Evaluating the Phytoremediation Potential of Eichhornia crassipes for the Removal of Cr and Li from Synthetic Polluted Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Micro and Macronutrients
2.2. Preparation of Cr and Li Doses
2.3. Macrophytes Collection
2.4. Experimental Set Up
2.5. Height and Weight of Plants
2.6. Chlorophyll Content and Physiological Parameters
2.7. Harvesting of Plants
2.8. Determination of Cr and Li Concentration
2.9. Statistical Analysis of Data
3. Results
3.1. Removal of Cr and Li
3.2. Translocation Factor of Cr and Li
3.3. Bioaccumulation Factor of Cr and Li
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Subrahmanyam, G.; Mondal, R.; Cabral-Pinto, M.; Shabnam, A.A.; Jigyasu, D.K.; Malyan, S.K.; Fagodiya, R.K.; Khan, S.A.; Yu, Z.-G. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 2021, 268, 128855. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Lakherwal, D. Adsorption of heavy metals: A review. Int. J. Environ. Res. Dev. 2014, 4, 41–48. [Google Scholar]
- Sharma, S.; Rana, S.; Thakkar, A.; Baldi, A.; Murthy RS, R.; Sharma, R.K. Physical, Chemical and Phytoremediation Technique for Removal of Heavy Metals. J. Heavy Met. Toxic. Dis. 2016, 1, 1–15. [Google Scholar] [CrossRef]
- Berti, W.R.; Cunningham, S.D. Phytostabilization of metals. In Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment; Raskin, I., Ensley, B.D., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; pp. 71–88. [Google Scholar]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Aquatic plants for phytotechnology. In Environmental Bioremediation Technologies; Springer: Berlin/Heidelberg, Germany, 2006; pp. 259–274. [Google Scholar]
- Mustafa, H.M.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Singh, V.; Mishra, V. Microbial removal of Cr (VI) by a new bacterial strain isolated from the site contaminated with coal mine effluents. J. Environ. Chem. Eng. 2021, 9, 106279. [Google Scholar] [CrossRef]
- Lavrinovičs, A.; Juhna, T. Review on Challenges and Limitations for Algae-Based Wastewater Treatment. Constr. Sci. 2017, 20, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Torres, E. Biosorption: A Review of the Latest Advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Khengare, N.; Labade, S.; Lalge, K.; Patil, V.; Khilare, C.; Sawant, S. Effective removal of chromium from aqueous solution by adsorption on powdered wool: In-Silico studies of adsorption mechanism. Chem. Data Collect. 2022, 41, 100935. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Tipping, P.W.; Center, T.D.; Sosa, A.J.; Dray, F.A. Host specificity assessment and potential impact of Megamelus scutellaris (Hemiptera: Delphacidae) on water hyacinth Eichhornia crassipes (Pontederiales: Pontederiaceae). Biocontrol Sci. Technol. 2011, 21, 75–87. [Google Scholar] [CrossRef]
- Swarnalatha, K.; Radhakrishnan, B. Studies on removal of Zinc and Chromium from aqueous solutions using water Hyacinth. Pollution 2015, 1, 193–202. [Google Scholar]
- Zaranyika, M.F.; Mutoko, F.; Murahwa, H. Uptake of Zn, Co, Fe and Cr by water hyacinth (Eichhornia crassipes) in Lake Chivero, Zimbabwe. Sci. Total. Environ. 1994, 153, 117–121. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Zayed, A.M.; Qian, J.; de Souza, M.; Terry, N. Phytoaccumulation of Trace Elements by Wetland Plants: II. Water Hyacinth. J. Environ. Qual. 1999, 28, 339–344. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality. Geneva. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng (accessed on 2 September 2022).
- Altaf, M.M.; Masood, F.; Malik, A. Impact of long-term application of treated tannery effluents on the emergence of resistance traits in Rhizobium sp. isolated from Trifolium alexandrinum. Turk. J. Biol. 2008, 32, 1–8. [Google Scholar]
- Wionczyk, B.; Apostoluk, W.; Charewicz, W.A. Sol-vent extraction of chromium (III) from spent tanning liquors with Aliquat 336. J. Hydrometall. 2006, 82, 83–92. [Google Scholar] [CrossRef]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef]
- He, X.; Li, P. Surface Water Pollution in the Middle Chinese Loess Plateau with Special Focus on Hexavalent Chromium (Cr6+): Occurrence, Sources and Health Risks. Expo. Health 2020, 12, 385–401. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries 2020: U.S. Geological Survey; USGS: Reston, VA, USA, 2020; p. 200.
- Kelly, T.D.; Matos, G.R.; Buckingham, D.A.; DiFrancesco, C.A.; Porter, K.E.; Berry, C. Historical statistics for mineral and material commodities in the United States. US Geol. Surv. Data Ser. 2010, 140, 1–6. [Google Scholar]
- Mohr, S.H.; Mudd, G.; Giurco, D. Lithium Resources and Production: Critical Assessment and Global Projections. Minerals 2012, 2, 65–84. [Google Scholar] [CrossRef]
- Hao, H.; Liu, Z.; Zhao, F.; Geng, Y.; Sarkis, J. Material flow analysis of lithium in China. Resour. Policy 2017, 51, 100–106. [Google Scholar] [CrossRef]
- Martínez, F.L.; Rajal, V.B.; Irazusta, V. Removal of lithium from aqueous solutions using halotolerant bacteria from El Salar del Hombre Muerto. J. Environ. Chem. Eng. 2021, 9, 105099. [Google Scholar] [CrossRef]
- Belay, A.A. Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. J. Environ. Prot. 2010, 1, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Tabinda, A.B.; Irfan, R.; Yasar, A.; Iqbal, A.; Mahmood, A. Phytoremediation potential of Pistia stratiotes and Eichhornia crassipes to remove chromium and copper. Environ. Technol. 2018, 41, 1514–1519. [Google Scholar] [CrossRef]
- Sobolev, O.I.; Gutyj, B.V.; Darmohray, L.M.; Sobolieva, S.V.; Ivanina, V.V.; Kuzmenko, O.A.; Karkach, P.; Fesenko, V.; Bilkevych, V.; Chernyuk, S.V. Lithium in the natural environment and its migration in the trophic chain. Ukr. J. Ecol. 2019, 9, 195–203. [Google Scholar]
- Hosseini, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; van de Vlasakker, P.C.H.; Farhangi, M. Nutrient Use in Vertical Farming: Optimal Electrical Conductivity of Nutrient Solution for Growth of Lettuce and Basil in Hydroponic Cultivation. Horticulturae 2021, 7, 283. [Google Scholar] [CrossRef]
- Matindi, C.N.; Njogu, P.M.; Kinyua, R.; Nemoto, Y. Analysis of heavy metal content in water hyacinth (Eichhornia crassipes) from Lake Victoria, Kenya. In Proceedings of the 2014 Sustainable Research & Innovation (SRI) Conference, Nairobi, Kenya, 7–9 May 2014; pp. 196–199. [Google Scholar]
- Sajad, M.A.; Khan, M.S.; Ali, H. 42. Lead phytoremediation potential of sixtyone plant species: An open field survey. Pure Appl. Biol. PAB 2019, 8, 405–419. [Google Scholar]
- Shahzad, B.; Tanveer, M.; Hassan, W.; Shah, A.N.; Anjum, S.A.; Cheema, S.A.; Ali, I. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities—A review. Plant Physiol. Biochem. 2016, 107, 104–115. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Chen, Y.; Cai, Y.; Deng, J. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018, 612, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Hayyat, M.; Khan, A.; Ali, S.; Siddiq, Z.; Sharif, F. Alleviation of lithium toxicity in sorghum (Sorghum vulgare pers.) By inoculation with lithium resistant bacteria. Appl. Ecol. Environ. Res. 2020, 18, 7989–8008. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Almuqrin, A.H.; Aloraini, D.A.; Khedher, K.M.; Taher, M.A.; Alfarhan, A.H.; Picó, Y.; Barcelo, D. Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: A biomonitoring approach. Sci. Total. Environ. 2021, 782, 146887. [Google Scholar] [CrossRef] [PubMed]
- Nwe, M.L.; Oo, T.K.; Linn, N.N. Phytoremediator: Removal of Heavy Metals from Synthetic Aqueous Solution by Water Hyacinth (Eichhornia Crassipes). 3rd Myanmar Korea Conf. Res. J. 2018, 3, 1659–1666. [Google Scholar]
- Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayyat, M.U.; Nawaz, R.; Irfan, A.; Al-Hussain, S.A.; Aziz, M.; Siddiq, Z.; Ahmad, S.; Zaki, M.E.A. Evaluating the Phytoremediation Potential of Eichhornia crassipes for the Removal of Cr and Li from Synthetic Polluted Water. Int. J. Environ. Res. Public Health 2023, 20, 3512. https://doi.org/10.3390/ijerph20043512
Hayyat MU, Nawaz R, Irfan A, Al-Hussain SA, Aziz M, Siddiq Z, Ahmad S, Zaki MEA. Evaluating the Phytoremediation Potential of Eichhornia crassipes for the Removal of Cr and Li from Synthetic Polluted Water. International Journal of Environmental Research and Public Health. 2023; 20(4):3512. https://doi.org/10.3390/ijerph20043512
Chicago/Turabian StyleHayyat, Muhammad Umar, Rab Nawaz, Ali Irfan, Sami A. Al-Hussain, Mehlil Aziz, Zafar Siddiq, Sajjad Ahmad, and Magdi E. A. Zaki. 2023. "Evaluating the Phytoremediation Potential of Eichhornia crassipes for the Removal of Cr and Li from Synthetic Polluted Water" International Journal of Environmental Research and Public Health 20, no. 4: 3512. https://doi.org/10.3390/ijerph20043512
APA StyleHayyat, M. U., Nawaz, R., Irfan, A., Al-Hussain, S. A., Aziz, M., Siddiq, Z., Ahmad, S., & Zaki, M. E. A. (2023). Evaluating the Phytoremediation Potential of Eichhornia crassipes for the Removal of Cr and Li from Synthetic Polluted Water. International Journal of Environmental Research and Public Health, 20(4), 3512. https://doi.org/10.3390/ijerph20043512