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Abstract: The emission of harmful gases has seriously exceeded relative standards with the rapid
development of modern industry, which has shown various negative impacts on human health and
the natural environment. Recently, metal–organic frameworks (MOFs)-based materials have been
widely used as chemiresistive gas sensing materials for the sensitive detection and monitoring of
harmful gases such as NOx, H2S, and many volatile organic compounds (VOCs). In particular, the
derivatives of MOFs, which are usually semiconducting metal oxides and oxide–carbon composites,
hold great potential to prompt the surface reactions with analytes and thus output amplified resistance
changing signals of the chemiresistors, due to their high specific surface areas, versatile structural
tunability, diversified surface architectures, as well as their superior selectivity. In this review, we
introduce the recent progress in applying sophisticated MOFs-derived materials for chemiresistive
gas sensors, with specific emphasis placed on the synthesis and structural regulation of the MOF
derivatives, and the promoted surface reaction mechanisms between MOF derivatives and gas
analytes. Furthermore, the practical application of MOF derivatives for chemiresistive sensing of
NO2, H2S, and typical VOCs (e.g., acetone and ethanol) has been discussed in detail.

Keywords: MOF derivatives; ZIFs; MIL frameworks; metal oxides; gas sensors; chemiresistors

1. Introduction

With the recent rapid development of cities and industry, volatile organic compounds
(VOCs) and other harmful gases are being released at an increasing rate, which upon
entry into the air destroys the environmental and ecological balance [1,2]. For example,
NOx causes photochemical smog, SO2 causes acid rain and haze, and HCHO causes
inflammation and cancer, each of which is harmful and has a noticeable impact on human
health [3–6]. Sensors, which are monitoring devices that convert monitored information
into electrical signals or other information, have many advantages, such as simple operation,
facile pretreatment, low cost and real-time detection compared with traditional gas analysis
instruments such as gas chromatographs and mass spectrometers [7–12]. In previous
studies, electrochemical sensors, optical fiber sensors, and capacitive sensors have been
applied for the detection of harmful gases [13–17]. However, these sensors have a series of
disadvantages, such as low sensitivity, complex design, and high prices. Chemiresistive gas
sensors, as a kind of promising chemical gas sensor, are ohmic contact resistors with two
electrodes displaying resistance changes when sensing materials come into contact with the
analyte, and the nature of the chemical reaction and the concentration change of the analyte
can be inferred by this resistance change [18,19]. Chemiresistive gas sensors avoid the
shortcomings of other types of gas sensors commonly used in previous research due to their
several advantages, such as having a fast response speed, high sensitivity, easy-to-design

Int. J. Environ. Res. Public Health 2023, 20, 4388. https://doi.org/10.3390/ijerph20054388 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph20054388
https://doi.org/10.3390/ijerph20054388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-3199-3100
https://doi.org/10.3390/ijerph20054388
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20054388?type=check_update&version=1


Int. J. Environ. Res. Public Health 2023, 20, 4388 2 of 14

structure, simple operation, and low price; thus, they have been widely used in recent years.
It is important to choose gas sensors that are suitable for the recording and monitoring of
chemical stimuli and variations in the environment in order to study the changeable trends
of harmful gases and in turn set more effective pollution control plans, control the emissions
of gas pollutants, and reduce their negative effects. The microstructure and surface state of
sensitive materials can influence the performance of gas sensors. Extraordinary structures
can increase the number of surface active sites and accelerate the reaction rates [20–23]. For
example, a large contact area caused by hollow or porous structures can increase the degree
and rate of chemical reactions. Lee et al. studied the acetone sensing properties of ZnO
nanoparticles with different oxygen vacancies [24]. The study showed that the existence
of oxygen vacancies brought about an excellent response because controlling the surface
defects represented a way to change the sensing properties. O2 in the air adsorbs on the
surface of ZnO nanoparticles and combines with the electrons above to form O2

−, wherein
the oxygen vacancy can be used as an electron donor [25–30]. When the sensor is exposed
to acetone, O2

− reacts with acetone, and the adsorbed electrons are then released back into
the conduction band (CB), resulting in the reduction of the depletion layer thickness and
resistance. Thus, it is important to choose a suitable sensitive material.

Metal–organic frameworks (MOFs), a burgeoning class of metal-coordinated cationic
polymer nanomaterials consisting of metal cation aggregates which are linked by organic
ligand molecules or metal cations, have large specific surface areas, tunable and porous
structures, and high structural stability. Furthermore, MOFs also show excellent adsorption
capacity and low environmental toxicity, making them promising candidates for envi-
ronmental applications such as adsorption and catalysis [31,32]. However, MOFs are
generally electrical insulators with poor conductivity. This greatly hinders their usage for
chemiresistive gas sensing materials due to the foreseeable intrinsic low response values.
In this case, pristine MOFs have been combined with other conductive materials to form
heterostructures, either doped with heteroatoms, or simply calcined at high temperature to
generate metal oxide-carbon composites (i.e., MOF derivatives) to improve their sensing
performance [33,34]. For example, a uniform three-dimensional MXene/MOF compos-
ite, Ti3C2TX/ZIF-67/CoV2O6, has been obtained by a co-precipitation reaction, which
integrated the conductivity of MXene and the redox activity of the MOF [35]. Generally,
MOFs are suitable precursor materials which can be used as an ideal template to synthesize
porous metal nano-oxides with an ideal structure. In this regard, their derivatives, such
as metal oxides, carbon materials, and their composites, are often used as gas sensing
materials due to their high chemical stability, rich structural diversity, large specific surface
areas with highly porous structures, considerable temperature resistance, low environmen-
tal and physiological toxicity, and many other advantages [19,36–39]. Furthermore, the
doping of heteroatoms into MOFs is also a method for improving sensing performance.
Doping heteroatoms can reduce the particle size of the sensing material by inducing the
formation of oxygen vacancies, increasing the contact area and enhancing the sensing
performance [40–43]. In addition, the ion or compound activation centers formed by dop-
ing heteroatoms can be used as catalysts in chemical reactions between detected gases and
sensing materials, accelerating reactions and improving the selectivity and response speeds
of sensing materials at a low temperature. Thus, doping heteroatoms into metal oxide-
based sensing materials is beneficial for improving their gas-sensing properties [33–47].
For example, Zhang et al. synthesized Cu–In2O3 hollow nanofibers by doping Cu atoms
into In2O3 and used them as H2S-sensing materials. Their study showed that the doping
of Cu atoms and the formation of their hollow structure increased the number of active
sites, and the small amount of CuO formed by Cu oxidation could combine with In2O3
to synthesize the p–n heterojunction, greatly improving selectivity and responsiveness to
H2S [48]. In addition, the doped heteroatoms could also accelerate the adsorption and
desorption of oxygen to electrons, thus improving response performance [49]. In this paper,
we summarize the methods of enhancing the sensing performance of chemiresistive gas
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sensors for harmful gases, such as by changing the morphology and structure of MOFs,
doping heteroatoms, and other design methods.

2. Sensing Principles of Chemiresistive Gas Sensors

The chemiresistive gas sensor, an important part of the gas analysis system, is an
instrument which can determine the concentration and composition of detected gas and
convert the obtained chemical information into electrical information [50,51]. Chemire-
sistive gas sensors are often used to detect inorganic small molecular gases and VOCs.
Chemiresistive gas sensors react differently when exposed to different inorganic small
molecule gases. If exposed to a gas with strong oxidizing or strong reducing properties, the
substances in the sensor and the analyte exchange electrons and holes or form a heterojunc-
tion to affect the resistance. If exposed to acid and alkaline gas, the substance in the sensor
affects the resistance through the occurring chemical adsorption and chemical reaction
with the analyte [52]. VOC detection mostly uses polymer as the gas-sensing material of
the chemiresistive gas sensor. If exposed to a non-conductive polymer, the sensitive film
begins to expand, the conductive path becomes longer, electron transfer becomes more
difficult, and the resistance value increases after the polymer absorbs VOCs. However,
the resistance value is changed via electron-hole exchange, forming a heterojunction if
exposed to conductive polymers [53–58]. In previous studies, the performance of chemire-
sistive sensors has usually been evaluated by the following parameters: (1) Response (R):
R = (Rair − Rgas)/Rgas, where Rgas and Rair are the resistance with and without the presence
of gaseous analyte; (2) Sensitivity (S): S = δR/δCt, where Ct is the concentration of the
measured gas; (3) Repeatability: Repeatability is measured by comparing the response of
the same device to the same concentration of measured gas for multiple cycles; (4) Stability:
Stability refers to testing the gas-sensing performance of the same device to the measured
gas after being placed at different times, comparing the change in gas sensitivity with time;
(5) Selectivity: Selectivity of the gas sensor is evaluated by comparing the response gap of
the same device to different gases with the same concentration.

3. Chemiresistive Gas Sensors Using MOF Derivatives

MOF derivatives-based chemiresistive sensors have attracted wide attention. They
could simply be synthesized by thermochemical methods such as pyrolysis, using MOF as
the template compromising the different functional units including metal ions and carbon
species [59].

3.1. NO2 Sensors

NO2, a kind of hazardous vehicle emission product and combustion product of fossil
fuels with an acidic nature, can cause many environmental problems, such as acid rain,
photochemical smog, haze, and water eutrophication [60–62]. Thus, it is very important
to develop gas sensors with high sensing performance for NO2 detection. Studies to
date have shown that nanostructured metal oxides have higher sensing performance for
NO2 [63,64]. Ren et al. used a Zn-based zeolitic imidazolate framework (ZIF-8) as a
template to synthesize porous ZnO nanocubes for the detection of NO2 (Figure 1a) [65].
The experiment indicated that as the temperature increased, the organic bonds of the
compounds were gradually pyrolyzed, the organic ligands were removed, and the metal
nodes were oxidized to metal oxides leaving voids, as demonstrated by scanning electron
microscopy (SEM) images of ZIF-8 and ZIF-8 derivatives at different pyrolysis temperatures
(Figure 1b,c). By comparing the response of ZIF-8 derivatives synthesized at different
pyrolysis temperatures to 1 ppm NO2, it was noted that ZIF-8-500 synthesized at the
pyrolysis temperature of 500 ◦C had the highest response (Figure 1e). Previous studies
have confirmed that the charge transfer between absorbed gas and the gas sensor may
affect the sensing performance of metal oxide gas sensors. When the gas sensor is exposed
to NO2, NO2 adsorbs on the material and takes electrons from the CB of ZnO, causing
a resistance increase and producing an electron depletion layer (Figure 1f). Porous ZnO
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nanocubes inherit the high specific surface area of ZIF-8, and its unique porous hollow
polyhedral structure creates numerous gas channels, making it easier for NO2 to adsorb on
its surface and take away electrons. Compared with normal ZnO, porous ZnO nanocubes
present high sensitivity and a lower NO2 detection limit. In addition, the prepared gas
sensor exhibits good selectivity for NO2 compared with other gases (CO, C2H5OH, H2,
H2S, NO, NH3). This is attributed to the excellent microstructure and surface states of
the nanomaterials.
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Materials Institute Lavoisier (MIL)-based materials synthesized from terephthalic acid
and metal-centered octahedron (MO4(OH)2, M = In, Ga, Fe), which are organic ligands,
have a three-dimensional network structure with ultra-high porosity [66]. Du et al. took
MIL (M = In) as a precursor doped with a small amount of Fe ions to synthesize Fe–In2O3
nanorods through thermochemical methods and a pyrolysis process, investigating its NO2
sensing performance (Figure 2a) [44]. By observing the SEM images of In/Fe-MIL-68s
with different levels of Fe(III) content, all the samples showed a hexagonal rod-shaped
architecture, the Fe-doped In2O3 nanorods had pores on the surface, and the structural
size was slightly reduced, which was due to the shrinkage and decomposition of the MOF
structure caused by the pyrolysis process. In comparing the high-resolution transmission
electron microscopy (HRTEM) images of Fe(0)–In2O3, it was found that doping Fe(III) forms
lattice defects because Fe(III) replaces the In3+ ions in the crystal structure (Figure 2d,e).
According to Figure 2f,g, Fe(5)–In2O3 nanorods showed excellent responsiveness and
selectivity to NO2 compared with similar products because the nanorod exhibits superior
NO2 gas-sensing performance at low temperatures due to the high diffusivity, multiple
active sites, and wide depletion layer brought by its unique structure. When the sensor
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is exposed to air, O2 adsorbs on the surface of the nanorods and extracts the electrons
in the sensing material, forming O− or O2−, which leads to the formation of a potential
barrier by bending the energy band and increasing resistance, in turn reflecting the sensing
performance of the material for NO2. When the sensor is exposed to NO2 gas, it contacts
and combines with the electrons of the sensing material to form NO2

−, resulting in further
band bending, higher potential barrier formation, and the further increase in resistance
(Figure 2h). In summary, in order to better adsorb and sense the NO2 molecules, the MOF
precursors with high specific surface areas should be selected, and the resulting metal oxide
composites are usually doped to improve conductivity, and thereby to improve the electron
exchange and sensitivity toward NO2.
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nanorods [44].

With the rapid development of electronic products, wearability and high selectivity
have attracted significant attention. In a study by Bag et al., a NO2 sensor based on reduced
graphene oxide (rGO)–ZnFe2O4 was developed by uniformly anchor smearing MOF-
derived mesoporous ZnFe2O4 microparticles on the rGO sensor layer [67,68]. Because of the
synergistic reaction between the mesoporous ZnFe2O4 particles and the rGO sensing layer,
the gas sensor showed improved mechanical stretchability and signal stability compared
with rGO-only devices, exhibited superior response and sensitivity to NO2, and had good
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repeatability and selectivity even under high humidity conditions, which is expected to be
applied in future wearable electronics.

3.2. Acetone Sensors

Acetone, a harmful VOC, is widely used in the chemical industry and chemical
experiments. Trace amounts of acetone gas can cause great harm to the environment and
to human health, including headache, coma, and even death. Moreover, acetone is one
of the important indicators used for diabetes detection [69–71]. Thus, it is very important
to develop efficient and sensitive acetone gas sensors. Zhu et al. used Fe-MIL-88B-NH2
as a precursor and MEMS as a substrate to synthesize Fe2O3/C mesoporous nanorods
(NR) via simple hydrothermal and pyrolysis reactions, and investigated its acetone-sensing
properties [72,73]. The experiment indicated that when the calcination temperature was
lower than 500 ◦C, as the temperature increased, α-Fe2O3 was gradually formed in the
compounds, the crystallinity was increased, and the organic molecules were gradually
carbonized and decomposed, as shown in the SEM images of the Fe-MOF precursors
and their derivatives at different calcination temperatures (Figure 3a,b). Furthermore,
the specific surface area of the mesoporous NRs increased significantly after calcination
at 300 ◦C, which was beneficial to their acetone gas-sensing properties. In addition, a
hollow structure was formed in the compound, which might have been caused by the
lattice rearrangement and the complete decomposition of the organic ligands when the
calcination temperature reached 400 ◦C, as displayed in the TEM images (Figure 3c,d).
When the synthesized material was exposed to acetone, the electrons on the Fe2O3 surface
were captured by the oxygen adsorbed on it, resulting in an increase in the depletion
layer and the potential barrier. The oxygen species adsorbed on its surface reacted with
acetone, changing the resistance (Figure 3g). The study showed that the synthesized carbon
nanoparticle-modified mesoporous α-Fe2O3 NRs exhibited excellent thermal stability,
accurate selectivity, and a fast response to acetone (Figure 3e,f), which may have been due
to its large specific surface area and excellent electrical conductivity.
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(e) Dynamic response curves of gas sensors based on Fe-MIL-88B-NH2 and C-d-mFe2O3-x (x = 200,
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acetone sensing process by C-d-mFe2O3-300 NRs [72].
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Zhang et al. synthesized a ZnO/Co3O4 nano-heterostructure using ZIF-8/ZIF-67 as a
precursor via a facile co-precipitation method [74]. The experiment results demonstrated
that ZnO nanopolyhedrons are composed of many small pores. ZnO/Co3O4 nanopolyhe-
drons exhibit a similar hollow polyhedron structure with ZnO nanopolyhedrons revealed
by the SEM and TEM images (Figure 4a,b). The response diagrams of the ZnO and
ZnO/Co3O4 thin film sensors to acetone were further observed (Figure 4c,d) in the ex-
periment, which showed that the ZnO/Co3O4 thin film sensor exhibited good selectivity,
reproducibility, repeatability, and stability to acetone. When ZnO is exposed to air, oxygen
molecules adsorb on the surface of ZnO nanopolyhedrons and obtain electrons to form
O2− and O− ions, forming a further depletion layer. When ZnO was exposed to acetone,
the acetone reacted with the adsorbed oxygen ions, thereby reducing the height and width
of the depletion layer and further reducing the resistance of the sensor (Figure 4e). The
sensing mechanism of the ZnO/Co3O4 acetone sensor is similar to that of ZnO, while
the sensing performance is greatly improved with regard to response, repeatability, and
selectivity. This may be facilitated by the superior catalytic performance of Co3O4, the
p–n heterojunction formed between ZnO and Co3O4, and the unique hollow structure.
In general, sophisticated metal oxide-based heterostructures with enhanced porosity and
lattice rearrangement, or with a favorable p–n heterojunction, could be obtained from
designed MOFs as the template, which could consequently achieve a rapid response to
acetone as a result, being attributable to the improved carrier dynamics [75–78].
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(c) Selectivity of the ZnO/Co3O4 nanocomposite sensor; (d) Long-term stability over 30 days toward
10, 50, and 100 ppm acetone of the ZnO/Co3O4 nanocomposite sensor; (e) Schematics of the acetone
sensing mechanism of the ZnO–Co3O4 heterojunction [74].

3.3. Ethanol Sensors

Zhang et al. attempted to synthesize solid, hollow, and hierarchical hollow nanocages
with quantum dots (HHQD) of ZnO for ethanol gas sensing [79]. The HHQD-ZnO
nanocages were synthesized from the ZIF-8 product with a size of 170 mm (170-ZIF-
8) as a precursor, and the SEM images of the 170-ZIF-8 nanocrystals (Figure 5a,b) indicated
that the synthesized 170-ZIF-8 precursors had a uniform cage-like morphology with good
connectivity between particles. The further study of the TEM images revealed (Figure 5c,d)
that the formed HHQD-ZnO nanocages inherited the cage-like morphology of the precur-
sor, presenting a large-area hollow structure and a large specific surface area. According to
the response diagram of the HHQD-ZnO nanocages to ethanol gas (Figure 5e), the response
value of the HHQD-ZnO nanocage sensor to ethanol was much higher than that of the solid
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ZnO nanocage sensor, and the sensor showed high selectivity to ethanol gas (Figure 5f),
which was due to the unique hollow interpenetrating nanostructure and large specific
surface area. When the HHQD-ZnO nanocage sensor was exposed to ethanol, its hollow
nanocage structure could adsorb oxygen and carry away free electrons from the CB, thereby
increasing the potential barrier and resulting in resistance change.
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Figure 5. SEM and TEM images of (a,c) the 170-ZIF-8 precursor and (b,d) the as-derived HHQD-
ZnO nanocage; (e) Response of HHQD-ZnO nanocages-based gas sensor toward 100 ppm different
target gases (ammonia, formaldehyde, dimethylformamide, acetone, toluene, isopropanol, methanol,
propanol, butanol and ethanol, respectively); (f) Responses of the sensors based on HHQD-ZnO,
hollow ZnO and solid ZnO to 100 ppm ethanol gas at different operating temperatures [80].

3.4. H2S Sensors

H2S is a flammable and toxic gas which can be produced in the production pro-
cesses of food processing plants, paper mills, oil refineries, and other factories, and can
also be produced by gas combustion and after the decomposition of human and animal
excreta [80–84]. H2S can affect the human nervous system and visual system, causing
Alzheimer’s disease, loss of consciousness, and other problems [85]. Thus, it is urgent that
H2S detection and monitoring sensing systems are improved in order to reasonably control
H2S emissions [86,87]. Li et al. first synthesized CPP-3 (In) microrods and then used Cu2+-
impregnated CPP-3 (In) microrods impregnated with Cu2+ as MOF precursors to synthesize
bamboo-like CuO/In2O3 heterostructures via heating, cooling, centrifugation, drying, and
calcination (Figure 6a) [88]. SEM (Figure 6b) and TEM images (Figure 6c) of CuO/In2O3
showed that the synthesized CuO/In2O3 inherited the rod-like shape of the CPP-3(In)
precursor, but the average size was slightly reduced, showing a bamboo-like hollow struc-
ture. In addition, the images also showed the existence of p–n heterojunctions formed
between CuO and In2O3 nanoparticles. By comparing the response values of CuO/In2O3 to
different gases (Figure 6d,e), CuO/In2O3 showed excellent selectivity and responsiveness
to H2S at low temperatures. Intrinsically, CuO is a p-type compound and In2O3 is an n-type
compound. When CuO came into contact with In2O3, holes in the CuO and electrons in
the In2O3 flowed in opposite directions, forming an internal electric field, an energy band
bending in the depletion layer, and subsequently forming a p–n heterojunction, enhancing
gas-sensing performance (Figure 6f,g). Finally, the unique mesoporous bamboo-like hollow
structure and the facilitated electron transfer resulted from the p–n heterojunction, and
together enabled the CuO/In2O3 sensor superior selectivity, reproducibility, and sensi-
tivity to H2S. Furthermore, Karuppasamy et al. synthesized Ni4Mo/MoO2@C composite
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nanospheres via a co-precipitation and high-temperature calcination process using MOF as
a precursor [89]. The gas response of the Ni4Mo/MoO2@C composite nanospheres to H2S
was 3.5 times and 2.6 times higher than those of Ni-MOF and Mo-MOF, respectively, which
was attributed to the synergistic effect of the Ni4Mo/MoO2@C composite nanospheres and
the high surface area derived from the unique morphology. Overall, the p–n heterojunction
with well-defined energy level bending can be introduced into the depletion layer with
the reverse flow of holes and electrons, which could afford a reliable detection of H2S at a
lower power consumption [90–92].
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3.5. Other Gas Sensors

Zhang et al. synthesized NiFe2O4 nano-octahedrons via the direct pyrolysis of NiFe-
bimetallic MOFs to explore its gas sensing performance to toluene [93]. The study showed
that the sensor exhibited a low recovery time, strong stability, high repeatability, and low
detection, which was due to the catalytic properties and high specific surface area resulting
from its porous structure. Qin et al. synthesized Co3O4 dodecahedrons by calcining a Co-
MOF template. The sensing material exhibited good selectivity and high responsiveness to
CO because of the large number of Co3+ active sites and surface adsorption of oxygen [94].

4. Conclusions and Future Perspectives

The chemiresistors, a type of chemical gas sensor, can detect the concentration changes
of target gases through changes in resistance signals. Studies have shown that the perfor-
mance of chemiresistors could be promoted by selecting suitable gas-sensing materials to
achieve high responsiveness and selectivity to the specific target gas. MOF derivatives
synthesized with MOFs as precursors hold great potential in gas sensing due to their unique
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structures, high selectivity, sensitivity, and versatility. In this review, we summarized the
applications of MOF derivatives for sensing NO2, acetone, ethanol, H2S, and several other
toxic gases, with their detailed sensing performance and mechanisms being described
and discussed.

However, although the novel MOF derivatives-based chemiresistors suggest many
new opportunities in in situ detection and monitoring of the harmful gases in industries
and in daily life, there are still several challenging points which need to be dealt with:

(1). The MOF derivatives should successfully maintain or inherit the original high porosity
and redox activity of pristine MOFs during the high-temperature pyrolysis process so
that they can achieve excellent sensitivity and response as a chemiresistive gas sensor;

(2). The sophisticated morphologies and precisely tailored physicochemical properties
of the MOF derivatives need to be constructed and established by thermochemical
or other methods, avoiding from the unfavorable Ostwald ripening process, in order
to increase the active surface areas affording adsorption and catalysis reaction with
gaseous molecules, and also the surface electron affinity to enhance their resistance
changing signals;

(3). Efficient charge transfer needs to be realized by the construction of a p–n junction and
other heterojunction interfaces so that rapid response and recovery times are available
for the chemiresistive gas sensors;

(4). The reproducibility and cost control for the preparation of MOF derivatives and the
as-resulted chemiresistive sensing devices are still far from satisfactory;

(5). The realization of self-powered, minimized and potable gas sensing devices based on
MOF derivatives is another indispensable future research direction, especially with
the rapid development of 5G wireless networks currently taking place;

(6). Finally, the rapid and efficient data transmission and establishment of the gas sensors-
based IoT system, which are of great significance to safer and cleaner production by
avoiding the leakage of toxic, harmful, flammable and explosive gases like methane
leakage during the exploitation of oil and natural gas, also require the further utiliza-
tion and optimization of the MOF derivatives-based chemiresistive gas sensors.
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