The Role of Big Data in Promoting Green Development: Based on the Quasi-Natural Experiment of the Big Data Experimental Zone
Abstract
:1. Introduction
2. Literature Review and Research Hypothesis
2.1. “Big Data” Concept and Policy Evolution
2.2. Green Economic Development
2.3. Big Data and Green Economic Development
2.4. Big Data, Factor Market Distortions, and Green Economic Development
3. Research Design
3.1. Measurement Model Setting
3.2. Description of Green Total Factor Productivity Index
3.3. Data Sources
4. Analysis of Benchmark Empirical Results
4.1. Benchmark Regression Analysis
4.1.1. DID with Multiple Time Periods Results
4.1.2. Balance Trend Test
4.2. PSM-DID Test
4.2.1. Propensity Score Matching Kernel Density Results
4.2.2. Propensity Score Matching Equilibrium Test
4.2.3. PSM-DID Test Results
4.3. Robustness Test
4.4. Robustness Test
5. Further Analysis
6. Conclusions and Discussion
6.1. Conclusions
6.2. Discussion
6.2.1. Theoretical Contributions
6.2.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, Z.X.; Zhou, Y.H. Digital Economy Development and Regional Total Factor Productivity: Based on the Analysis of National Big Data Comprehensive Experimental Zone. J. Financ. Econ. 2021, 47, 4–17. [Google Scholar]
- Li, T.Y.; Wang, X.J. Digital Economy Empowers China’s “Double Cycle” Strategy: Internal Logic and Realization Path. Economist 2021, 269, 102–109. [Google Scholar]
- Wang, F.Z.; Liu, X.L.; Zhang, L.; Cheng, W.C. Does digitalisation promote green technology innovation in resource-based companies? Stud. Sci. Sci. 2022, 40, 332–344. [Google Scholar]
- Chen, X.D.; Yang, X.X.; Cheng, W.C. The impact of digital economy development on industrial structure upgrading: A study based on grey correlation entropy and dissipative structure theory. Reform 2021, 325, 26–39. [Google Scholar]
- Goldfarb, A.; Tucker, C. Digital Economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef] [Green Version]
- Paunova, C.; Rollob, V. Has the Internet Fostered Inclusive Innovation in the Developing World. World Dev. 2016, 78, 587–609. [Google Scholar] [CrossRef] [Green Version]
- Han, X.F.; Song, W.F.; Li, B.X. Can the Internet become a new kinetic energy for the improvement of regional innovation efficiency in China? China Ind. Econ. 2021, 325, 26–39. [Google Scholar]
- Zhu, Y.Y.; Xiong, Y. Is Big Data Data Data, Technology or Application. Big Data 2015, 1, 78–88. [Google Scholar]
- Li, Y.; Ouyang, H.; Fang, K.; Ye, L.; Zhang, J. Evaluation of regional environmental efficiencies in China based on super-efficiency-DEA. Ecol. Indic. 2015, 51, 13–19. [Google Scholar]
- Fan, M.; Shao, S.; Yang, L. Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China). Energy Policy 2015, 79, 189–201. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Liang, Z.; Hu, S.; Xie, Y.; Wu, G. Effects of emission trading system on green total factor productivity in China: Empirical evidence from a quasi-natural experiment. J. Clean. Prod. 2021, 294, 126262. [Google Scholar] [CrossRef]
- Zhang, F.; Shao, J.J.; Zhou, L. Urban Green Innovation Effect of Environmental Decentralization. China Popul. Resour. Environ. 2021, 31, 83–92. [Google Scholar]
- Zhang, J.; Li, Z.F. Does foreign direct investment promote the growth of green total factor productivity in China?—An empirical test based on GMM estimation and threshold model of dynamic system. J. Int. Trade 2020, 451, 159–174. [Google Scholar]
- Zhang, Z.; Zheng, Y.Q.; Li, Y.J. Fiscal decentralization, government behavior and the growth of green total factor productivity. Collect. Essays Financ. Econ. 2020, 257, 22–33. [Google Scholar]
- Bai, J.H.; Bian, Y.C. Distortion of Factor Market and Efficiency Loss of Innovative Production in China. China Ind. Econ. 2016, 11, 39–55. [Google Scholar]
- Chen, J.W.; Jiang, N.P. The transmission mechanism of China’s OFDI technology innovation effect-based on the perspective of capital factor market distortion. J. Financ. Res. 2020, 482, 74–92. [Google Scholar]
- Li, B.Q.; Du, K.R. Influence of Market Distortion on Energy Efficiency. Econ. Res. J. 2013, 9, 125–136. [Google Scholar]
- Levinson, A. Technology, international trade, and pollution from US manufacturing. Am. Econ. Rev. 2009, 5, 2177–2192. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Qi, Z.H.; Liang, Y.L. Big Data, Financial Agglomeration and Green Technology Innovation. Rev. Econ. Manag. 2021, 37, 97–112. [Google Scholar]
- El-Kassar, A.N.; Singh, S.K. Green Innovation and organizational performance: The influence of big data and the moderating role of management commitment and HR practices. Technol. Forecast. Soc. Chang. 2019, 144, 483–498. [Google Scholar] [CrossRef]
- Chen, M.; Liu, H. The role of Big Data Analytics in enabling Green Supply Chain Management: A literature review. J. Data Inf. Manag. 2020, 2, 75–83. [Google Scholar]
- Wu, J.; Guo, S.; Li, J.; Zeng, D. Big data meet green challenges: Big data toward green applications. IEEE Syst. J. 2016, 3, 888–900. [Google Scholar] [CrossRef]
- Ghasemaghaei, M.; Calic, G. Assessing the impact of big data on firm innovation performance: Big data is not always better data. J. Bus. Res. 2020, 108, 147–162. [Google Scholar] [CrossRef]
- Xu, X.C.; Ren, X.; Chang, Z.H. Big Data and Green Development. China Ind. Econ. 2019, 373, 5–22. [Google Scholar]
- Caragliu, A.; Del Bo, C.F. Smart innovative cities: The impact of Smart City policies on urban innovation. Technol. Forecast. Soc. Chang. 2019, 142, 373–383. [Google Scholar] [CrossRef]
- Obashi, A.; Kimura, F. New developments in international production networks: Impact of digital technologies. Asian Econ. J. 2021, 35, 115–141. [Google Scholar] [CrossRef]
- Dou, J.M.; Ji, Y.B. Study on the influence characteristics of factor market distortion on the transformation of economic growth mode. Asia-Pac. Econ. Rev. 2018, 206, 101–111. [Google Scholar]
- Yang, H.Y. Characteristics of labor and capital market distortion on environmental pollution: An empirical study based on spatial econometrics. Contemp. Econ. 2017, 12, 134–136. [Google Scholar]
- Chen, W.; Chang, Q. Does Big Data Empower Enterprises to Innovate Green-Quasi-natural Experiment Based on National Big Data Comprehensive Experimental Zone. Financ. Econ. 2022, 413, 76–92. [Google Scholar]
- Midrigan, V.; Xu, D.Y. Finance and misallocation: Evidence from plant-level data. Am. Econ. Rev. 2014, 104, 422–458. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Lai, X.B.; Rui, H. How does financial technological innovation affect total factor productivity: Promote or inhibit? -theoretical analysis framework and regional practice. China Soft Sci. 2019, 343, 134–144. [Google Scholar]
- Bai, J.H.; Lu, J.Y.; Lu, S. Study on the Influence of Capital Market Distortion on Environmental Pollution—Based on the Analysis of Provincial Spatial Dynamic Panel Data. J. Nanjing Audit Univ. 2019, 16, 37–47. [Google Scholar]
- Zhang, X.F.; Fan, D.C. Research on the transformation of China’s low-carbon economy enabled by the development of digital economy-based on the analysis of the national big data comprehensive experimental area. In Science & Technology Progress and Policy; Science Press: Beijing China, 2023. [Google Scholar]
- Yue, H.F.; Xu, Y.; Zhou, J. Evaluation of industrial green total factor production rate and technological innovation in China. Shanghai J. Econ. 2018, 4, 52–61. [Google Scholar]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2008, 4, 274–287. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 km× 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Jacobson, L.S.; LaLonde, R.J.; Sullivan, D.G. Earnings losses of displaced workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital economy, entrepreneurial activity and high-quality development. J. Manag. World 2020, 36, 65–76. [Google Scholar]
- Sun, Z.Y.; Song, F.H. Can the change of urban transportation reduce carbon emissions?—Empirical evidence based on double difference model. J. Arid Land Resour. Environ. 2022, 36, 1–8. [Google Scholar]
- Zhan, Y.; Li, S. Smart city construction, entrepreneurial vitality and high-quality economic development—Analysis based on the perspective of green total factor productivity. J. Financ. Econ. 2022, 48, 4–18. [Google Scholar]
- Zhao, Z.Y.; Liu, X.L.; Lv, B.Y. China factor output elasticity estimation. Shanghai J. Econ. 2006, 6, 5–11. [Google Scholar]
- Cheng, W.X.; Qian, X.F. Digital Economy and the Growth of Industrial Green Total Factor Productivity in China. Explor. Econ. Probl. 2021, 8, 124–140. [Google Scholar]
- Dai, X.; Ma, H.W.; Yang, S.Z. The influence of digital infrastructure on GVC division of labor in manufacturing. Int. Bus. 2022, 5, 20–35. [Google Scholar]
- Xie, X.J. How the distortion of factor market affects the green total factor productivity—Based on the empirical data of prefecture-level cities. Financ. Trade Res. 2019, 6, 36–46. [Google Scholar]
- Bian, Y.C.; Bai, J.H. Can regional market integration enhance the capacity utilization rate of enterprises? J. Financ. Econ. 2021, 11, 64–77. [Google Scholar]
- Ren, X.G.; Li, G.N.; Rui, W. Development of Digital Economy, Marketization of Factors and Changes of Regional Disparities. China Bus. Mark. 2022, 1, 55–70. [Google Scholar]
Variables | POLS | Reghdfe | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
did | 0.086 ** | 0.077 ** | 0.086 ** | 0.077 ** |
(2.185) | (1.988) | (2.274) | (2.071) | |
Fiscal | 0.119 | 0.119 | ||
(1.118) | (1.165) | |||
Fdi | −1.520 * | −1.520 * | ||
(−1.779) | (−1.853) | |||
Urban | 0.049 | 0.049 | ||
(0.411) | (0.428) | |||
Ind | −0.002 | −0.002 | ||
(−1.408) | (−1.467) | |||
Sic | 0.089 | 0.089 | ||
(0.126) | (0.131) | |||
Constant | 9.960 *** | 9.807 *** | 10.009 *** | 9.786 *** |
(534.695) | (18.169) | (2965.345) | (14.390) | |
Time fixed effect | YES | YES | YES | YES |
Urban fixed effect | YES | YES | YES | YES |
N | 3640 | 3539 | 3640 | 3537 |
R2 | 0.198 | 0.203 | 0.198 | 0.203 |
Treat Group Mean | Control Group Mean | Differential | T-Value | p-Value | ||
---|---|---|---|---|---|---|
Fiscal | Before | 0.498 | 0.466 | 14.4 | 3.79 | 0.000 |
After | 0.498 | 0.513 | −6.9 | −1.51 | 0.130 | |
Fdi | Before | 0.022 | 0.017 | 25.7 | 7.24 | 0.000 |
After | 0.022 | 0.021 | 1.7 | 0.38 | 0.706 | |
Urban | Before | 6.033 | 5.846 | 27.9 | 7.68 | 0.000 |
After | 6.033 | 6.049 | −2.4 | −0.58 | 0.561 | |
Ind | Before | 48.181 | 47.914 | 2.6 | 0.69 | 0.490 |
After | 48.181 | 48.249 | −0.7 | −0.15 | 0.878 | |
Sic | Before | 0.0311 | 0.032 | −4.5 | −1.21 | 0.225 |
After | 0.031 | 0.031 | −1.1 | −0.28 | 0.776 |
(1) | (2) | (3) | |
---|---|---|---|
Radius Matching | Marginal Distance Matching | Kernel Density | |
did | 0.076 ** | 0.077 ** | 0.077 ** |
(2.066) | (2.071) | (2.157) | |
Fiscal | 0.116 | 0.119 | 0.053 |
(1.059) | (1.165) | (0.526) | |
Fdi | −1.559 * | −1.520 * | −1.502 |
(−1.789) | (−1.853) | (−1.614) | |
Urban | 0.054 | 0.049 | 0.161 |
(0.397) | (0.428) | (1.441) | |
Ind | −0.002 | −0.002 | -0.001 |
(−1.387) | (−1.467) | (−1.044) | |
Sic | 0.007 | 0.089 | −1.738 *** |
(0.005) | (0.131) | (−2.781) | |
Constant | 9.760 *** | 9.786 *** | 9.182 *** |
(12.452) | (14.390) | (13.866) | |
Time fixed effect | YES | YES | YES |
Urban fixed effect | YES | YES | YES |
N | 3535 | 3537 | 3533 |
R2 | 0.203 | 0.203 | 0.207 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
First Stage (DID) | Second Stage (GTFP) | Exclusion of Other Policy Factors | Policy Exogenous | Replace GTFP | |
DID | 1.146 ** | 0.081 ** | 0.086 ** | 0.030 ** | |
(2.12) | (2.176) | 2.23 | (2.122) | ||
IV | 0.072 *** | ||||
(6.06) | |||||
Web | 0.062 ** | ||||
(2.237) | |||||
DID_before | 0.078 | ||||
(1.63) | |||||
Time fixed effect | YES | YES | YES | YES | YES |
Urban fixed effect | YES | YES | YES | YES | YES |
N | 3357 | 3357 | 3537 | 3539 | 3537 |
R2 | 0.449 | 0.044 | 0.204 | 0.203 | 0.196 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
High Level of Human Capital | Low Level of Human Capital | High Level of Financial Development | Low Level of Financial Development | High Level of Economic Activity | Low Level of Economic Activity | |
did | 0.085 *** | 0.073 | 0.130 * | 0.055 | 0.109 ** | 0.035 |
(2.834) | (1.077) | (1.852) | (1.560) | (2.586) | (0.615) | |
Fiscal | −0.066 | 0.277 | 0.169 | 0.041 | −0.028 | 0.128 |
(−0.628) | (1.653) | (0.782) | (0.355) | (−0.205) | (0.895) | |
Fdi | −0.444 | −2.020 * | −2.504 | −0.521 | 0.484 | −2.861 ** |
(−0.540) | (−1.949) | (−1.500) | (−0.863) | (0.610) | (−2.549) | |
Urban | 0.392 * | 0.060 | 0.034 | 0.091 | 0.010 | 0.002 |
(1.717) | (0.523) | (0.206) | (0.634) | (0.068) | (0.010) | |
Ind | −0.003 * | 0.002 | −0.003 | −0.002 | −0.003 ** | −0.003 |
(−1.954) | (0.825) | (−1.176) | (−0.785) | (−2.197) | (−1.032) | |
Sic | 0.699 | −1.910 ** | 0.524 | −1.932 *** | 0.809 | −3.147 *** |
(0.929) | (−2.035) | (0.732) | (−2.864) | (1.063) | (−3.434) | |
Constant | 7.816 *** | 9.552 *** | 9.899 *** | 9.593 *** | 10.071*** | 10.253 *** |
(5.846) | (13.732) | (9.903) | (11.173) | (12.758) | (8.699) | |
Time fixed effect | YES | YES | YES | YES | YES | YES |
Urban fixed effect | YES | YES | YES | YES | YES | YES |
N | 1711 | 1810 | 1712 | 1787 | 1672 | 1849 |
R2 | 0.197 | 0.219 | 0.231 | 0.222 | 0.186 | 0.238 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Labor Mismatch | Labor Mismatch | Capital Mismatch | Capital Mismatch | |
did | 0.031 | 0.028 | 0.047 * | 0.056 ** |
(1.528) | (1.426) | (1.859) | (2.220) | |
did_staul | −0.076 * | −0.070 * | ||
(−1.890) | (−1.726) | |||
abstaul | 0.049 | 0.072 | ||
(1.110) | (1.467) | |||
did_stauk | −0.163 ** | −0.202 *** | ||
(−2.334) | (−2.873) | |||
abstauk | −0.012 | −0.008 | ||
(−0.372) | (−0.258) | |||
Constant | 9.953 *** | 9.838 *** | 9.972 *** | 9.731 *** |
(681.433) | (43.778) | (1457.815) | (41.856) | |
Controls | NO | NO | NO | NO |
Time fixed effect | YES | YES | YES | YES |
Urban fixed effect | YES | YES | YES | YES |
N | 3640 | 3537 | 3640 | 3537 |
R2 | 0.104 | 0.112 | 0.104 | 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zhang, X. The Role of Big Data in Promoting Green Development: Based on the Quasi-Natural Experiment of the Big Data Experimental Zone. Int. J. Environ. Res. Public Health 2023, 20, 4097. https://doi.org/10.3390/ijerph20054097
Wei J, Zhang X. The Role of Big Data in Promoting Green Development: Based on the Quasi-Natural Experiment of the Big Data Experimental Zone. International Journal of Environmental Research and Public Health. 2023; 20(5):4097. https://doi.org/10.3390/ijerph20054097
Chicago/Turabian StyleWei, Jiangying, and Xiuwu Zhang. 2023. "The Role of Big Data in Promoting Green Development: Based on the Quasi-Natural Experiment of the Big Data Experimental Zone" International Journal of Environmental Research and Public Health 20, no. 5: 4097. https://doi.org/10.3390/ijerph20054097
APA StyleWei, J., & Zhang, X. (2023). The Role of Big Data in Promoting Green Development: Based on the Quasi-Natural Experiment of the Big Data Experimental Zone. International Journal of Environmental Research and Public Health, 20(5), 4097. https://doi.org/10.3390/ijerph20054097