Maternal Prepregnancy Obesity Affects Foetal Growth, Birth Outcome, Mode of Delivery, and Miscarriage Rate in Austrian Women
Abstract
:1. Introduction
- (1)
- Overweight or obese mothers are more likely to experience preterm birth (<37 gestational weeks), they have a history of more miscarriages, and a higher rate of caesarean section than normal-weight mothers.
- (2)
- Among term birth (≥37 gestational weeks), the newborns of overweight or obese mothers are larger and heavier, but show lower APGAR scores than newborns of normal-weight mothers.
- (3)
- Among term birth (≥37 gestational weeks), spontaneous delivered newborns of primiparous overweight or obese mothers have a higher risk of oxygen deficiency.
2. Materials and Methods
2.1. Dataset and Study Design
2.2. Newborn Parameters
2.3. Maternal Parameters
2.4. Obstetrical Parameters
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Maternal and Obstetrical Characteristics According to Maternal Weight Status
3.3. Newborn Characteristics According to Maternal Weight Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Obesity and Overweight. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 5 November 2022).
- Ford, N.D.; Patel, S.A.; Narayan, V. Obesity in Low-and middle-income countries; Burden, Drivers and Emerging Challenges. Ann. Rev. Public Health 2017, 38, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Poobalan, A.; Aucott, L. Obesity Among Young Adults in Developing Countries: A Systematic Overview. Curr. Obes. Rep. 2016, 5, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Lavie, C.J.; Milani, R.V. Obesity and cardiovascular disease: The hippocrates paradox. J. Am. Coll. Cardiol. 2003, 42, 677–679. [Google Scholar] [CrossRef] [Green Version]
- Lega, I.C.; Lipscombe, L.L. Review: Diabetes, Obesity and Cancer—Pathophysiology and Clinical Implications. Endocr. Rev. 2019, 41, 33–52. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, A.O.; Gibson, M.; Peterson, C.M.; Meikle, A.W.; Carrell, D.T. Impact of male obesity on infertility: A critical review of the current literature. Fertil. Steril. 2008, 90, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Harreiter, J.; Kautzky-Willer, A. Gender Obesity Report—Einfluss von Adipositas auf Reproduktion und Schwangerschaft. Wiener. Med. Wochenschr. 2016, 166, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Obesity Update—OECD. 2017. Available online: https://www.oecd.org/health/obesity-update.htm (accessed on 7 November 2022).
- Bodnar, L.M.; Ness, R.B.; Markovic, N.; Roberts, J.M. The risk of preeclampsia rises with increasing prepregnancy body mass index. Ann. Epidemiol. 2005, 15, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.Y.; Kim, S.Y.; Schmid, C.H.; Dietz, P.M.; Callaghan, W.M.; Lau, J.; Curtis, K.M. Maternal obesity and risk of cesarean delivery: A meta-analysis. Obes. Rev. 2007, 8, 385–394. [Google Scholar] [CrossRef]
- O’Dwyer, V.; Turner, M.J. Caesarean Section and Maternal Obesity. In Cesarean Delivery; Salim, R., Ed.; IntechOpen Limited: London, UK, 2012; Available online: http://www.intechopen.com/books/cesarean-delivery/caesarean-section-and-maternal-obesity (accessed on 17 September 2022).
- Kirchengast, S.; Hartmann, B. Recent Lifestyle Parameters Are Associated with Increasi. ng Caesarean Section Rates among Singleton Term Births in Austria. Int. J. Environ. Res. Public Health 2019, 16, 14. [Google Scholar] [CrossRef] [Green Version]
- Lewandowska, M. Maternal Obesity and Risk of Low Birth Weight, Fetal Growth Restriction, and Macrosomia: Multiple Analyses. Nutrients 2021, 13, 1213. [Google Scholar] [CrossRef]
- Johansson, S.; Sandstrom, A.; Cnattingius, S. Maternal overweight and obesity increase the risk of fetal acidosis during labor. J. Perinatol. 2018, 38, 1144. [Google Scholar] [CrossRef]
- Masoud, I.; Al-Fadhil, F.A.; Padmakumar, H.; Al-Alawi, A.; Al-Bahri, Z.A.; Al-Rawahi, N.A.; Al-Balushi, L.H.; Al-Dhanki, M.S.; Kurup, P.J.; Al-Hakmani, F.M.; et al. The Effect of Obesity on Pregnancy and Its Outcome in the Population of Oman, Seeb Province. Oman Med. J. 2016, 31, 12–17. [Google Scholar] [CrossRef]
- Athukorala, C.; Rumbold, A.R.; Willson, K.J.; Crowther, C.A. The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth 2010, 10, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aviram, A.; Hod, M.; Yogev, Y. Maternal obesity: Implications for pregnancy outcome and long-term risks–a link to maternal nutrition. Int. J. Gynecol. Obstet. 2011, 115, S6–S10. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, R.; Durmuş, B.; Hofman, A.; Mackenbach, J.P.; Steegers, E.A.; Jaddoe, V.W. Risk factors and outcomes of maternal obesity and excessive weight gain during pregnancy. Obesity 2013, 21, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, R.; Santos, S.; Duijts, L.; Felix, J.F. Childhood Health Consequences of Maternal Obesity during Pregnancy: A Narrative Review. Ann. Nutr. Metabol. 2017, 69, 171–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poston, L. Maternal obesity, gestational weight gain and diet as determinants of offspring long term health. Best Prac. Res. Clin. Endocrinol. Metabol. 2012, 26, 627–639. [Google Scholar] [CrossRef]
- Rodriguez, A.; Miettunen, J.; Henriksen, T.B.; Olsen, J.; Obel, C.; Taanila, A.; Ebeling, H.; Linnet, K.M.; Moilanen, I.; Järvelin, M.R. Maternal adiposity prior to pregnancy is associated with ADHD symptoms in offspring: Evidence from three prospective pregnancy cohorts. Int. J. Obes. 2008, 32, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, C.E.; Barry, C.; Sabhlok, A.; Russell, K.; Majors, A.; Kollins, S.H.; Fuemmeler, B.F. Maternal pre-pregnancy obesity and child neurodevelopmental outcomes: A meta-analysis. Obes. Rev. 2018, 19, 464–484. [Google Scholar] [CrossRef]
- Boots, C.E.; Stephenson, M.D. Does obesity increase the rate of miscarriage in spontanous conception: A systematic review. Fertil. Steril. 2011, 96, S284. [Google Scholar] [CrossRef]
- Ghimire, P.R.; Akombi-Inyang, B.J.; Tannous, C.; Agho, K.E. Association between obesity and miscarriage among women of reproductive age in Nepal. PLoS ONE 2020, 15, e0236435. [Google Scholar] [CrossRef] [PubMed]
- Brewer, C.J.; Balen, A.H. The adverse effects of obesity on conception and implantation. Reproduction 2010, 140, 347–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebire, N.J.; Jolly, M.; Harris, J.P.; Wadsworth, J.; Joffe, M.; Beard, R.W.; Regan, L.; Robinson, S. Maternal obesity and pregnancy outcome: A study of 287 213 pregnancies in London. Int. J. Obes. 2001, 25, 1175–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, S.Y.; Kim, S.Y.; Lau, J.; Schmid, C.H.; Dietz, P.M.; Callaghan, W.M.; Curtis, K.M. Maternal obesity and risk of stillbirth: A metaanalysis. Am. J. Obstet. Gynecol. 2007, 197, 223–228. [Google Scholar] [CrossRef]
- Lindam, A. High Maternal Body Mass Index in Early Pregnancy and Risks of Stillbirth and Infant Mortality-A Population-Based Sibling Study in Sweden. Am. J. Epidemiol. 2016, 184, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Marchi, J.; Berg, M.; Dencker, A.; Olander, E.K.; Begley, C. Risks associated with obesity in pregnancy, for the mother and baby: A systematic review of reviews. Obesity Rev. 2015, 16, 621–638. [Google Scholar] [CrossRef]
- Stothard, K.J.; Tennant, P.W.; Bell, R.; Rankin, J. Maternal overweight and obesity and the risk of congenital anomalies: A systematic review and meta-analysis. JAMA 2009, 301, 636–650. [Google Scholar] [CrossRef]
- Jolly, M.C.; Sebire, N.J.; Harris, J.P.; Regan, L.; Robinson, S. Risk factors for macrosomia and its clinical consequences: A study of 350,311 pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 111, 9–14. [Google Scholar] [CrossRef]
- Kirchengast, S. Increasing incidence of macrosomia: The impact of maternal somatic and behavioral parameters on newborn weight status. In Obesity and Syndrome X: A Global Public Health Burden; Das, M., Bose, K., Eds.; Nova Science Publishers: New York, NY, USA, 2019; pp. 143–166. [Google Scholar]
- Schummers, L.; Hutcheon, J.A.; Bodnar, L.M.; Lieberman, E.; Himes, K.P. Risk of Adverse Pregnancy Outcomes by Prepregnancy Body Mass Index: A Population-Based Study to Inform Prepregnancy Weight Loss Counseling. Obstet. Gynecol. 2015, 125, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.C.; Shah, I.; Pell, J.P.; Crossley, J.A.; Dobbie, R. Maternal Obesity in Early Pregnancy and Risk of Spontaneous and Elective Preterm Deliveries: A Retrospective Cohort Study. Am. J. Public Health 2007, 97, 157–162. [Google Scholar] [CrossRef]
- Persson, M.; Johansson, S.; Villamor, E.; Cnattingius, S. Maternal overweight and obesity and risks of severe birth-asphyxia-related complications in term infants: A population-based cohort study in Sweden. PLoS Med. 2014, 11, e1001648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam, H.M.; Saleem, S.; Afzal, R.; Iqbal, U.; Saleem, S.M.; Shaikh MW, A.; Shahid, N. Risk factors of birth asphyxia. Ital. J. Pediatr. 2014, 40, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso-Alconada, D.; Hassell, K.J.; Robertson, N.J. Birth Asphyxia: Prevalence, Causes, Clinical Progression and Neuroprotection. In Asphyxia: Risk Factors, Prevalence and Neurological Impacts; Santos, A.R., Ed.; Nova Science Publishers: New York, NY, USA, 2015; pp. 5–20. [Google Scholar]
- Goodwin, T.M.; Belai, I.; Hernandez, P.; Durand, M.; Paul, R.H. Asphyxial complications in the term newborn with severe umbilical acidemia. Am. J. Obstet. Gynecol. 1992, 167, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Heller, G.; Schnell, R.; Misselwitz, B.; Schmidt, S. Umbilical blood pH, Apgar scores, and early neonatal mortality. Zeitschr Geburtshilfe Neonatol. 2003, 207, 84–89. [Google Scholar] [CrossRef]
- Malin, G.L.; Morris, R.K.; Khan, K.S. Strength of association between umbilical cord pH and perinatal and long term outcomes: Systematic review and meta-analysis. BMJ 2010, 340, c1471. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Tang, J.; Zhao, F.; Qu, Y.; Mu, D. Association between maternal obesity and offspring Apgar score or cord pH: A systematic review and meta-analysis. Sci. Rep. 2015, 5, 18386. [Google Scholar] [CrossRef] [Green Version]
- Statistik Austria. Demographic Yearbook 2021. 2021. Available online: https://www.statistik.at/services/tools/services/publikationen/detail/972 (accessed on 17 November 2022).
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. NCHS Data Brief. 2020, 360, 1–8. [Google Scholar]
- Araujo Júnior, E.; Peixoto, A.B.; Zamarian AC, P.; Elito Júnior, J.; Tonni, G. Macrosomia. Best Prac. Res. Clinl. Obstet. Gynaecol. 2017, 38, 83–96. [Google Scholar] [CrossRef]
- Apgar, V. A proposal for a new method of evaluation of the newborn infant. Curr. Res. Anesth. Analg. 1953, 32, 260–267. [Google Scholar] [CrossRef]
- Mogos, M.; Herghelegiu, C.G.; Ioan, R.G.; Ionescu, C.A.; Neacsu, A. Determining an Umbilical Cord pH Cutoff Value for Predicting Neonatal Morbidity Related to Intrapartum Hypoxia. Rev. Chim. 2019, 70, 605–607. [Google Scholar] [CrossRef]
- Uslu, S.; Bulbul, A.; Can, E.; Zubarioglu, U.; Salihoglu, O.; Nuhoglu, A. Relationship Between Oxygen Saturation and Umbilical Cord pH Immediately After Birth. Pediatr. Neonatol. 2012, 53, 340–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation. Physical Status: The Use and Interpretation of Anthropometry; WHO Technical Report Series; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Kirchengast, S.; Hartmann, B. Pregnancy Outcome during the First COVID 19 Lockdown in Vienna, Austria. Int. J. Environ. Res. Public Health 2021, 18, 3782. [Google Scholar] [CrossRef] [PubMed]
- Motedayen, M.; Rafiei, M.; Rezaei Tavirani, M.; Sayehmiri, K.; Dousti, M. The relationship between body mass index and preeclampsia: A systematic review and meta-analysis. Int. J. Reprod. Biomed. 2019, 17, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Syngelaki, A.; Maiz, N.; Zinevich, Y.; Nicolaides, K.H. Maternal age and adverse pregnancy outcome: A cohort study. Ultrasound Obstet. Gynecol. 2013, 42, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Deierlein, A.; Siega-Riz, A.M. Long-term consequences of obesity in pregnancy for the mother. In Maternal Obesity; Gillman, M., Poston, L., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 81–86. [Google Scholar] [CrossRef]
- Forno, E.; Young, O.M.; Kumar, R.; Simhan, H.; Celedón, J.C. Maternal obesity in pregnancy, gestational weight gain, and risk of childhood asthma. Pediatrics 2014, 134, e535–e546. [Google Scholar] [CrossRef] [Green Version]
- Tenenbaum-Gavish, K.; Hod, M. Impact of Maternal Obesity on Fetal Health. Fetal Diagn. Ther. 2013, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stotland, N.E.; Caughey, A.B.; Breed, E.M.; Escobar, G.J. Risk factors and obstetric complications associated with macrosomia. Int. J. Gynecol. Obstet. 2004, 87, 220–226. [Google Scholar] [CrossRef]
- Gibbons, L.; Belizán, J.M.; Lauer, J.A.; Betrán, A.P.; Merialdi, M.; Althabe, F. The global numbers and costs of additionally needed and unnecessary caesarean sections performed per year: Overuse as a barrier to universal coverage. World Health Rep. 2010, 30, 1–31. [Google Scholar]
- Heslehurst, N.; Simpson, H.; Ells, L.J.; Rankin, J.; Wilkinson, J.; Lang, R.; Brown, T.J.; Summerbell, C.D. The impact of maternal BMI status on pregnancy outcomes with immediate short-term obstetric resource implications: A meta-analysis. Obes. Rev. 2008, 9, 635–683. [Google Scholar] [CrossRef] [Green Version]
- van Ham MA, P.C.; van Dongen PW, J.; Mulder, J. Maternal consequences of caesarean section. A retrospective study of intra-operative and postoperative maternal complications of caesarean section during a 10-year period. Eur. J. Obstet. Gynecol. Reprod. Biol. 1997, 74, 1–6. [Google Scholar] [CrossRef]
- Weiss, J.L.; Malone, F.D.; Emig, D.; Ball, R.H.; Nyberg, D.A.; Comstock, C.H.; Saade, G.; Eddleman, K.; Carter, S.M.; Craigo, S.D.; et al. Obesity, obstetric complications and cesarean delivery rate–a population-based screening study. Am. J. Obstet. Gynecol. 2004, 190, 1091–1097. [Google Scholar] [CrossRef]
- Whitty, R.J.; Maxwell, C.V.; Carvalho JC, A. Complications of neuraxial anesthesia in an extreme morbidly obese patient for cesarean section. Intl. J. Obstet. Anesth. 2007, 16, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Ri, M.; Aikou, S.; Seto, Y. Obesity as a surgical risk factor. Ann. Gastroenterol. Surg. 2018, 2, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Eskild, A.; Nesheim, B.-I.; Busund, B.; Vatten, L.; Vangen, S. Childbearing or induced abortion: The impact of education and ethnic background. Population study of Norwegian and Pakistani women in Oslo, Norway. Acta Obstet. Gynecol. Scand. 2007, 86, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Pigeyre, M.; Rousseaux, J.; Trouiller, P.; Dumont, J.; Goumidi, L.; Bonte, D.; Dumont, M.-P.; Chmielewski, A.; Duhamel, A.; Amouyel, P.; et al. How obesity relates to socio-economic status: Identification of eating behavior mediators. Int. J. Obes. 2016, 40, 1794–1801. [Google Scholar] [CrossRef]
- Newton, S.; Braithwaite, D.; Akinyemiju, T.F. Socio-economic status over the life course and obesity: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0177151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, S.R. The Use of BMI in the Clinical Setting. Pediatrics 2009, 124 (Suppl. 1), S35–S41. [Google Scholar] [CrossRef] [Green Version]
Maternal and Newborn Parameters | Mean (SD) | Range | n |
---|---|---|---|
Age (years) | 30.0 (5.6) | 15.0–45.5 | 15,405 |
Body height (cm) | 165.4 (6.3) | 140–193 | 15,405 |
Prepregnancy weight (kg) | 66.0 (14.4) | 35–162 | 15,400 |
End of pregnancy weight (kg) | 80 (14.6) | 43–172 | 14,406 |
Gestational weight gain (kg) | 14.0 (6.0) | −30–43 | 14,403 |
Prepregnancy BMI (kg/m2) | 24.08 (4.98) | 13.39–61.33 | 15,353 |
<18.50 kg/m2 | 952 (6.2%) | ||
18.50–24.99 kg/m2 | 9398 (61.0%) | ||
25.00–29.99 kg/m2 | 3160 (20.5%) | ||
30.00–39.99 kg/m2 | 1653 (10.7%) | ||
≥40 kg/m2 | 190 (1.2%) | ||
Number of pregnancies | 2.3 (1.4) | 1–15 | 15,405 |
Number of births | 1.8 (0.9) | 1–12 | 15,405 |
Number of miscarriages | 0.5 (0.8) | 0–14 | 15,405 |
First-time mothers | 7098 (46.1%) | ||
Preterm birth | 953 (6.2%) | ||
Birth mode | |||
Spontaneous vaginal delivery | 12,128 (78.8%) | ||
Vacuum extraction/Forceps | 820 (5.3%) | ||
Planned Caesarean section | 1099 (7.1%) | ||
Emergency Caesarean section | 1350 (8.8%) | ||
Birth presentation | |||
Cephalic presentation | 14,523 (94.7%) | ||
Breech presentation | 757 (4.9%) | ||
Transverse presentation | 47 (0.4%) | ||
Newborn sex | |||
female | 7449 (48.4%) | ||
male | 7974 (51.6%) | ||
Birth length (cm) | 50.6 (2.6) | 28.0–56.0 | 15,382 |
Head circumference (cm) | 34.2 (1.7) | 21.5–53.0 | 15,375 |
Birth weight (g) | 3385.6 (540.0) | 470–5350 | 15,405 |
<2500 g | 740 (11.1%) | ||
2500–3999 g | 12,970 (84.2%) | ||
≥4000 g | 1695 (11.0%) | ||
APGAR value 1 min | |||
APGAR value 5 min | |||
APGAR value 10 min | |||
pH value (arterial cord blood) | 7.3 (0.1) | 6.5–7.7 | 5554 |
pH value (venous cord blood) | 7.3 (0.2) | 6.9–7.7 | 5470 |
Maternal Weight Status | ||||||
---|---|---|---|---|---|---|
Underweight | Normal Weight | Overweight | Obese | Class III Obese | p-Value | |
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | ||
Age (years) | 28.1 (5.9) | 30.0 (5.5) | 30.3 (5.6) | 30.3 (5.5) | 30.5 (5.4) | <0.001 a,b,c,d |
Height (cm) | 165.7 (6.2) | 165.6 (6.3) | 165.1 (6.4) | 165.1 (6.2) | 166.3 (5.8) | <0.001 b |
PPW (kg) | 48.5 (4.4) | 59.6 (6.4) | 74.1(6.9) | 90.9 (10.2) | 119.8 (12.4) | / |
Weight gain (kg) | 14.8 (5.6) | 14.8 (5.3) | 13.5 (6.2) | 10.8 (7.2) | 7.3 (7.2) | <0.001 b,c,d,e,f,g,h,i,j |
% | % | % | % | % | ||
Preterm birth | 7.6% | 5.7% | 6.0% | 8.5% | 6.3% | <0.001 |
miscarriage | 29.5% | 30.0% | 33.8% | 33.7% | 43.2% | <0.001 |
Breech presentation | 5.3% | 5.2% | 4.4% | 4.6% | 4.8% | 0.137 |
Planned section | 6.0% | 6.5% | 7.5% | 10.0% | 13.7% | <0.001 |
Emergency section | 6.9% | 8.1% | 9.7% | 11.0% | 14.7% | <0.001 |
Independent Variables | B (SE) | p Value | Exp(B) | 95% Confidence Interval | R2 | |
---|---|---|---|---|---|---|
Lower Value | Upper Value | |||||
Maternal BMI | 0.051 (0.006) | <0.001 | 1.053 | 1.041 | 1.065 | 0.057 |
Weight gain | 0.048 (0.005) | <0.001 | 1.049 | 1.039 | 1.060 | |
Maternal age | 0.038 (0.005) | <0.001 | 1.039 | 1.028 | 1.050 | |
Maternal height | −0.048 (0.005) | <0.001 | 0.953 | 0.944 | 0.962 | |
Gestational week | −0.047 (0.021) | 0.022 | 0.954 | 0.916 | 0.993 | |
Birth weight | −0.001 (<0.001) | <0.001 | 0.999 | 0.999 | 0.999 | |
Head circumference | 0.151 (0.023) | <0.001 | 1.163 | 1.112 | 1.21 |
Maternal Weight Status | ||||||
---|---|---|---|---|---|---|
Underweight | Normal Weight | Overweight | Obese | Class III Obese | p-Value | |
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | ||
BL (cm) | 50.3 (1.9) | 50.9 (2.1) | 51.2 (2.2) | 51.3 (2.1) | 51.2 (2.0) | <0.001 a,b,c,d,e,f,g |
BW (g) | 3246.9 (430.0) | 3430.3 (430.1) | 3516.9 (465.5) | 3569.1 (496.4) | 3547.6 (522.2) | <0.001 a,b,c,d,e,f,g |
HC. (cm) | 33.9 (1.3) | 34.3 (1.4) | 34.5 (1.5) | 34.6 (1.5) | 34.7 (1.7) | <0.001 a,b,c,d,e,f,g |
APGAR 1 min | 9.16 (0.99) | 9.10 (0.98) | 9.05 (0.98) | 8.95 (1.12) | 8.72 (1.28) | <0.001 b,c,d,e,f,g,i,j |
APGAR 5 min | 9.85 (0.56) | 9.82 (0.62) | 9.79 (0.67) | 9.72 (0.82) | 9.65 (0.77) | <0.001 c,d,f,g |
APGAR 10 min | 9.96 (0.44) | 9.95 (0.32) | 9.94 (0.41) | 9.92 (0.36) | 9.90 (0.39) | <0.001 d,g |
pH value arterial blood | 7.24 (0.08) | 7.23 (0.08) | 7.22 (0.08) | 7.22 (0.09) | 7.21 (0.07) | <0.001 d,g,i,j |
pH value venous blood | 7.30 (0.07) | 7.30 (0.08) | 7.29 (0.08) | 7.29 (0.08) | 7.29 (0.07) | 0.765 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syböck, K.; Hartmann, B.; Kirchengast, S. Maternal Prepregnancy Obesity Affects Foetal Growth, Birth Outcome, Mode of Delivery, and Miscarriage Rate in Austrian Women. Int. J. Environ. Res. Public Health 2023, 20, 4139. https://doi.org/10.3390/ijerph20054139
Syböck K, Hartmann B, Kirchengast S. Maternal Prepregnancy Obesity Affects Foetal Growth, Birth Outcome, Mode of Delivery, and Miscarriage Rate in Austrian Women. International Journal of Environmental Research and Public Health. 2023; 20(5):4139. https://doi.org/10.3390/ijerph20054139
Chicago/Turabian StyleSyböck, Katharina, Beda Hartmann, and Sylvia Kirchengast. 2023. "Maternal Prepregnancy Obesity Affects Foetal Growth, Birth Outcome, Mode of Delivery, and Miscarriage Rate in Austrian Women" International Journal of Environmental Research and Public Health 20, no. 5: 4139. https://doi.org/10.3390/ijerph20054139
APA StyleSyböck, K., Hartmann, B., & Kirchengast, S. (2023). Maternal Prepregnancy Obesity Affects Foetal Growth, Birth Outcome, Mode of Delivery, and Miscarriage Rate in Austrian Women. International Journal of Environmental Research and Public Health, 20(5), 4139. https://doi.org/10.3390/ijerph20054139