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Abstract: With ever-increasing urbanization and industrialization in developing countries, the chal-
lenge posed by carbon dioxide emissions (CDEs) has become a hot topic of concern in the realm of
sustainable development from a socioeconomic perspective. However, previous studies have only
been conducted at macro and meso scales, including at the global, country, and urban levels, and few
researchers have delved into the territorial space of urban areas due to a lack of high-precision data. To
address this deficiency, we established a theoretical framework to explore the spatial zoning of CDEs
based on the newly emerging China high-resolution emission gridded data (CHRED). This study’s
innovativeness lies in its provision of a step-by-step process for spatial matching of CDEs based on
CHRED in the framework and the construction of square layers to reveal spatial heterogeneity of
CDEs at the intra-city level. Taking Nanjing City as the case study area, our findings indicated that
CDEs intensity (CDEI) shows an inverted “U-shaped” trend that first increased and then decreased,
and finally stabilized from the center to the periphery of the city. With further urbanization and
industrialization, the energy consumption sector was found to be the largest contributor to CDEs
in Nanjing, and the expanding carbon source zonings will therefore shrink the existing carbon sink
zonings. Collectively, these results can provide a scientific reference point to realize China’s “dual
carbon” target from the perspective of spatial layout optimization.

Keywords: urbanization and carbon neutrality; CHRED; spatial scale transformation; carbon sinks
and sources; energy consumption; territorial spatial planning

1. Introduction

The latest Greenhouse Gas Bulletin released by the World Meteorological Organization
stated that the global concentration of carbon dioxide emissions (CDEs) in the atmosphere
had reached a new historical record of 413.2 ppm in 2020 [1]. The sharp rise in CDEs as
a result of the human consumption of fossil fuels poses a threat to sustainable human
development and ecological environment [2]. In fact, the International Energy Agency
(IEA) has estimated that urban areas, which are a gathering place for commercial trade and
production factor resources [3], consume 67% of all energy produced globally and account
for 75% of worldwide CDEs [4]. Therefore, it is of great importance that accurate estimates
of CDEs and their determinants in large urban agglomerations are carried out.

With the increasing emphasis on the effects of climate change and actions to mitigate
them in various countries, studies of CDEs cover all scales from macro to micro geographic
space, such as global [5], country [6,7], provincial [8,9], city [10], sectoral [11,12], and commu-
nity scales [13]. Large-scale studies are suited to grasping the overall situation of CDEs from a
macro perspective, while the meso and micro perspectives are beneficial for the implemen-
tation of effective policies [14]. In fact, urban areas are a classic example of small-scale cases
yielding diverse data that require the precise implementation of emissions reduction measures.
Many studies have analyzed the relationship between various elements of cities and CDEs.
Currently, most urbanized regions, especially those in developing countries, are in the process
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of continuous migration and transformation, arising from their ongoing industrialization,
urbanization, and modernization processes. Studies have shown that there is an inevitable
relationship between urbanization and CDEs [5]. Obviously, urbanization results in changes
in urban land use (e.g., the constant expansion of land for construction leads to reductions in
carbon sinks and the expansion of carbon sources [2]) and spatial patterns (e.g., the diversity,
connectivity, and compactness of the urban form affect the type and quantity of air pollutants
emitted by different sectors of cities [15–17]), which affects the quantity of CDEs to a certain
extent, including carbon sinks and sources. Moreover, with the continuous acceleration of
urban development, numerous factors have been highlighted in studies of CDEs, including
economic growth [18], gross domestic product (GDP) [19], population size and density [20,21],
energy structure and consumption [22,23], industrial structure [24], technology [25], foreign
direct investment [26], and tourism [27], which are widely recognized as being key factors
affecting CDEs. Studies of these factors and CDEs have shown that the latter have significant
spatial autocorrelations that display spatial agglomeration effects [28].

Although numerous studies have analyzed the impact of land-use changes on CDEs
in different regions and at different scales [29–31], it is still very difficult to obtain specific
micro scale gridded data on CDEs at the intra-city level. The bottom-up spatial gridded
method using population spatial data or other auxiliary data to calculate CDEs was the
first to be used by researchers. Then, with the increasing demand for atmospheric model
accuracy and satellite remote sensing monitoring capabilities, the Emissions Database for
Global Atmospheric Research (EDGAR) was the first to create a spatial gridded database
systemically and consistently covering all of the reporting categories in the Intergovern-
mental Panel on Climate Change (IPCC) guidelines [32,33], with the exception of land
use, land use change, and forestry [34]. The EDGAR database compiles IEA emission
point data sources and energy consumption data on the basis of independent global sets of
activity data, and its time series are updated every year, subject to the availability of their
data sources [35]. Therefore, in such a rapidly evolving and complex context, EDGAR has
become a reference dataset supporting policy makers and the scientific community [31],
providing a reliable and consistent benchmark for studies of CDE calculations [36]. More-
over, the Vulcan inventory has quantified fossil fuel CDEs, which, in 2012, were produced
mainly by US sectors using different combustion technologies and 48 fuel types [37]. The
Vulcan inventory, which compiles 10 km gridded emissions data, builds on decades of
regional air pollution monitoring and complements these data with a Census, Transport
and Digital Roads dataset and plays an important role in CDEs research and government
decision-making [33]. Recently, high-resolution gridded data and the spatial stratified
heterogeneity of CDEs has become a hot topic of emissions research. The derivation of
ground CDEs data based on satellite remote sensing data has become an important research
field. At present, there are three main satellites monitoring carbon concentrations [38]:
GOSAT at 10 × 10 km resolution [39], OCO-2 at 1 × 1 km resolution [40], and Tan Sat at
2 × 2 km resolution [41]. In addition, it is worth noting that, with the development of
remote sensing technology, the use of night-time light (NTL) data to estimate gridded CDEs
has become an important research direction. Currently, NTL data are primarily obtained by
the Defense Meteorological Satellite Program-Operational Line Scan System (DMSP-OLS)
and reflect socioeconomic activities from four dimensions: population, economy, society,
and space [42]. Thus, the NTL data can provide rich distribution information about socioe-
conomic activities from multiple dimensions to compensate for the one-dimensional and
“no spatial information” deficiencies of studies of the relationship between urban spatial
development patterns and CDEs.

China is known as the world’s largest developing country and the leading emitter
of carbon dioxide [43], making it a key player in achieving global carbon neutrality. The
Chinese government pledged at the 21st United Nations Climate Change Conference held
in Paris in 2015 to lower CDEs intensity (CDEI) by 60–65% by 2030 compared to 2005
levels [44]. At the General Debate of the 75th Session of the United Nations General
Assembly in 2020, the Chinese government further stated explicitly that CDEs would
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peak by 2030 and that the government would strive to achieve carbon neutrality by 2060.
Therefore, how to obtain accurate calculations of CDEs and promote the implementation of
emissions reduction strategies via spatial planning at the intra-city level are undoubtedly
important for achieving this goal. Thus, as the basis for obtaining detailed and accurate
results for CDEs, high-resolution gridded data play an increasingly important role in
examining the spatial differences and their main driving factors in Chinese cities. However,
China is still short of high-resolution gridded data. The existing EDGAR gridded data [45],
the Oak Ridge National Laboratory (ORNL) CDEs gridded data [46], and the Peking
University (PKU) inventory [47] estimate China’s gridded emissions by allocating regional
aggregated data using certain socioeconomic indicators on the large scale, which means
that China’s gridded emissions can easily be under- or overestimated [34]. Zhao (2012)
established China’s earliest 25 × 25 km gridded CDEs dataset based on point emission
source data from thermal power plants, but thus far, it has been difficult to achieve a true
spatial analysis [48]. Recently, Cai (2018) has built the most comprehensive and integrated
database of China’s 10 × 10 km gridded CDEs, incorporating various official data at the
city level, as well as data from field surveys and visits by researchers and others. However,
the three main deficiencies of the above database are fixed [34]: (1) the spatial resolution of
the existing databases is relatively low; (2) the existing databases adopt mainly top-down
methods, which cannot provide accurate exterior space characteristics for each grid; and
(3) the existing databases cover only environmental emissions and are not linked to the
socioeconomic data for each grid. Consequently, current studies of spatial gridded data still
concentrate on the regional, provincial, and urban agglomeration levels, and it is difficult
to delve into the internal space of urban areas in order to gain reliable research data. Due
to the lack of high-precision gridded data support for CDEs, it is very important, and
difficult in practice, to optimize urban spatial layouts from the perspective of CDEs. For the
sustainable development of different spatial scales in China, this study selected Nanjing as
a case study and used the newly emerging China high-resolution emission gridded data
(CHRED) to study the spatial zoning of CDEs at the intra-city level.

The remainder of the study is arranged as follows. The next section provides infor-
mation on the study area and the multiple datasets employed in this paper, as well as
the theoretical framework and methodology used to analyze spatial zoning at the intra-
city level. Section 3 presents the results of the optimum resolution, CDEI trends, and
spatial zoning in Nanjing. In Section 4, we discuss the characteristics of different zones
and the limitations of our study. Finally, Section 5 summarizes several valuable conclu-
sions and proposes the necessary policy implications in order to achieve China’s carbon
reduction targets.

2. Materials and Methods
2.1. Study Area and Dataset
2.1.1. Study Area

The city of Nanjing is located in the Yangtze River Delta urban agglomerations (YRDUA)
in eastern China (Figure 1), a world-class urban cluster consisting of 26 prefecture-level cities
covering Shanghai City and the provinces of Jiangsu, Anhui, and Zhejiang. Nanjing is one
of the regional centers of China’s industrial productivity and the main industrial base in
China. At the same time, it is also the provincial capital of the Jiangsu Province and a national
low-carbon pilot city. By 2021, Nanjing hosted more than 9 million residents and occupied an
area of 6587 km2, with a built-up area of 868 km2; thus, the urbanization rate has exceeded
85%. Its GDP and per capita GDP reached CNY 1635 billion and CNY 174,520 (25,805 USD;
1 USD = CNY 6.763), respectively, which represents a nearly threefold increase between 2011
and 2021. Such high economic growth inevitably increases CDEs due to rapid changes in
urban population, vehicle stock, lifestyles, technological improvements, and production and
consumption activities [49]. As the economy is expected to continue to expand in the near
future, Nanjing is an ideal sample for CDEs research at the intra-city level.
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Figure 1. Location of and land-use types in Nanjing.

2.1.2. Dataset

The original data for CDEs used in this study are the CDEs data for the 10 × 10 km
spatial resolution released by CHRED in 2015, which combine industrial energy con-
sumption and processes, agriculture, service industries, urban lifestyles, rural lifestyles,
and traffic emissions. According to the information provided on the official website
(http://www.cityghg.com, accessed on 13 December 2022), it employs a unified data
source and standardized data processing methods for establishing China’s urban CDEs
dataset [50,51]. Some preconditions were followed when the dataset was applied. First,
according to existing research, the distribution of CDEs is directly affected by human
activities, showing a significant positive spatial correlation. Second, the CDEs data used
in this study were the annual averaged data, with the short-term and severe impacts on
the meteorological elements not being considered, especially within the same city. Third,
due to the characteristics of fluidity and diffusivity, and ignoring the effects of wind and
rainfall, there could theoretically be an attenuation phenomenon of CDEs from high-value
areas to surrounding areas with increasing distance.

Supplementary data exist in addition to the CDEs data (Table 1). The annual data from
the Suomi National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite

http://www.cityghg.com
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(NPP-VIIRS) satellite NTL remote sensing image and the China Normalized Difference
Vegetation Index (NDVI) in 2015 were obtained from the China Resource and Environment
Science Data Center (RESDC, https://www.resdc.cn, accessed on 23 November 2021). The
land-use vector data for Jiangsu Province and the population raster data for Nanjing were
obtained from the Yangtze River Delta Scientific Data Center (YRDSDC), National Earth
System Scientific Data Sharing Infrastructure, National Science & Technology Infrastructure
of China (http://geodata.nnu.edu.cn, accessed on 11 March 2022).

Table 1. Data and their sources employed in this study.

Data Type Name Source

Carbon emissions data China High-Resolution Emission Gridded Data CHRED
Night-time light (NTL) data National NPP-VIIRS satellite night-time light remote sensing image

RESDC
Land-use data

NDVI gridded data of YRDUA
Land-use vector data for Jiangsu Province

YRDSDCSocioeconomic data Population gridded data for Nanjing City

2.2. Theoretical Framework

The scale and intensity of CDEs are largely influenced by human economic and social
activities, representing an obvious spatial heterogeneity [52]. Therefore, the structure,
function, and pattern of a city all have a significant impact on CDEs. As a highly open
system, there could be a huge carbon exchange between the city and its surrounding
areas, and its carbon cycle process involves the vast space outside the central urban area.
Generally speaking, the more economically developed a city is, the larger the exterior zone
that will be affected [53].

However, existing studies have focused mainly on the CDEs from land at the macro
and meso scales, and most of them have neglected the spatial match between CDEs and
land utilization. The fundamental reason for this situation is that the original data for carbon
emissions have been derived mainly from natural carbon fluxes and socioeconomic emissions
accounting. The former are mainly fixed-point observation data, and the latter are based
mostly on statistical data (generally from provincial, city, or county spatial units, with the
minimum being the town or street scale), which makes it difficult to determine the spatial
relationship between them. Therefore, this study attempted to solve the following two issues:
(1) how to carry out a more accurate spatial matching study of CDEs at the intra-city level
based on CHRED and (2) how to study the spatial zoning of CDEs at the intra-city level based
on high-precision grid cells of CDEI data and their spatial differentiation characteristics.

The analytical framework used as the basis for this study is illustrated in Figure 2. The
main processes were as follows:

Step 1: This involved spatial scale transformation of the original carbon emissions
data. In terms of CDEs at the intra-city level, the original CHRED 10 km resolution data
were relatively coarse, so they needed to be finely processed with spatial granularity. In
light of the attenuation phenomenon associated with CDEs, this study adopted the spatial
interpolation method to resample the original data in order to achieve the correct scale
conversion of carbon emissions data from low to high resolution [54].

Step 2: The optimum spatial resolution grid cell was selected. The relationship between
the refined grid cell data at different high resolutions obtained from the original 10 km
resolution data and the supplementary data (i.e., socioeconomic data, NTL data, and land-
use data) was analyzed so as to select the most suitable spatial resolution unit to carry out
subsequent spatial zoning studies.

Step 3: A zoning analysis based on the variation in CDEs was conducted. Based on
the optimum spatial resolution grid unit selected in Step 2, square layers depending on the
grid cell were constructed in order to study the spatial zoning of Nanjing. By calculating
the variation in carbon emissions data in the different layers, the spatial zoning of CDEs
inside Nanjing could be explored.

https://www.resdc.cn
http://geodata.nnu.edu.cn
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Figure 2. Analytical framework of the study.

2.3. Methods
2.3.1. Spatial Interpolation

For the study of CDEs at the intra-city level, the 10 × 10 km resolution grid was too
coarse to observe the surface details, so spatial interpolation was an effective method to
convert the CDEs data of the original 10 km grid into a high-resolution unit. The refined
measure of the original 10 km resolution data used 1 km grid cells per segment. The CDEI
value of the newly generated grid unit was the average value of the CDEI and the total
area of the original 10 km grid unit, that is, the CDEI per square kilometer. On this basis,
the center point of the newly generated 1 km grid cell was extracted, and the CDEI value
of each grid cell was taken as the attribute value of the center point, so as to conduct a
Kriging interpolation in order to obtain the spatial interpolation map. Similarly, the Kriging
method was used to obtain spatial interpolation maps of 5 and 10 km grid cells (Figure 3).
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2.3.2. Correlation Analysis

The purpose of the above interpolation process is to refine the spatial resolution of
the CDEs data, so that CDEs could be transitional in spatial distribution. Moreover, it
makes the transition of CDEI between different grids smoother and more reasonable and
improves the rationality of the spatial heterogeneity of CDEs following grid refinement.
However, this inevitably resulted in errors between the newly resampled data and the
original data. In order to select the optimal resampled data, a correlation analysis between
the resampled data and the population, NTL, and NDVI data with a spatial resolution
of 1 km was needed (Figure 4). Therefore, the above three different spatial interpolation
maps were reconfigured into 1 km grid cells, and then the CDEI values in each grid cell
were counted and verified with the population, NTL, and NDVI data of the 1 km grid to
determine the best resolution of the resampled CDEs data.
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Considering the strong spatial autocorrelation of the CDEs data, a spatial regression
model was introduced alongside the traditional regression model. Compared to the classic
ordinary least squares model (OLSM), the spatial lag model (SLM) is able to better describe
and explain the related problems arising from spatial effects. The OLSM set out in this
paper was as follows:

Y = β0 + ∑m
i=1 Xiβi + ε (1)

where i represents different explanatory variables; m is the number of explanatory variables;
Y is the standardized result of the dependent variable; Xi is the standardized result of
the explanatory variable; β0 is a constant coefficient; βi is the regression coefficient of the
explanatory variables; and ε is the random error term.

The SLM mainly explores whether there is a diffusion phenomenon for each variable
in a particular area. The SLM set out in this paper was as follows:

Y = ρWY + ∑m
i=1 Xiβi + ε (2)

whereρ is the spatial correlation coefficient; W is the spatial weight matrix, and threshold
distance has been adopted in this paper; and the other variables are as defined above.

In addition to the goodness of fit R2 test, common test criteria include log likelihood
(LogL), the Akaike information criterion (AIC), and the Schwartz criterion (SC). The larger
the LogL, the smaller the AIC and SC, and the better the fit of the model [55]. The named
indicators can be used to compare the classic linear regression models estimated by OLSM
and SLM.

2.3.3. Spatial Zoning

After determining the optimum resolution for resampling the data, it was necessary
to reveal the attenuation phenomenon of CDEs from high-value areas to surrounding areas
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with increasing distance. This paper adopted as its measure the change in value of CDEI in
different layers so as to summarize the spatial zoning patterns of CDEs.

(1) Square layers construction. We took the geometric center of the urban area as the
central point and expanded outward to build square layers in turn. Therefore, the first layer
is 1 km away from the center point, including four grid units; the second layer expands
outward to 2 km, including 12 grid units, and so on (Figure 5).
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In the square layers constructed, each layer is called an “individual layer”, and the
per-unit CDEI within this layer is qcn (ton/km2). For example, the first individual layer
is 1 km away from the center point, which includes four grid cells, and qc1 is the average
value of the carbon emissions data for these four grid cells. The second individual layer is
2 km away from the center point, which includes 12 grid cells, and qc2 is the average value
of the carbon emissions data for these 12 grid cells. By analogy, if the distance between an
individual layer and the center point is n km, the number of grid cells within this layer is
8n − 4.

In addition, all layers inside this layer (including itself) are called “accumulative
layers”, and the per-unit CDEI of the accumulative layer is QCn. According to the
above, if the per-unit CDEI of the independent layer is qc1, qc2, . . . , qcn, then QC1 = qc1,
QC2 = qc1×4+qc2×12

16 , . . . , QCn = ∑ qcn×(8n−4)
4n2 .

(2) According to the change in values of the CDEs data for each individual layer,
accumulative layer, and anteroposterior layer, the relationship between the varying CDEs
data and the distance to the center point was comprehensively analyzed, and the spatial
zoning pattern of CDEs was proposed from the results.

3. Results
3.1. Results for the Optimum Resolution
3.1.1. Spatial Cluster Analysis

The spatial interpolation maps generated from the CDEs data with 1, 5, and 10 km
resolutions were reassigned to 1 km grid cells to obtain three different sets of carbon
emissions resampled data. The results of Moran’s I index showed that the above three sets of
resampled carbon emissions data of different resolutions showed obvious spatial clustering.
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According to the results calculated by the GeoDa software package, (Version 1.18.0) the
local Moran’s I index based on the resampled carbon emissions data with 1, 5, and 10 km
resolutions were 0.677, 0.927, and 0.936, respectively (Figure 6), all of which showed
positive spatial correlations, indicating that the three sets of resampled carbon emissions
data showed spatial agglomeration. Therefore, a correlation analysis between the resampled
carbon emissions data (1 km grid cells) and the population, NTL, and NDVI data (1 km
grid cells) was carried out in order to determine the optimum resampled data for the three
sets, which allowed the SLM to be utilized along with the traditional OLSM.
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3.1.2. Correlation Analysis

The GeoDa software package was used to test and estimate the OLSM and SLM. The
fitting results are presented in Table 2. The goodness of fit (R2) test values for SLM for each
resolution (1, 5, and 10 km) are obviously higher than those for the OLSM. When further
comparing LogL, AIC, and SC, the results show that the LogL values for SLM are higher
than those for OLSM, while the AIC and SC values for SLM are lower than those for OLSM
for each resolution. It is clear that the SLM is superior to the classic OLSM.

Table 2. Statistical test results for the SLM and OLSM models.

Test
Item

1 km Resolution 5 km Resolution 10 km Resolution

OLSM SLM OLSM SLM OLSM SLM

R2 0.120 0.786 0.214 0.978 0.156 0.963
LogL −124,185 −117,005 −108,645 −91,716 −110,645 −94,928
AIC 248,378 234,020 217,297 183,442 221,299 189,866
SC 248,407 234,057 217,326 183,478 221,327 189,902

The estimated results for OLSM and SLM are listed in Tables 3 and 4. As can be seen
from Table 3, three variables—population size (POP), NDVI, and NTL intensity—all passed
the significance test at the 1% and 5% levels (probabilities equal 0.01, 0.05, and 0.10 at the
1%, 5%, and 10% mean significance levels, respectively). However, as can be seen from
Table 4, the resampled carbon emissions data at 5 km resolution appear to be better. First,
of the three different resolutions, only the correlation coefficients of all three variables (POP,
NDVI, and NTL) for the 5 km resolution passed the significance test at the 1% level. POP
for the 1 km resolution and NDVI for the 10 km resolution failed to pass the significance
test at the 10% level. Second, the estimated results showed that the regression coefficients
of the variables at the 1 and 5 km resolutions were more reasonable for both OLSM and
SLM. This is because the regression coefficient of NDVI was negative for both the 1 and
5 km resolutions, indicating that CDEI was negatively correlated with NDVI, which is
consistent with the view that vegetation has been considered a “carbon sink” in previous
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studies [56]. In other words, errors occurred in the resampled carbon emissions data for the
10 km resolution, which should not be considered. In summary, according to the results of
the regression analysis, this study considers the 5 km resolution to be the optimum one,
and so the spatial zoning analyses, based on the resampled carbon emissions data, were
carried out employing this resolution.

Table 3. Estimated results for the OLSM.

Variable
1 km Resolution 5 km Resolution 10 km Resolution

Coef. Prob. Coef. Prob. Coef. Prob.

CONSTANT 11,625.600 0.000 17,939.000 0.000 5827.590 0.000
POP −1.474 0.000 −1.235 0.000 −0.280 0.000
NDVI −19,863.200 0.000 −21,359.700 0.000 2090.850 0.013
NTL 643.268 0.000 461.596 0.000 290.865 0.000

Table 4. Estimated results for the SLM.

Variable
1 km Resolution 5 km Resolution 10 km Resolution

Coef. Prob. Coef. Prob. Coef. Prob.

W_grid 1.000 0.000 1.000 0.000 1.000 0.000
CONSTANT 1696.590 0.081 392.377 0.168 −201.468 0.152
POP −0.072 0.362 −0.103 0.000 −0.039 0.001
NDVI −4259.420 0.001 −1336.320 0.000 125.088 0.483
NTL 40.881 0.000 21.014 0.000 5.680 0.000

3.2. Results for qcn and QCn
3.2.1. Individual Layers

After the 5 km resolution resampled carbon emissions data were assigned to the 1 km
grid cell, we generated square individual layers covering the Nanjing urban area. The
variation in the CDEI of layers based on their distance to the central point is shown in
Figure 7a. The horizontal axis represents the distance of individual layers to the central
point of Nanjing, and the vertical axis represents the per-unit CDEI within each layer (qcn).
Obviously, for distances of 0–7 km, the CDEI was low, showing a smooth variation; for
distances of 7–16 km, the CDEI increased rapidly; for distances of 16–21 km, the CDEI
reached a peak value and maintained this high value; for distances of 21–31 km, the CDEI
decreased rapidly; and for distances of more than 39 km, the CDEI began to decrease and
tended to be stable.
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Figure 7b illustrates more clearly the variation in the CDEI of individual layers in the
central urban area. For distances of 0–7 km, the CDEI increased steadily from a low value;
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for distances of 7–16 km, the CDEI increased significantly; for distances of 16–21 km, the
CDEI remained high and stable; and for distances of more than 21 km, the CDEI began to
decrease. This demonstrated that the range of 16–21 km from the central point of Nanjing
was the area of the greatest concentration of carbon sources in the city.

3.2.2. Accumulative Layer

The variation in per-unit CDEI of accumulative layers (QCn) based on their distance
to the central point is shown in Figure 8a. In general, with the continuous expansion of
layers, the CDEI in Nanjing first increased and then gradually decreased. For distances
to the central point of less than 12 km, the CDEI increased rapidly; for distances from the
center point of approximately 24 km, the CDEI grew slowly and gradually reached a peak;
and for distances of approximately 28 km, the CDEI remained high and changed little;
thereafter, the CDEI decreased quite slowly.
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Figure 8. Statistical results for accumulative layers in Nanjing. (a) Whole urban area; (b) Central
urban area.

Figure 8b reflects the variation in the CDEI of accumulative layers in the central
urban area of Nanjing. For distances of less than 24 km from the central point, the CDEI
increased for this entire distance, and only began to decrease once the distance threshold
had been exceeded.

3.3. Results for Spatial Zoning
3.3.1. Variation in CDEI

To further demonstrate the effect of layers spread on CDEI, this paper also analyzed
changes in QCn. Starting from the second accumulative layer, the decrease in the value
of the CDEI was QC1−QC2, QC2 − QC3, . . . , QC(n − 1)−QCn, that is, the difference
between the CDEI of the front and back accumulative layers.

As shown in Figure 9a, the first inflection point appears at a distance of 12 km away
from the center point. Within this range, the decrease in value is negative and continues to
decrease as the layer spreads outward, indicating that CDEI is increasing ever more rapidly.
The second inflection point occurs at a distance of 32 km, that is, in the range 12–32 km,
within which the rate of decrease increases continuously and changes from negative to
positive for the first time at a distance of 25 km. Beyond a distance of 32 km, the rate of
decrease reduces slowly but remains positive as the layer continues to spread outward,
indicating that CDEI begins to decline and then gradually slows down.

Based on the variation in CDEI shown in Figures 7a, 8a and 9a, we then used a box plot
to divide the values into groups (see Figure 9b). The layers extending to the center point
below 7 km were categorized as the first group, and the CDEI values in this group were low,
with an average value of only 7215 ton/km2. Layers extending to the center point in the range
7–16 km were categorized as the second group, and the CDEI values in this group increased
rapidly, with an average value of 15,507 ton/km2. Layers extending to the center point in
the range 16–21 km were categorized as the third group, and the CDEI values in this group
surged to a peak, with an average value of 23,099 ton/km2. Layers extending to the center
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point in the range 21–31 km were categorized as the fourth group, and the CDEI values in
this group decreased significantly, with an average value falling to 18,307 ton/km2. Layers
extending to the center point beyond 31 km were categorized as the fifth and final group, and
though the CDEI values in this group continued to decline, they reached a stable end value,
with an average value of 13,393 ton/km2.
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3.3.2. Spatial Zoning in Nanjing

Based on the variations in CDEI described above, this study categorized the spatial
zoning patterns of CDEs in Nanjing (Table 5). For distances of less than 7 km from the
center of the square layers, this formed the central budding zone. The CDEI value of this
zone was low, and the average value was only 31.24% of the average level of the peak
group. However, the growth rate of CDEI in this zone had already begun to increase, with
a rate of approximately 5.73%. For distances of 7–16 km from the center, this formed the
interior burgeoning zone. The growth rate of CDEI was more rapid here, reaching a rate of
8.11%, and the average CDEI value in this zone reached 67.13% of the average level of the
peak group. For distances of 16–21 km from the center, this formed the urban peak zone.
The CDEI value reached a peak and remained stable, with a growth rate of only 0.10%.
For distances of 21–31 km from the center, this formed the suburban recessionary zone.
The variation in CDEI values in this zone began to decline after experiencing a peak, at a
rate of about −2.50%, and the average CDEI value in this zone dropped to 79.26% of the
average level of the peak group. For distances beyond 31 km from the center, this formed
the exterior balanced zone. The variation in CDEI values declined further, but the rate of
reduction was small because the CDEI value basically tended to be stable, remaining at
about 57.98% of the average level of the peak group.

Table 5. Results for the spatial zoning patterns in Nanjing.

Distance (km) Value and Trend Rate of Change Spatial Zoning

0–7 low value, increasing slow growth central budding zone
7–16 middle value, increasing rapid growth interior burgeoning zone
16–21 high value, stable steady urban peak zone
21–31 middle to high value, decreasing intermediate reduction suburban recessionary zone
>31 middle value, decreasing very slow reduction exterior balanced zone

Figure 10a clearly reflects the layout of spatial zoning of CDEs inside Nanjing. The
central budding zone occupies the four core districts (FCD) of Gulou, Xuanwu, Qinhuai,
and Jianye and is the core area where more than half of Nanjing’s urban residents live and
work. Although this area is dominated by urban built-up areas, it also protects large green
spaces and water bodies, such as Zijin Hill and Xuanwu Lake. Because these open spaces
could reduce the emission efficiency related to the urban heat island effect [57], this ensured
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that the CDEI value was relatively low. This also validated the results of the regression
model, that is, CDEs had a small, or even a negative, correlation with the variable POP.
This showed that, although the population of FCD is dense, CDEs were more affected by
energy consumption and industrial processes.
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The distribution characteristics of the interior burgeoning zone, urban peak zone, and
suburban recessionary zone also supported this result. Extending outward from the FCD, a
large number of steel, petrochemical, electric power industries, and economic development
zones (EDZ) dominated by manufacturing industry are located, which are the areas of
carbon source concentration in Nanjing. This area includes the Sinopec Jinling Company
and Longtan harbor along the Yangtze River in Qixia District, Nanjing Chemical Industry
Park (CIP), and Liuhe EDZ in Liuhe District, which are located to the north of the FCD.
It also includes Shanghai Meishan Iron & Steel Co., Ltd. (Nanjing, China), Jiangning
Development Zone, and Lishui EDZ, which are located in the south of the FCD. Pukou
EDZ is located in west of the FCD (Figure 10b). In addition, a large number of new satellite
towns have been built in these areas. In general, the greater the distance from the city center,
the higher the proportion of transport energy consumption [58]. This leads to energy use
for transport that is greater in the satellite towns than in the FCD. However, as a city where
hills are a natural feature, the extent of hill volume in the suburban recessionary zone has
gradually increased in Nanjing, including the hills of Lao, Heng, Baohua, Tang, etc., all
playing an important role as carbon sinks. This is also the main reason for the decline in
CDEI in this zone compared to the urban peak zone.

The exterior balanced zone is composed mainly of a large area of cultivated land and a
large number of scattered rural settlements, which are used mainly to ensure food security
in the city. Since chemical fertilizers, agricultural machinery, and pesticides are widely
used in agricultural production [59], there is also a certain degree of carbon emissions
originating from cultivated land. At the same time, ecological green spaces, such as Ping
Hill and Wuxiang Hill, at the periphery also play a role in carbon reduction, so that the
CDEI in this zone has basically reached a stable state while generally declining.

4. Discussion

Obviously, the industrial energy consumption sector is the largest contributor to CDEs
in Nanjing. As previous studies have revealed, carbon emissions from industrial pro-
cesses relate mainly to emissions from the chemical or physical transformation of materials
during industrial production. The four major industries, namely, the automobile indus-
try, steel production, electronic components manufacturing, and petrochemical materials,
have become large and comprehensive emitters, accounting for more than 90% of total
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energy consumption, and emphasize that Nanjing has insufficient diversity in its energy
consumption structure and a high dependence on the consumption of traditional energy
sources [60]. According to the statistics, by the year 2016, the petrochemical industry was
responsible for releasing 86.39 million tons of CDEs, which accounted for 82% of total
industrial CDEs [61]. Although the petrochemical industry is considered to be a highly
polluting emitter of CDEs, it plays a key role in the process of industrialization-based urban-
ization in Nanjing through its important function of providing employment and integrating
various industries [62]. In recent years, however, Nanjing has promoted the upgrading of
the heavy chemicals industry and of innovations in production technology and processes.
Nevertheless, Nanjing is also facing constraints related to investment, production costs, and
shrinking markets, so there is great pressure to ensure energy conservation and emissions
reduction in traditional industries.

Moreover, the relatively low levels of CDEI in the FCD indicate that the carbon emis-
sions of more compact urban districts—that is, built-up areas characterized by relatively
high densities, mixed land use, and pedestrian-oriented habitation patterns—are lower
than those of dispersed districts [13]. Similar phenomena have been observed in many
developed cities in Italy [63], Canada [64], and Japan [11]. Many researchers believe that the
development of urban spatial patterns involving the spatial evolution and replacement of
various socioeconomic elements, including economic activities, population, urban land use,
and various public facilities, could affect the generation and diffusion of CDEs to a great
extent [65]. For example, a compact urban spatial development pattern could efficiently
shorten the distance and time taken by people to commute to work, making them more
inclined to use public transportation, and thereby reducing CDEs [66]. In addition, urban
green ecological spaces are also crucial for carbon absorption, through photosynthesis by
vegetation, particularly in the central budding and exterior balanced zones.

As a microcosm of YRDUA, the results of studies on Nanjing show that urban ag-
glomerations are highly concentrated areas of population and economic activities, which
inevitably lead to environmental pollution and CDEs driven by rapid industrialization and
urbanization [67]. Such problems of environmental pollution characterized by CDEs have
become a major obstacle to high-quality regional development. This means that carbon
emissions are not only an environmental problem but also a development problem, espe-
cially for developing countries that are in the process of industrialization and urbanization.
The Chinese government has pledged that carbon emissions will peak around 2030 and
then begin to decline according to the “dual carbon” target. Combined with the research
conclusions of this paper, we believe that it is necessary to emphasize the importance of
spatial layout optimization even further in order to achieve the low-carbon economy that
China is striving to reach.

The Chinese government’s newly established territorial spatial planning strategy is
one of the most important land-use and urban layout strategies currently in use in China.
Its benefits could be realized through a process of identifying and delimiting important
ecological, agricultural, and urban areas using integrated, detailed, and special master
plans at the national, provincial, city, county, and township levels [68]. That is to say,
territorial spatial planning can adequately determine future land use through adjustments
to land-use types, land-use intensity, and spatial distribution. Targeting the aim of carbon
reduction, specifically, the formulation and implementation of territorial spatial planning
at the city level should help to explore the relationship between economic development
of different county units and CDEs within cities. Combined with the characteristics of the
different modes and stages of urban development, targeted and differentiated low-carbon
development strategies should also be proposed. In particular, an index system composed
of total CDEs, carbon aggregates, CDEI, carbon sink intensity, etc., needs to be established
and then converted to spatial planning elements to promote differentiated carbon emissions
reduction goals, methods, and countermeasures to achieve sustainable low-carbon spatial
planning guidance. Strategies such as carbon trading and carbon compensation, initially
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proposed by developed countries to cope with climate change in their planning practices,
are thus worthy of study in order to guide planning in the Chinese context [69,70].

5. Conclusions

This study aimed to analyze how to recognize the spatial heterogeneity of CDEs at
the intra-city level, and therefore reveal spatial zoning. Specifically, based on the CHRED
published in 2015, as well as gridded data for NTL, NDVI, and population, the contribution
of this paper is the proposal of a theoretical framework to solve two fundamental issues,
namely, (1) how to study the distribution of CDEs inside an urban area based on CHRED,
with relatively coarse spatial resolution, and (2) how to summarize the spatial pattern of
CDEs based on CEI trends and their spatial differentiation characteristics. Moreover, a
spatial interpolation method was used to convert the CDEs data for the original 10 km grid
into high-resolution resampled data; OLSM and SLM were then employed as models to
select the optimal resampled data according to the results of correlation analysis. Third,
multiple square layers surrounding the central portion of Nanjing and covering the entire
city were constructed in order to explore the variations in CEI along different layers from
inside to outside. Hence, the spatial zoning of CDEs in Nanjing was summarized according
to the value and rate of variation of CEI in the different layers, as well as the layers’ distances
to the center point of the city.

Overall, compared with previous studies, our study has revealed the spatial zoning
of CDEs inside Nanjing City for the first time. Several valuable conclusions were reached
through these analyses. In terms of variation, the CEDIs of the five zones showed an
inverted “U-shaped” trend that first increased, then decreased, and finally stabilized. In
terms of spatial pattern, this inverted “U-shaped” trend perfectly echoed what we men-
tioned in the theoretical framework, the scale and intensity of CDEs are largely influenced
by human economic and social activities and the structure, function, and pattern of a city
have significant impacts on CDEs. The findings are basically consistent with the existing
studies of the differences in CDEs between urban and suburban areas in large cities, such
as Tianjin [71], New York [72], and Toronto [73]. In fact, it is generally accepted that urban
areas have lower per capita CDEs levels than surrounding areas due to high population
density, high energy efficiency, centralized energy supply, and relatively sound public
transportation systems. In addition, zoning divisions based on CDEI values and their
variations are partly inspired by related topics, such as carbon neutral zoning [74] and
carbon offset zoning [75], and the results of this paper can also provide support for the
formulation of collaborative CDEs reduction schemes at the intra-city level.

Although we found the reasonable explanation for spatial zoning in Nanjing and
highlighted that the industrial energy consumption sector is the largest contributor to
CDEs, following a period of continuous urbanization and industrialization, the energy
consumption sector, represented by the petrochemical industry, is still one of the most
important sources of CDEs in the city. In the foreseeable future, the volume of CDEs
will continue to increase more significantly than the volume of carbon sequestration,
which needs to be balanced by a larger external ecosystem. It is clear that, as the area
of concentrated carbon sources in the city continues to increase, the CDEI of the interior
burgeoning zone, the urban peak zone, and the suburban recessionary zone will also
continue to increase. At the same time, its area of coverage will also continue to grow,
shrinking the existing exterior balanced zone. Industrial transformation is a possible means
to resolve the problem. The emerging information and communications technology (ICT)
industry has the potential to reduce carbon emissions [76]; therefore, Chinese megacities
such as Nanjing must make strategic decisions about how their ICT industry should grow
and expand.

Evidently, the limitations of this study should be mentioned and need to be addressed
in future studies.

(1) There are obvious scale issues in the study of carbon sources and carbon sinks in
terrestrial ecosystems, and this paper takes Nanjing as a sealed area, without consid-
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ering the carbon cycle relationship with terrestrial ecosystems in a larger spatial range
outside Nanjing.

(2) The resampled data for the spatial zoning division were derived from the 10 km
spatial resolution of CHRED, and this study has refined the resolution problem by
spatial interpolation in order to achieve spatial scale transformation. Therefore, the
resampled data can only reveal the spatial heterogeneity characteristics of Nanjing’s
CDEs from the overall spatial pattern; they cannot accurately match the grid cells in
the same locations.

(3) With the development of urbanization and industrialization in Nanjing, CDEs are
still in the process of dynamic change. Restricted by the difficulty of data collection
and matching, this paper obtained only basic data from 2015, because of which it
is impossible to carry out an empirical analysis of the annual changes in the spatial
zoning of CDEI. However, combined with the increasing population and fossil energy
consumption in Nanjing and the slow transformation of the industrial structure, the
scale of CDEs and their scope of influence arising from human activities and energy
consumption will continue to increase, the CDEI of the interior burgeoning zone, the
urban peak zone, and the suburban recessionary zone will also continue to increase,
and its coverage will also grow and continue to extend its range.
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