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Thus, vocal biomarkers might also be applied to distinguish changes in the symptoms of
COVID-19.

Table 1. Classification of the severity of symptoms associated with COVID-19 infection.

Severity Oxygen Saturation Clinical State

Mild illness SpO2 ≥ 96%

No respiratory symptom (no findings
consistent with pneumonia)
or
Cough only without any shortness of breath
(no findings consistent with pneumonia)

Moderate illness I
No respiratory failure 93% < SpO2 < 96% Shortness of breath and pneumonia findings

Moderate illness II
Respiratory failure SpO2 ≤ 93% Oxygen administration required

Acute
ICU admission
or
Ventilator needed

Accordingly, we focused on the changes in voice associated with respiratory distress.
An analysis using voice has the advantage that it can be performed easily and remotely
and is effective for monitoring and screening.

As for related research, studies have been conducted on detecting COVID-19 infection
using cough, sustained vowel sound, questions, or a combination of them [4–10]. They are
intended to determine whether or not the participants are infected with COVID-19, but not
to judge if they need medical intervention due to the increase in severity of their symptoms,
which is the subject of this study.

Further, a smartphone device application was used to collect participants’ multiple
cough and vowel /Ah/ recordings to estimate positive or negative COVID-19 status, using
many acoustic features, such as openSMILE, PRAAT, LIBROSA, and feature set based on
a D-CNN model [4]. Some of the audio features overlap with our study, but the results
use the majority voting per-day method for both /Ah/ vowels and coughs, achieving 0.69
and 0.74 AUC scores, respectively. The target is different from our study and a further
improvement in accuracy is required.

In another recent study [5], they used crowdsourced respiratory audio data, including
breathing, cough, and voice, collected from each participant over a period of time, together
with self-reported COVID-19 test results, using audio sequence longitudinally with Deep
Neural Network (Gated Recurrent Units) techniques, achieving AUC scores of 0.74–0.84,
sensitivity of 0.67–0.82, and specificity of 0.67–0.75. They claim that time-series data of
audio increase the accuracy of COVID-19 detection and monitoring for disease progression,
especially the recovery trajectory of individuals to be more effective in monitoring recovery
than single audio, but the assumption must be made that sequential audio is being recorded,
and a further improvement in accuracy is required.

In this study, we examined the effectiveness of distinguishing the changes in the
symptoms associated with COVID-19 infection by voice using speech features. Specifically,
the purpose was to propose a model using voice to accurately distinguish mild illness and
moderate illness I in patients with COVID-19 infection. We collected voice recording from
COVID-19-positive patients during the periods when Japan experienced the spread of the
Delta and Omicron variants (the so-called “5th wave” and “6th wave”, respectively) [11,12].
For the mild illness and moderate illness I groups, we created a data set that matched age
and sex before the 5th wave and after the 6th wave and examined it using cross-validation.
We extracted openSMILE features [13] from the voice data of the participants, and, as
a countermeasure against overfitting, we selected features using correlation coefficients
and null importance [14], which tests actual feature importance against the distribution of
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those when fitted to the shuffled target. Subsequently, we built and validated the machine
learning (ML) algorithm using LightGBM [15].

2. Method
2.1. Ethical Considerations

This study was approved by the Research Ethics Review Committee, Kanagawa
University of Health and Welfare (Approval No. SHI 3-001).

2.2. Data Collection

The subjects in this study were COVID-19-positive patients aged 20 years or older who
were judged to require recuperation at lodging facilities or home. Recruitment pamphlets for
participation in the research were distributed to COVID-19-infected patients in Kanagawa
prefecture between June 2021 and September 2022. Consenting subjects participated in the
research by accessing the QR code provided in the recruitment pamphlet via the internet.

Data collection was undertaken using a dedicated smartphone application for the data
items and timings, as described in Table 2. The timings of data collection including voice
recordings were daily during the recuperation period and, as a follow-up, one month, three
months, and 6 months after the end of the recuperation period.

Table 2. Data collected from the participants.

Timing Item Description

Join

Participation Explaining the research outline and obtaining consent

Basic Data Sex, Age, Symptom onset date, Diagnosis confirmation
date, Treatment start date

At the time of participation in research

Vitals data Body temperature, Blood oxygen saturation

Questionnaire

Change of symptoms, Symptomatic or not, Respiratory
distress, Taste/olfactory disorder, Cough/sputum,
Chest pain, Runny nose/nasal congestion, Sore throat,
Nausea/vomiting, Diarrhea, Appetite, Fatigue,
Headache, Joint pain, Rash, Red eyes

Voice recording Three sustained vowels

During treatment
(recuperation) Questionnaire Confirmation on reason for treatment end

(discontinuation)

Follow up (1 month, 3 months, and 6 months
after the end of the recuperation period)

Vitals data Body temperature, Blood oxygen saturation (for possible
subjects only)

Questionnaire

Change of symptoms, Symptomatic or not, Respiratory
distress, Taste/olfactory disorder, Cough/sputum,
Chest pain, Runny nose/nasal congestion, Sore throat,
Nausea/vomiting, Diarrhea, Appetite, Fatigue,
Headache, Joint pain, Rash, Red eyes

Voice recording Three sustained vowels

Although the number of participants registered during the recruitment period was 659,
excluding participants who did not meet the participation criteria, such as being underage
or having invalid data registration, or who withdrew participation during the research,
the final number of participants was 581. Because the strength of infectivity, severity rate,
and symptom characteristics differ depending on the type of COVID-19 mutation [16,17],
an analysis was performed by differentiating the wave of infection (6th wave and beyond,
2022 onwards) caused by the omicron variant, which was known to be highly infectious
compared to the previous variants of COVID-19 and the wave of infection before that
(5th wave, up until 2021). Table 3 shows the distribution of the age of participants by the
period of infection.
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Table 3. Distribution of age of the participants. The number in parentheses represents the counts of the
participants in the sex- and age-matched groups, which is extracted to build machine learning models.

Target Period Age Male Male Age
(Mean ± SD) Female Female Age

(Mean ± SD)

5th wave and prior
(~31 December 2021)

20–29 13 (1)

37.5 ± 12.1

19 (9)

32.0 ± 11.0

30–39 13 (6) 3 (0)

40–49 9 (5) 3 (2)

50–59 7 (4) 5 (3)

60–69 0 (0) 0 (0)

70–79 1 (1) 0 (0)

80–89 0 (0) 0 (0)

subtotal 43 (17) - 30 (14) -

6th wave and beyond
(1 January 2022~)

20–29 30 (1)

46.3 ± 12.9

54 (9)

30–39 44 (6) 67 (0)

40–49 70 (5) 70 (2)

50–59 55 (4) 59 (3) 41.9 ± 12.6
60–69 35 (0) 14 (0)

70–79 7 (1) 3 (0)

80–89 0 (0) 1 (0)

subtotal 241 (17) - 267 (14) -

All periods Total 284 (34) 45.0 ± 13.2 297 (28) 40.9 ± 12.8

Moreover, Table 4 shows the aggregation results of the responses obtained from the
questionnaire surveys conducted during the recuperation period of COVID-19 infection.
Note that, depending on the participant, the count of questionnaire surveys differed,
and, accordingly, the results shown here are for the responses obtained from the first
questionnaire survey. As observed here, the percentage of participants exhibiting the
well-known omicron variant characteristic symptoms of cough, runny nose, and sore throat
was higher for the participants corresponding to the 6th wave and beyond than those
corresponding to the 5th wave and prior.

Table 4. Percentage of participants exhibiting each of the specific symptoms (aggregation of the
responses obtained in the first questionnaire).

Symptom 5th Wave and Prior
(~31 December 2021)

6th Wave and Beyond
(1 January 2022~)

SpO2 ≤ 95% 9 (12.3%) 34 (6.7%)

Body temperature ≥ 37.5 ◦C 7 (9.6%) 22 (4.3%)

Symptomatic 44 (60.3%) 386 (76.0%)

Respiratory distress 13 (17.8%) 96 (18.9%)

Taste/olfactory disorder 14 (19.2%) 77 (15.2%)

Cough/sputum 37 (50.7%) 366 (72.0%)

Chest pain 9 (12.3%) 78 (15.4%)

Runny nose/nasal congestion 27 (37.0%) 299 (58.9%)

Sore throat 21 (28.8%) 270 (53.1%)

Nausea 9 (12.3%) 25 (4.9%)

Diarrhea 16 (21.9%) 75 (14.8%)
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Table 4. Cont.

Symptom 5th Wave and Prior
(~31 December 2021)

6th Wave and Beyond
(1 January 2022~)

Loss of appetite 21 (28.8%) 111 (21.9%)

Fatigue 28 (38.4%) 215 (42.3%)

Headache 20 (27.4%) 147 (28.9%)

Joint pain 15 (20.5%) 95 (18.7%)

Rash 3 (4.1%) 17 (3.3%)

Red eyes 5 (6.8%) 24 (4.7%)

Total 73 508

2.3. Subject Classification and Extraction for Machine Learning

We divided the participants into two categories based on the symptoms of COVID-19,
“mild illness” and “moderate illness I”, where the participants exhibiting the symptoms of
“have respiratory distress” or “SpO2 ≤ 95%” were classified as “moderate illness I”. For the
training of the machine learning models, age and sex were matched between the 5th wave
and the 6th wave (see Table 3). Further, there were no participants used for the analysis
who were classified as “moderate illness II” based on the symptoms of “SpO2 ≤ 93%” at
the time of recording.

2.4. Voice Recording

The voice recording was conducted for three types of sustained vowels using the
participant’s smartphone, with a dedicated application installed for the recording function.
Table 5 shows a description of the phrases used for the voice recording.

Table 5. Phrases used for the voice recording.

No. Contents

Phrase01 /Ah/

Phrase02 /Eh/

Phrase03 /Uh/

2.5. Voice Analysis

The voice recordings were collected under various conditions, such as different smart-
phone models and microphone devices used by the study participants for recording, the
positional relationship between the mouth and the microphone, the volume of the voice
when speaking, and the surrounding noise and reverberations. Accordingly, a subjective
evaluation of the sound quality was performed, and voices with good recording conditions
were selected.

Subsequently, using only the voice recordings with good recording conditions, the
speech features were extracted for each phrase using openSMILE. Here, based on the large
openSMILE emotion feature set, 13,998 types of speech features were extracted by adding
the analysis speech features.

To prevent overfitting while performing ML, good discriminative features were se-
lected in advance. First, we divided the symptoms of COVID-19 patients into two categories:
asymptomatic or mild illness, and moderate illness 1, creating a dummy variable. Subse-
quently, using this dummy variable as the dependent variable, we excluded features with
no correlation with the dependent variable (|R| < 0.2) and those with a high correlation
coefficient between the speech features (|R| > 0.9). Moreover, null importance was used
for feature selection with 1000 bootstraps.
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Five-fold cross-validation was used for LightGBM training, and the prediction perfor-
mance was evaluated on the test set based on the sensitivity, specificity, accuracy, and AUC.
The Optuna algorithm was used to tune the model hyperparameters [18]. The LightGBM
parameter settings after tuning are described in Table 6.

Table 6. Parameter settings for the LightGBM classifiers.

Parameters /Ah/ /Eh/ /Uh/

objective binary binary binary

metric binary_logloss binary_logloss binary_logloss

learning rate 0.01 0.01 0.01

lambda_l1 2.53 × 10−6 0.00 0.00

lambda_l2 6.50 × 10−3 0.00 0.00

num_leaves 31 31 31

feature fraction 0.42 0.40 0.80

bagging_fraction 0.84 1.00 1.00

bagging_freq 5 0 0

min_child_samples 10 10 5

Note that Microsoft Excel Office365 was used in the statistical analysis and Python
3.10 [19], and other related libraries were used in ML and feature selection using null
importance.

3. Results
3.1. Selection of Voice Data for Analysis

To prevent bias due to different evaluators in the subjective evaluation of sound quality,
one specific evaluator performed a subjective evaluation of all the voice data. The seven
categories of subjective evaluation were 1© normal, 2© noisy (low), 3© noisy (high), 4© cough
sound, 5© issues with volume (low/high), 6© short, sustained vowel duration, and 7© other
issues. For the analysis, only category 1© normal data were selected to avoid the effects of
noise and sudden changes in sound, such as coughing, affecting the analysis results.

After the subjective evaluation and age/sex matching, the amount of subject data used
in ML is shown in Table 7.

Table 7. The amount of subject data used for analysis.

Severity

Target Period Mild Illness Moderate Illness I

5th wave and prior 19 12

6th wave and beyond 19 12

All periods 38 24

3.2. Feature Selection

Using the 13,998 speech features extracted using openSMILE, with each of the three
types of sustained vowel sounds, feature selection based on the correlation coefficient with
the response (dependent) variable and feature selection based on the correlation coefficient
between the explanatory (independent) variables were performed. As a result, 57 speech
features for /Ah/, 77 speech features for /Eh/, and 133 speech features for /Uh/ were
selected.

Speech feature selection using null importance resulted in 5 features for /Ah/, 8 features
for /Eh/, and 16 features for /Uh/ (Table 8). Examination of the features for /Ah/ revealed
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that features related to MFCC (Mel-frequency Cepstral-Coefficients), which is also used in
the field of speech recognition as a noise-resistant speech feature, features related to auditory
spectrum, and those related to magnitude spectrum were selected.

Table 8. Selected features.

Phrase Selected Features with Rank_Importance

/Ah/

1. mfcc_sma(10)_upleveltime50

2. audSpec_Rfilt_sma_de(16)_mtmAmpStddevRel

3. pcm_fftMag_spectralMinPos_sma_de_peakRangeRel

4. mfcc_sma(11)_max

5. audSpec_Rfilt_sma_de(11)_rightctime

/Eh/

1. pcm_fftMag_fband90-180_sma_de_rightctime

2. mfcc_sma(3)_downleveltime75

3. mfcc_sma(8)_downleveltime90

4. pcm_fftMag_spectralRollOff90.0_sma_de_peakRangeAbs

5. audSpec_Rfilt_sma_de(1)_stddevFallingSlope

6. audSpec_Rfilt_sma_de(1)_lpc3

7. audSpec_Rfilt_sma_de(1)_lpc4

8. mfcc_sma(14)_percentile98.0

/Uh/

1. audSpec_Rfilt_sma(13)_lpc4

2. pcm_fftMag_spectralHarmonicity_sma_de_minRangeRel

3. audSpec_Rfilt_sma(12)_lpc4

4. audSpec_Rfilt_sma_de(19)_numPeaks

5. audSpec_Rfilt_sma(21)_ptpAmpStddevAbs

6. pcm_fftMag_spectralMinPos_sma_de_ptpAmpMeanAbs

7. audSpec_Rfilt_sma(16)_lpc4

8. audSpec_Rfilt_sma_de(11)_ptpAmpMeanRel

9. audSpec_Rfilt_sma(19)_upleveltime25

10. audSpec_Rfilt_sma_de(8)_numSegments

11. pcm_fftMag_spectralCentroid_sma_de_leftctime

12. mfcc_sma_de(11)_quartile1

13. voicingFinalUnclipped_sma_de_lpc4

14. pcm_fftMag_psySharpness_sma_de_leftctime

15. mfcc_sma(9)_linregc2

16. mfcc_sma_de(14)_ptpAmpStddevAbs

3.3. Validation

For the validation of distinguishing “Moderate Illness 1” using the ML model for
/Ah/ utilizing 5-fold cross-validation, Table 9 shows the confusion matrix defined by
the cutoff point value from the Youden’s Index and Figure 1 shows the corresponding
ROC curve. The performance of the trained model for /Ah/, sensitivity, specificity, and
accuracy was 0.625, 0.974, and 0.839, respectively. The corresponding AUC was 0.8399. For
distinguishing “Moderate Illness 1” using the ML model for the sustained vowel /Eh/,
Table 10 shows the confusion matrix defined by the cutoff point value from the Youden’s
Index and Figure 2 shows the corresponding ROC curve. Regarding the performance of
the trained model for /Eh/, the values of sensitivity, specificity, accuracy, and AUC were
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0.947, 0.800, 0.864, and 0.8937, respectively. For distinguishing “Moderate Illness 1” using
the ML model for sustained vowel /Uh/, Table 11 shows the confusion matrix defined by
the cutoff point value from the Youden’s Index and Figure 3 shows the corresponding ROC
curve. Regarding the performance of the trained model for /Uh/, the values of sensitivity,
specificity, accuracy, and AUC were 0.867, 0.792, 0.821, and 0.9000, respectively.

Table 9. Confusion matrix of /Ah/.

Predicted Group

Mild Illness Moderate Illness I

Actual group
Mild Illness 37 1

Moderate Illness I 9 15
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Table 10. Confusion matrix of /Eh/.

Predicted Group

Mild Illness Moderate Illness I

Actual group
Mild Illness 20 5

Moderate Illness I 1 18
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Table 11. Confusion matrix of /Uh/.

Predicted Group

Mild Illness Moderate Illness I

Actual group
Mild Illness 19 5

Moderate Illness I 2 13
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Moreover, for distinguishing “Moderate Illness 1” using the ML model for sustained
vowels /Ah/, /Eh/, and /Uh/ in combination, Table 12 shows the confusion matrix
defined by the cutoff point value from the Youden’s Index and Figure 4 shows the corre-
sponding ROC curve. Regarding the performance of the trained model for /Ah/, /Eh/,
and /Uh/, the sensitivity, specificity, accuracy, and AUC were 0.792, 0.947, 0.887, and
0.9320, respectively.
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Table 12. Confusion matrix of /Ah/, /Eh/, and /Uh/.

Predicted Group

Mild Illness Moderate Illness I

Actual group
Mild Illness 36 2

Moderate Illness I 5 19

4. Discussion

The results suggest that the generated model using the sustained vowels /Ah/, /Eh/,
and /Uh/ is correctly functioning in distinguishing asymptomatic or mild illness symptoms
and moderate illness I symptoms associated with COVID-19 infection. Using only one
sustained vowel, the predictive performance exceeded an accuracy of 0.82 and AUC of
0.83. Using the combination of the three sustained vowels, the performance exceeded
an accuracy of 0.88 and AUC of 0.93. These findings suggest that COVID-19-infection-
associated impairments in the vocal organs, such as the throat, trachea, and airways, likely
affect the voice, exhibited as vocal symptoms.

We believe that this study does not depend on the mother tongue of the patient, since
we use only language-independent sustained vowels as analysis phrases. Moreover, since
it does not analyze spontaneous speech, such as in interviews and dialogues, it can be
easily conducted by one person without a dedicated measurer.

On the other hand, while we used only the voice data classified as “normal” based on
the subjective evaluation of the voice data quality (Table 13), in the voice data recordings,
we identified various issues, such as reverberation due to the recording environment,
distance from the microphone, mixing of other people’s voices and noise, differences in
microphone performance, recording problems due to processing failure of the smartphone,
filter processing installed in the smartphone, and the content of the speech differing from
the instructions. In addition to recording quality problems, anomalous numerical values
that were possibly generated by operational errors during data registration were also
confirmed. Moreover, there were cases where coughing, which is one of the symptoms of
the COVID-19 infection, was included in the recorded voice. Such cases were excluded
from the analysis, because the instantaneous changes in sound pressure and the included
frequencies are different from normal vocalizations.

Table 13. Judgement results of subjective evaluation of all voice data and questionnaire (responses).

Target Data Judgement
Data Count

/Ah/ /Eh/ /Uh/

Voice

Normal 983 1122 1073

Noisy (low) 447 474 544

Noisy (high) 379 367 507

Cough 12 13 9

Volume 526 352 207

Short, sustained duration 25 16 16

Other issues 224 248 235

No recording 464 468 469

Questionnaire
Normal value 2975

Anomalous value 85

Total registrations 3060

As mentioned above, studies to judge the existence of COVID-19 infection using
cough sounds have been conducted [4,6,8]. However, we believe that it is difficult to collect
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accurately labeled cough sounds, since there are numerous factors that need to be separated,
such as diseases other than COVID-19 infection, differences in the causes of cough, such
as aspiration and dryness of saliva and foreign substances, and differences between an
intentional cough and non-intentional cough.

One advantage of collecting speech and label information from research participants
via the Internet is that it is possible to remotely collect data from a large number of
participants. However, as described above, the quality and accuracy of the collected and
recorded voice data depend on the participants. Accordingly, we believe that the data
quality can be improved by implementing measures, such as evaluating the noise level and
recording volume during recording and devising ways for displaying alerts and prompting
re-recording when problems are identified, and making it impossible to register anomalous
values when registering basic information and symptom responses.

Unlike the neuropsychiatric voice changes we have studied so far, we believe that
the changes in voice associated with illness symptoms in this study capture additional
acoustic changes in the voice, such as changes in the vocal tract due to inflammation of
the pharynx and a decrease in the expiratory volume due to pneumonia. However, the
underlying mechanism of such changes has not yet been adequately elucidated. Elucidating
the mechanism of changes in voice is a topic of future research. In this study, we predicted
the category of symptoms associated with COVID-19 infection using voice recordings of
such patients. We believe that, in the future, judging whether a patient is infected with
COVID-19 or not and building a model using robust speech features that are not easily
affected by recording conditions are necessary.

A limitation of this study is that potential confounding factors, such as age, gender, and
target period (5th or 6th wave), are not used in LightGBM model training. Specifically, it is
commonly known that some acoustic features (e.g., fundamental frequency) are different
between males and females or among ages [20]. Although we used age- and sex-matched
data to minimize such confounder effects, and some of the acoustic features we used could
be robust to such differences (e.g., MFCC features [21]), we cannot rule out the possibility
of bias caused by these factors. Another potential confounder is the condition of the voice
before COVID-19 infection, so it is not possible to know whether the condition of the voice
is related to an acute infection or if it is a chronic condition of a voice disorder from another
etiology (after surgery, unilateral vocal fold paralysis, etc.).

5. Conclusions

In this paper, we studied the efficacy of using speech features for judging the changes
in the symptoms associated with COVID-19 infection. We collected voice recordings
from the participants who were infected with COVID-19 and selected the voice data for
analysis considering various factors, such as the age, group at the time of infection, sex,
symptoms, and recording conditions. Subsequently, we extracted 13,998 speech features
using openSMILE with the selected data. For the learning strategy, we selected features
using statistical analysis and utilized the feature selection method of null importance, and,
for the ML algorithm, we used LightGBM and validated the model performance using
5-fold cross-validation. Using the model for predicting “asymptomatic or mild illness”
and “moderate illness I” using three types of sustained vowel sounds of /Ah/, /Eh/, and
/Uh/, we were able to achieve high performance, demonstrated by an accuracy of 0.88 and
AUC of 0.93.

We believe that the validation of the effects of noise and recording conditions and
building a model that is robust enough against the effects of recording conditions are some
future topics for further studies.
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