Association of Cardiovascular Disease Risk and Health-Related Behaviors in Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Study Design, and Study Period
2.2. Sample Size Estimation and Sampling Technique
2.3. Data Collection and Study Tools
2.4. Statistical Analysis
3. Results
3.1. Socio Demographic Characteristics and Risk Profile of Stroke Patients
3.2. Evaluation of the Health-Promoting Lifestyle of Participants
3.3. Predictors of Cardiovascular Disease Risk (FRS Score)
4. Discussion
Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, E.; Emmett, E.; Wang, Y.; McKevitt, C.; Wolfe, C. The Burden of Stroke in Europe: The Challenge for Policy Makers. Stroke Alliance for Europe. 2017. Available online: https://www.stroke.org.uk/sites/default/files/the_burden_of_stroke_in_europe_challengesforpolicy_makers.pdf (accessed on 20 September 2022).
- OECD; European Union. Health at a Glance: Europe 2018: State of Health in the EU Cycle; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- Arboix, A. Cardiovascular risk factors for acute stroke: Risk profiles in the different subtypes of ischemic stroke. World J. Clin. Cases 2015, 3, 418–429. [Google Scholar] [CrossRef] [PubMed]
- O’donnell, M.J.; Xavier, D.; Liu, L.; Zhang, H.; Chin, S.L.; Rao-Melacini, P.; Rangarajan, S.; Islam, S.; Pais, P.; McQueen, M.J.; et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet 2010, 376, 112–123. [Google Scholar] [CrossRef]
- Lennon, O.; Blake, C.; Booth, J.; Pollock, A.; Lawrence, M. Interventions for behaviour change and self-management in stroke secondary prevention: Protocol for an overview of reviews. Syst. Rev. 2018, 7, 231. [Google Scholar] [CrossRef] [PubMed]
- Joubert, J.; Davis, S.M.; Donnan, G.A.; Levi, C.; Gonzales, G.; Joubert, L.; Hankey, G.J. ICARUSS: An effective model for risk factor management in stroke survivors. Int. J. Stroke 2020, 15, 438–453. [Google Scholar] [CrossRef] [PubMed]
- Kalkonde, Y.V.; Alladi, S.; Kaul, S.; Hachinski, V. Stroke Prevention Strategies in the Developing World. Stroke. 2018, 49, 3092–3097. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthi, R.V.; Ikeda, T.; Feigin, V.L. Global, Regional and Country-Specific Burden of Ischaemic Stroke, Intracerebral Haemorrhage and Subarachnoid Haemorrhage: A Systematic Analysis of the Global Burden of Disease Study 2017. Neuroepidemiology 2020, 54, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Gjorgji, P.; Kruja, J. Trends and demographic characteristics of hemorrhagic stroke in Albania during the period 2004–2015. South East Eur. J. Public Health 2016, 6, 5–12. [Google Scholar] [CrossRef]
- Kamberi, F.; Sinaj, E. Assessment for Stroke Risk-Suggestions from a Pilot Study. In Proceedings of the 12th LUMEN International Scientific Conference-RSACVP 2019, Iasi, Romania, 15–17 May 2019; Available online: https://www.first-draft_working-papers_lumen_rsacvp2019.pdf (accessed on 3 October 2022).
- Kamberi, F.; Jaho, J.; Kamberi, L. Rapid Risk Assessment for Diabetes and Stroke a Cost-Effective Method for Early Screening and Prevention. Clin. Exp. 2021, 116, 154551. [Google Scholar] [CrossRef]
- WHO. Framework Convention on Tobacco Control: Guidelines for Implementation; Article 5.3; Article 8; Articles 9 and 10; Article 11; Article 12; Article 13; Article 14; 2013 edition; WHO: Geneva, Switzerland, 2013; ISBN 978 92 4 150518 5.
- Butt, P.; Beirness, D.; Gliksman, L.; Paradis, C.; Stockwell, T. Alcohol and Health in Canada: A Summary of Evidence and Guidelines for Low-Risk Drinking; Canadian Centre on Substance Abuse: Ottawa, ON, Canada, 2011. [Google Scholar]
- Tariq, N.; Gupta, V. High risk behaviors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560756 (accessed on 29 August 2022).
- Walker, S.N.; Sechristm, K.R.; Pender, N.J. The Health-Promoting Lifestyle Profile: Development and psychometric characteristics. Nurs Res. 1987, 36, 76–81. [Google Scholar] [CrossRef]
- Groll, D.L.; To, T.; Bombardier, C.; Wright, J.G. The development of a comorbidity index with physical function as the outcome. J. Clin. Epidemiol. 2005, 58, 595–602. [Google Scholar] [CrossRef]
- Chia, Y.C.; Gray, S.Y.; Ching, S.M.; Lim, H.M.; Chinna, K. Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population: A retrospective cohort study. BMJ Open 2015, 5, e007324. [Google Scholar] [CrossRef] [Green Version]
- Avan, A.; Digaleh, H.; Di Napoli, M.; Stranges, S.; Behrouz, R.; Shojaeianbabaei, G.; Amiri, A.; Tabrizi, R.; Mokhber, N.; Spence, J.D.; et al. Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: An ecological analysis from the Global Burden of Disease Study 2017. BMC Med. 2019, 17, 191. [Google Scholar] [CrossRef] [Green Version]
- Arisegi, S.A.; Awosan, K.J.; Oche, M.O.; Sabir, A.A.; Ibrahim, M.T. Knowledge and practices related to stroke prevention among hypertensive and diabetic patients attending Specialist Hospital, Sokoto, Nigeria. Pan. Afr. Med. J. 2018, 29, 63. [Google Scholar] [CrossRef]
- Onabajo, G.V.; Mshelia, J.Y.; Abubakar, U.; Majidadi, R.W.; Aliyu, H.N.; Gujba, F.K.; Ali, M.U.; Masta, M.A. Knowledge of Stroke Risk Factors among Individuals Diagnosed with Hypertension and Diabetes: A Hospital-based Survey. Br. J. Med. Med. Res. 2015, 10, BJMMR.19865. [Google Scholar] [CrossRef]
- Gan, Y.; Wu, J.; Zhang, S.; Li, L.; Yin, X.; Gong, Y.; Herath, C.; Mkandawire, N.; Zhou, Y.; Song, X.; et al. Prevalence and risk factors associated with stroke in middle-aged and older Chinese: A community-based cross-sectional study. Sci. Rep. 2017, 7, 9501. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Ossa, G.A.; Lobo, C.; Garcia-Ballestas, E.; Florez, W.A.; Moscote-Salazar, L.R.; Agrawal, A. Obesity and Stroke: Does the Paradox Apply for Stroke? Neurointervention 2021, 16, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, L.B.; Hemphill, J.C., 3rd; Anderson, C.; Becker, K.; Broderick, J.P.; Connolly, E.S., Jr.; Greenberg, S.M.; Huang, J.N.; Macdonald, R.L.; Messé, S.R.; et al. Guidelines for the management of spontaneous intracerebral hemorrhage: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2010, 41, 2108–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettger, J.P.; Zhao, X.; Bushnell, C.; Zimmer, L.; Pan, W.; Williams, L.S.; Peterson, E.D. The association between socioeconomic status and disability after stroke: Findings from the Adherence eValuation After Ischemic stroke Longitudinal (AVAIL) registry. BMC Public Health 2014, 14, 281. [Google Scholar] [CrossRef] [Green Version]
- Krause, D.N.; Duckles, S.P.; Pelligrino, D.A. Influence of sex steroid hormones on cerebrovascular function. J. Appl. Physiol. 2006, 101, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Wiszniewska, M.; Niewada, M.; Czlonkowska, A. Sex differences in risk factor distribution, severity, and outcome of ischemic stroke. Acta Clin. Croat 2011, 50, 21–28. [Google Scholar]
- Yaghi, S.; Elkind, M.S. Lipids and Cerebrovascular Disease: Research and Practice. Stroke 2015, 46, 3322–3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, L.H.; Zhao, J.; Zhang, X.P.; Deng, S.F.; Li, L.; He, S.Z.; Ruan, H.F. Stroke prevention knowledge and prestroke health behaviors among hypertensive stroke patients in mainland China. J. Cardiovasc. Nurs. 2014, 29, E1–E9. [Google Scholar] [CrossRef]
- Oesch, L.; Tatlisumak, T.; Arnold, M.; Sarikaya, H. Obesity paradox in stroke—Myth or reality? A systematic review. PLoS ONE 2017, 12, e0171334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, B.; Jin, X.; Jun, L.; Qiu, S.; Zheng, Q.; Pan, M. The relationship between smoking and stroke: A meta-analysis. Medicine 2019, 98, e14872. [Google Scholar] [CrossRef] [PubMed]
- Parappilly, B.P.; Field, T.S.; Mortenson, W.B.; Sakakibara, B.M.; Eng, J.J. Determinants Influencing the Prestroke Health Behaviors and Cardiovascular Disease Risk of Stroke Patients: A Cross-Sectional Study. J. Stroke Cerebrovasc. Dis. 2019, 28, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Yang, I.S.; Kim, N. Correlates of health behaviors in patients with coronary artery disease. Asian Nurs. Res. (Korean Soc. Nurs. Sci.) 2010, 4, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Shen, L.; Ruan, H.; Li, L. Family function and health behaviours of stroke survivors. Int. J. Nurs. Sci. 2014, 1, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.-D.; Zhang, M.; Wang, C.-Z.; Yuan, Y.; Liang, J.-H. Association between sedentary behavior, physical activity, and cardiovascular disease-related outcomes in adults—A meta-analysis and systematic review. Front. Public Health 2022, 10, 1018460. [Google Scholar] [CrossRef]
- Wicaksana, A.L.; Maharani, E.; Chen, H. Health Promoting Behaviors and Risk of Cardiovascular Events among Patients with Cardiovascular Diseases. Open Access Maced. J. Med. Sci. 2021, 9, 135–142. [Google Scholar] [CrossRef]
Variables | n (%) | Mean ± SD |
---|---|---|
Sociodemographic variables | ||
Age Age by gender | - | 65.92 ± 9.04 68.167 ± 8.73 (female) 64.656 ± 9.01 (male) |
Gender (female) | 54 (36) | - |
Education (less than high school) | 103 (69) | - |
Living (alone) | 10 (7) | - |
Economic status (moderate) | 86 (57) | - |
Residence (village) | 52 (35) | - |
Risk profile | ||
CFI (score) | - | 2.5 ± 1.63 |
FRS (score) | - | 19.5 ± 0.53 |
BMI (kg/m2) | - | 27.2 ± 3.16 |
Systolic BP (mm Hg) | - | 164.307 ± 27.06 |
Diastolic BP (mm Hg) | - | 90.389 ± 12.26 |
BP over 140/90 | 70 (46.7) | - |
BP over 180/110 | 38 (25.3) | - |
LDL (mg/dL) | - | 140.1 ± 23.8 |
LDL > 160 mg/dL | 31 (20.7) | |
HDL (mg/dL) | - | 40.4 ± 15.4 |
HDL < 35 mg/dL | 44 (29.3) | - |
TC cholesterol total (mg/dL) | - | 208.9 ± 54.3 |
TC > 240 mg/dL | 46 (30.7) | - |
TG (mg/dL) | - | 165.5 ± 63.5 |
TG > 200 mg/dL | 24 (16) | - |
FG (mg/dL) | - | 178.1 ± 89.0 |
FG > 126 mg/dL | 107 (71.30) | - |
HbA1c % | - | 8.5 ± 12.8 |
HbA1c > 6.5% | 97 (64.7) | - |
Smoking status over the past 7 days (yes) | 70 (46.6) | - |
Number of cigarettes per day | - | 11.67 ± 5.67 |
Alcohol consumption over the last 7 days (yes) | 47 (31.3) | - |
Number of drinks per day | - | 3.57 ± 1.67 |
Variables | n (%) | Mean ± SD |
---|---|---|
Overall HPLP II | ||
Correct | 102 (68.0) | 54.67 ± 13.34 |
Incorrect | 48 (32.0) | |
Total | 150 (100.00) | |
Physical activity subscale | ||
Correct | 98 (65.3) | 16.50 ± 5.40 |
Incorrect | 52 (34.7) | |
Total | 150 (100.0) | |
Nutrition subscale | ||
Correct | 119 (79.3) | 20.62 ± 4.48 |
Incorrect | 31 (20.7) | |
Total | 150 (100.0) | |
Stress management subscale | ||
Correct | 108 (72.0) | 17.50 ± 5.11 |
Incorrect | 42 (28.0) | |
Total | 150 (100.0) |
Predictors | Overall HPLP II | ||||||
---|---|---|---|---|---|---|---|
p | ANOVA | Regression Analysis | |||||
Sociodemographic | HPLP II | F | F Critical | OR | 95% CI | ||
Factors | Mean ± SD | Lower Bound | Upper Bound | ||||
Age (years) | |||||||
Until 50 | 59.3 ± 15.7 | 0.016 | 3.544 | 0.167 | 2.276 | 0.418 | 12.378 |
51–60 | 60.3 ± 11.8 | 4.400 | 1.466 | 13.205 | |||
61–70 | 53.6 ± 11.4 | 1.517 | 0.695 | 3.314 | |||
>70 | 51.5 ± 14.9 | Reference | |||||
Gender | |||||||
Female | 53.6 ± 13.8 | 0.020 | 0.493 | 0.478 | 0.909 | 0.446 | 1.852 |
Male | 55.3 ± 13.1 | Reference | |||||
Education | |||||||
Bachelor | 76.5 ± 0.71 | 0.098 | 2.137 | 2.300 | |||
High school | 54.8 ± 12.3 | ||||||
Professional degree | 49.5 ± 9.4 | ||||||
Less than high school | 54.5 ± 13.7 | ||||||
Living | |||||||
With someone | 55 ± 13.1 | 0.298 | 1.099 | 2.110 | |||
Alone | 50 ± 13.3 | ||||||
Economic status | |||||||
Moderate and high | 77 ± 0.01 | 0.221 | 1.525 | 1.670 | |||
Low | 53.9 ± 14.1 |
Predictors | CVD Risk | p Value | |||||
---|---|---|---|---|---|---|---|
High, n (%) | Moderate, n (%) | Low, n (%) | Total n (%) | ||||
Age (years) | |||||||
Until 50 | 4 (2.7) | 3 (2.0) | 1 (0.7) | 8 (5.4) | 0.001 | ||
51–60 | 24 (16.0) | 10 (6.7) | 0 | 35 (22.7) | |||
61–70 | 51 (34.0) | 5 (3.3) | 1 (0.7) | 57 (38.0) | |||
>70 | 47 (31.3) | 2 (1.3) | 2 (1.3) | 50 (33.9) | |||
Gender | |||||||
Female | 35 (23.3) | 15 (10.0) | 4 (2.7) | 54 (36.0) | 0.002 | ||
Male | 91 (60.7) | 5 (3.3) | 0 | 96 (64.0) | |||
Education | |||||||
Less than high school | 87 (58.0) | 13 (8.7) | 3 (2.0) | 103 (68.7) | 0.853 | ||
Bachelor | 1 (0.7) | 1 (0.7) | 0 | 2 (1.3) | |||
High school | 33 (22.0) | 5 (3.3) | 1 (0.7) | 39 (26.0) | |||
Professional degree | 5 (3.3) | 1 (0.7) | 0 | 6 (4.0) | |||
Residence | |||||||
Village | 47 (31.4) | 5 (3.3) | 0 | 52 (34.7) | 0.189 | ||
City | 79 (52.6) | 15 (10.0) | 4 (2.7) | 98 (65.3) | |||
Living | |||||||
With someone | 119 (79.3) | 18 (12.0) | 3 (2.0) | 140 (93.3) | 0.703 | ||
Alone | 7 (4.7) | 2 (1.3) | 1 (0.7) | 10 (6.7) | |||
Economic status | |||||||
High | 1 (0.7) | 0 | 0 | 1 (0.7) | 0.866 | ||
Low | 55 (36.7) | 7 (4.7) | 1 (0.7) | 63 (42.0) | |||
Average | 70 (46.6) | 13 (8.6) | 3 (2.0) | 86 (57.3) | |||
Overall HPLP II | |||||||
Correct | 83 (55.3) | 17 (11.3) | 2 (1.3) | 102 (68.0) | 0.173 | ||
Incorrect | 43 (28.7) | 3 (2.0) | 2 (1.3) | 48 (32.0) | |||
Physical activity | |||||||
Correct | 78 (52.0) | 17 (11.3) | 3 (2.0) | 98 (65.3) | 0.120 | ||
Incorrect | 48 (32.0) | 3 (2.0) | 1 (0.7) | 52 (34.7) | |||
Nutrition | |||||||
Correct | 99 (66.0) | 18 (12.0) | 2 (1.3) | 119 (79.3) | 0.171 | ||
Incorrect | 27 (18.1) | 2 (1.3) | 2 (1.3) | 31 (20.7) | |||
Stress management | |||||||
Correct | 86 (57.3) | 20 (13.4) | 2 (1.3) | 108 (72.0) | 0.008 | ||
Incorrect | 40 (26.7) | 0 | 2 (1.3) | 42 (28.0) | |||
Predictors | Regression analysis, OR (95% CI) | ||||||
CVD risk | High | Moderate | Low | ||||
Age ( years ) | |||||||
Until 60 | 0.17 (0.05–0.57) | 0.09 (0.02–0.43) | 1.67 (0.15–19.1) | ||||
61–70 | 0.72 (0.19–2.72) | 0.42 (0.08–2.29) | 2.29 (0.20–25.98) | ||||
>70 | Reference | Reference | Reference | ||||
Gender | |||||||
Female | 0.10 (0.04–0.29) | 0.14 (0.05–0.42) | 1.80 (1.73–1.84) | ||||
Male | Reference | Reference | Reference | ||||
Stress management | |||||||
Correct | 0.20 (0.04–0.87) | 0.0009 (0.0008–0.001) | 2.65 (0.36–19.45) | ||||
Incorrect | Reference | Reference | Reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lalo, R.; Zekja, I.; Kamberi, F. Association of Cardiovascular Disease Risk and Health-Related Behaviors in Stroke Patients. Int. J. Environ. Res. Public Health 2023, 20, 3693. https://doi.org/10.3390/ijerph20043693
Lalo R, Zekja I, Kamberi F. Association of Cardiovascular Disease Risk and Health-Related Behaviors in Stroke Patients. International Journal of Environmental Research and Public Health. 2023; 20(4):3693. https://doi.org/10.3390/ijerph20043693
Chicago/Turabian StyleLalo, Rezarta, Ilirjana Zekja, and Fatjona Kamberi. 2023. "Association of Cardiovascular Disease Risk and Health-Related Behaviors in Stroke Patients" International Journal of Environmental Research and Public Health 20, no. 4: 3693. https://doi.org/10.3390/ijerph20043693
APA StyleLalo, R., Zekja, I., & Kamberi, F. (2023). Association of Cardiovascular Disease Risk and Health-Related Behaviors in Stroke Patients. International Journal of Environmental Research and Public Health, 20(4), 3693. https://doi.org/10.3390/ijerph20043693