Influence of Strength Training Variables on Neuromuscular and Morphological Adaptations in Prepubertal Children: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Eligibility Criteria: Inclusion and Exclusion
2.2. Search Strategy and Systematic Review Protocol
2.3. Data Extraction
2.4. Study Quality Assessment
3. Results
3.1. Study Characteristics—Sample
3.2. Strength Training Variables
3.3. Strength Training Variables—Main Adaptations
3.4. Influence of Strength Training Variables on Muscular Strength
3.5. Influence of Strength Training Variables on Jumping and Sprinting Abilities
3.6. Study Selection and Assessment (Quality Analysis)
4. Discussion
4.1. Neuromuscular Adaptations
4.2. Morphological Adaptations
4.3. Limitations
4.4. Practical Applications
4.5. Future Research Lines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moritani, T.; de Vries, H.A. Neural factors versus hypertrophy in the time course of muscle strength gain. Am. J. Phys. Med. 1979, 58, 115–130. [Google Scholar] [PubMed]
- Stone, M.H. Position Statement: Explosive Exercise and Training. Natl. Strength Cond. Assoc. J. 1993, 15, 7–15. [Google Scholar] [CrossRef]
- Möck, S.; Hartmann, R.; Wirth, K.; Rosenkranz, G.; Mickel, C. Relationship Between Maximal Dynamic Force in the Deep Back Squat and Sprinting Performance in Consecutive Segments Up to 30 m. J. Strength Cond. Res. 2021, 35, 1039–1043. [Google Scholar] [CrossRef]
- Maestroni, L.; Read, P.; Bishop, C.; Papadopoulos, K.; Suchomel, T.J.; Comfort, P.; Turner, A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sport. Med. 2020, 50, 1431–1450. [Google Scholar] [CrossRef]
- Gabbett, T.J. Debunking the myths about training load, injury and performance: Empirical evidence, hot topics and recommendations for practitioners. Br. J. Sport. Med. 2018, 54, 58–66. [Google Scholar] [CrossRef]
- Coratella, G. Appropriate Reporting of Exercise Variables in Resistance Training Protocols: Much more than Load and Number of Repetitions. Sport. Med. Open 2022, 8, 99. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Ribas Serna, J. Fuerza, Velocidad y Rendimiento Físico y Deportivo; Librerías Deportivas Esteban Sanz, SL: Madrid, Spain, 2019. [Google Scholar]
- Rexach, J.A.S.; Ruiz, J.R.; Bustamante-Ara, N.; Villarán, M.H.; Gil, P.G.; Sanz Ibáñez, M.J.; Sanz, N.B.; Santamaría, V.O.; Sanz, N.G.; Prada, A.B.M.; et al. Health enhancing strength training in nonagenarians (STRONG): Rationale, design and methods. BMC Public Health 2009, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance Training for Older Adults. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
- Hagstrom, A.D.; Marshall, P.W.M.; Lonsdale, C.; Cheema, B.S.; Fiatarone Singh, M.A.; Green, S. Resistance training improves fatigue and quality of life in previously sedentary breast cancer survivors: A randomised controlled trial. Eur. J. Cancer Care 2016, 25, 784–794. [Google Scholar] [CrossRef]
- da Rocha, P.E.C.P.; da Silva, V.S.; Camacho, L.A.B.; Vasconcelos, A.G.G. Efeitos de longo prazo do treinamento resistido nos indicadores de obesidade: Uma revisão sistemática. Rev. Bras. Cineantropometria E Desempenho Hum. 2015, 17, 621. [Google Scholar] [CrossRef]
- Perales, M.; Santos-Lozano, A.; Ruiz, J.R.; Lucia, A.; Barakat, R. Benefits of aerobic or resistance training during pregnancy on maternal health and perinatal outcomes: A systematic review. Early Hum. Dev. 2016, 94, 43–48. [Google Scholar] [CrossRef]
- Myer, G.; Faigenbaum, A.; Chu, D.; Falkel, J.; Ford, K.; Best, T.; Hewett, T. Integrative Training for Children and Adolescents: Techniques and Practices for Reducing Sports-Related Injuries and Enhancing Athletic Performance. Phys. Sport. Med. 2011, 39, 74–84. [Google Scholar] [CrossRef]
- Collins, H.; Booth, J.N.; Duncan, A.; Fawkner, S. The effect of resistance training interventions on fundamental movement skills in youth: A meta-analysis. Sport. Med. Open 2019, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C. Tanner’s Puberty Scale: Exploring the historical entanglements of children, scientific photography and sex. Sexualities 2016, 19, 328–346. [Google Scholar] [CrossRef] [Green Version]
- Vrijens, J. Muscle strength development in the pre-and post-pubescent age. Pediatr. Work Physiol. 1978, 11, 152–158. [Google Scholar]
- Docherty, D. The effects of variable speed resistance training on strength development in prepubertal boys. J. Hum. Mov. Stud. 1987, 13, 337–382. [Google Scholar]
- American Academy of Pediatrics Committee on Sports Medicine. Strength Training, Weight and Power Lifting, and Body Building by Children and Adolescents. Pediatrics 1990, 86, 801–803. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.R.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth Resistance Training: Updated Position Statement Paper From the National Strength and Conditioning Association. J. Strength Cond. Res. 2009, 23, S60–S79. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Faigenbaum, A.D.; Stone, M.H.; Oliver, J.; Jeffreys, I.; Moody, J.A.; Brewer, C.; Pierce, K.C.; McCambridge, T.M.; Howard, R.; et al. Position statement on youth resistance training: The 2014 International Consensus. Br. J. Sport. Med. 2014, 48, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.S.; Cronin, J.B.; Faigenbaum, A.D.; Haff, G.G.; Howard, R.; Kraemer, W.J.; Micheli, L.J.; Myer, G.D.; Oliver, J. National Strength and Conditioning Association Position Statement on Long-Term Athletic Development. J. Strength Cond. Res. 2016, 30, 1491–1509. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Micheli, L.J. Youth Strenght Training; ACSM: Indianapolis, IN, USA, 2017. [Google Scholar]
- World Health Organization. Physical Activity; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Rogol, A.D.; Clark, P.A.; Roemmich, J.N. Growth and pubertal development in children and adolescents: Effects of diet and physical activity. Am. J. Clin. Nutr. 2000, 72, 521S–528S. [Google Scholar] [CrossRef] [Green Version]
- Pitton, P.M. Prepubescent Strength Training: The Effects of Resistance Training on Strength Gains In Prepubescent Children. Natl. Strength Cond. Assoc. J. 1992, 14, 55. [Google Scholar] [CrossRef]
- Shanmugam, C.; Maffulli, N. Sports injuries in children. Br. Med. Bull. 2008, 86, 33–57. [Google Scholar] [CrossRef]
- Behm, D.G.; Faigenbaum, A.D.; Falk, B.; Klentrou, P. Canadian Society for Exercise Physiology position paper: Resistance training in children and adolescents. Appl. Physiol. Nutr. Metab. 2008, 33, 547–561. [Google Scholar] [CrossRef]
- Valovich McLeod, T.C.; Decoster, L.C.; Loud, K.J.; Micheli, L.J.; Parker, J.T.; Sandrey, M.A.; White, C. National Athletic Trainers’ Association Position Statement: Prevention of Pediatric Overuse Injuries. J. Athl. Train. 2011, 46, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: A review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surg. Sport. Traumatol. Arthrosc. 2009, 17, 859–879. [Google Scholar] [CrossRef]
- Bahr, R.; Thorborg, K.; Ekstrand, J. Evidence-based hamstring injury prevention is not adopted by the majority of Champions League or Norwegian Premier League football teams: The Nordic Hamstring survey. Br. J. Sport. Med. 2015, 49, 1466–1471. [Google Scholar] [CrossRef] [Green Version]
- McCall, A.; Carling, C.; Nedelec, M.; Davison, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Risk factors, testing and preventative strategies for non-contact injuries in professional football: Current perceptions and practices of 44 teams from various premier leagues. Br. J. Sport. Med. 2014, 48, 1352–1357. [Google Scholar] [CrossRef]
- Folland, J.P.; Williams, A.G. The Adaptations to Strength Training. Sport. Med. 2007, 37, 145–168. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power. Part 2—Training Considerations for Improving Maximal Power Production. Sport. Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Behringer, M.; Heede, A.V.; Matthews, M.; Mester, J. Effects of strength training on motor performance skills in children and adolescents: A meta-analysis. Pediatr. Exerc. Sci. 2011, 23, 186–206. [Google Scholar] [CrossRef] [Green Version]
- Ozmun, J.C.; Mikesky, A.E.; Surburg, P.R. Neuromuscular adaptations following prepubescent strength training. Med. Sci. Sport. Exerc. 1994, 26, 510–514. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power. Sport. Med. 2011, 41, 17–38. [Google Scholar] [CrossRef]
- Hong, A.R.; Kim, S.W. Effects of Resistance Exercise on Bone Health. Endocrinol. Metab. 2018, 33, 435. [Google Scholar] [CrossRef]
- Lazarczuk, S.L.; Maniar, N.; Opar, D.A.; Duhig, S.J.; Shield, A.; Barrett, R.S.; Bourne, M.N. Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Mechanical Loading: A Systematic Review and Meta-Analysis. Sport. Med. 2022, 52, 2405–2429. [Google Scholar] [CrossRef]
- Peña, G.; Heredia, J.R.; Lloret, C.; Martín, M.; Da Silva-Grigoletto, M.E. Introduction to strength training at early age: A review. Rev. Andal. Med. Del Deport. 2016, 9, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Faigenbaum, A.D.; Myer, G.D. Resistance training among young athletes: Safety, efficacy and injury prevention effects. Br. J. Sport. Med. 2010, 44, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, 1–28. [Google Scholar] [CrossRef]
- Baxter-Jones, A.D.G.; Eisenmann, J.C.; Sherar, L.B. Controlling for maturation in pediatric exercise science. Pediatr. Exerc. Sci. 2005, 17, 18–30. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sport. Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Williams, T.D.; Tolusso, D.V.; Fedewa, M.V.; Esco, M.R. Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis. Sport. Med. 2017, 47, 2083–2100. [Google Scholar] [CrossRef]
- Clark, J.E. The impact of duration on effectiveness of exercise, the implication for periodization of training and goal setting for individuals who are overfat, a meta-analysis. Biol. Sport 2016, 33, 309–333. [Google Scholar] [CrossRef]
- Lesinski, M.; Prieske, O.; Granacher, U. Effects and dose-response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. Br. J. Sport. Med. 2016, 50, 781–795. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Schoenfeld, B.J.; Davies, T.B.; Lazinica, B.; Krieger, J.W.; Pedisic, Z. Effect of Resistance Training Frequency on Gains in Muscular Strength: A Systematic Review and Meta-Analysis. Sport. Med. 2018, 48, 1207–1220. [Google Scholar] [CrossRef]
- Williams, P.E. Practical Guidelines for Plyometric Intensity. Sport. Med. 2007, 47, 2585–2601. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Romero-Rodriguez, D.; Lloyd, R.S.; Kushner, A.; Myer, G.D. Integrative Neuromuscular Training in Youth Athletes. Part II: Strategies to Prevent Injuries and Improve Performance. Strength Cond. J. 2016, 38, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Ralston, G.W.; Kilgore, L.; Wyatt, F.B.; Baker, J.S. The Effect of Weekly Set Volume on Strength Gain: A Meta-Analysis. Sport. Med. 2017, 47, 2585–2601. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Schoenfeld, B.J.; Skrepnik, M.; Davies, T.B.; Mikulic, P. Effects of Rest Interval Duration in Resistance Training on Measures of Muscular Strength: A Systematic Review. Sport. Med. 2018, 48, 137–151. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sport. Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Tanner, J.M. Growth at Adolescence, 2nd ed.; Blackwell Scientific Publications: Springfield, IL, USA, 1962; pp. 121–130. [Google Scholar]
- Sadres, E.; Eliakim, A.; Constantini, N.; Lidor, R.; Falk, B. The Effect of Long-Term Resistance Training on Anthropometric Measures, Muscle Strength, and Self Concept in Pre-Pubertal Boys. Pediatr. Exerc. Sci. 2001, 13, 357–372. [Google Scholar] [CrossRef]
- Tsolakis, C.; Messinis, D.; Stergioulas, A.; Dessypris, A. Hormonal Responses after Strength Training and Detraining in Prepubertal and Pubertal Boys. J. Strength Cond. Res. 2000, 14, 399–404. [Google Scholar] [CrossRef]
- Diallo, O.; Dore, E.; Duche, P.; Van Praagh, E. Effects of plyometric training followed by a reduced training programme on physical performance in prepubescent soccer players. J. Sport. Med. Phys. Fit. 2001, 41, 342–348. [Google Scholar]
- Faigenbaum, A.D.; Loud, R.L.; OʼConnel, J.; Glover, S.; OʼConnel, J.; Wescott, W.L. Effects of Different Resistance Training Protocols on Upper-Body Strength and Endurance Development in Children. J. Strength Cond. Res. 2001, 15, 459–465. [Google Scholar] [CrossRef]
- Fuchs, R.K.; Bauer, J.J.; Snow, C.M. Jumping Improves Hip and Lumbar Spine Bone Mass in Prepubescent Children: A Randomized Controlled Trial. J. Bone Miner. Res. 2001, 16, 148–156. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Milliken, L.A.; Loud, R.L.; Burak, B.T.; Doherty, C.L.; Wescott, W.L. Comparison of 1 and 2 Days per Week of Strength Training in Children. Res. Q. Exerc. Sport 2002, 73, 416–424. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Milliken, L.; Moulton, L.; Westcott, W.L. Early Muscular Fitness Adaptations in Children in Response to Two Different Resistance Training Regimens. Pediatr. Exerc. Sci. 2005, 17, 237–248. [Google Scholar] [CrossRef]
- Ingle, L.; Sleap, M.; Tolfrey, K. The effect of a complex training and detraining programme on selected strength and power variables in early pubertal boys. J. Sport. Sci. 2006, 24, 987–997. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Farrell, A.C.; Radler, T.; Zbojovsky, D.; Chu, D.A.; Ratamess, N.A.; Kang, J.H.; Hoffman, J.R. ‘Plyo Play’: A Novel Program of Short Bouts of Moderate and High Exercise Improves Physical Fitness in Elementary School Chlidren. Phys. Educ. 2009, 66, 37–44. [Google Scholar]
- Granacher, U.; Goesele, A.; Roggo, K.; Wischer, T.; Fischer, S.; Zuerny, C.; Gollhofer, A.; Kriemler, S. Effects and Mechanisms of Strength Training in Children. Int. J. Sport. Med. 2011, 32, 357–364. [Google Scholar] [CrossRef]
- Souissi, H.; Chtourou, H.; Chaouachi, A.; Dogui, M.; Chamari, K.; Souissi, N.; Amri, M. The Effect of Training at a Specific Time-of-Day on the Diurnal Variations of Short-Term Exercise Performances in 10- to 11-Year-Old Boys. Pediatr. Exerc. Sci. 2012, 24, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Michailidis, Y.; Fatouros, I.G.; Primpa, E.; Michailidis, C.; Avloniti, A.; Chatzinikolau, A.; Barbero-Alvarez, J.C.; Tsoukas, D.; Douroudos, I.I.; Draganidis, D.; et al. Plyometrics’ Trainability in Preadolescent Soccer Athletes. J. Strength Cond. Res. 2013, 27, 38–49. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; Andrade, D.C.; Álvarez, C.; Henríquez-Olguín, C.; Martínez, C.; Báez-Sanmartín, E.; Silva-Urra, J.; Burgos, C.; Izquierdo, M. The Effects of Interset Rest on Adaptation to 7 Weeks of Explosive Training in Young Soccer Players. J. Sport. Sci. Med. 2014, 13, 287–296. [Google Scholar]
- Waugh, C.M.; Korff, T.; Fath, F.; Blazevich, A.J. Effects of resistance training on tendon mechanical properties and rapid force production in prepubertal childre. J. Appl. Physiol. 2014, 117, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Cunha, G.; Morganti, M.; Cadore, E.; de Oliveira, N.L.; Bos dos Santos, C.; Silveira Pinto, R.; Reischak-Olivera, A. Physiological Adaptations to Resistance Training in Prepubertal Boys. Res. Q. Exerc. Sport 2015, 86, 172–181. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Franco-Marquez, F.; Pareja-Blanco, F.; Mora-Custodio, R.; Yañez-García, J.M.; Gonzalez-Suárez, J.M.; González-Badillo, J. Effects of 6 Weeks Resistance Training Combined With Plyometric and Speed Exercises on Physical Performance of Pre-Peak-Height-Velocity Soccer Players. Int. J. Sport. Physiol. Perform. 2016, 11, 240–246. [Google Scholar] [CrossRef]
- Negra, Y.; Chaabene, H.; Fernández-Fernández, J.; Sammoud, S.; Bouguezzi, R.; Prieske, O.; Granacher, U. Short-term plyometric jump training improves repeated-sprint ability in prepuberal male soccer players. J. Strength Cond. Res. 2018, 34, 3241–3249. [Google Scholar] [CrossRef]
- Drouzas, V.; Katsikas, C.; Zafeiridis, A.; Jamurtas, A.Z.; Bogdanis, G.C. Unilateral Plyometric Training is Superior to Volume-Matched Bilateral Training for Improving Strength, Speed and Power of Lower Limbs in Preadolescent Soccer Athletes. J. Hum. Kinet. 2020, 74, 161–176. [Google Scholar] [CrossRef]
- Almeida, M.; Leandro, C.G.; Queiroz, D.R.; José-da-silva, M.; Pessoa dos Prazeres, T.M.; Pereira, G.M.; Silva das-Neves, G.; Carneiro, R.C.; Figueredo-Alves, A.D.; Nakamura, F.Y.; et al. Plyometric training increases gross motor coordination and associated components of physical fitness in children. Eur. J. Sport Sci. 2021, 21, 1263–1272. [Google Scholar] [CrossRef]
- Padrón-Cabo, A.; Lorenzo-Martínez, M.; Perez-Ferreiros, A.; Costa, P.B.; Rey, E. Effects of Plyometric Training with Agility Ladder on Physical Fitness in Youth Soccer Players. Int. J. Sport. Med. 2021, 42, 896–904. [Google Scholar] [CrossRef]
- Sammoud, S.; Negra, Y.; Bouguezzi, R.; Hachana, Y.; Granacher, U. The effects of plyometric jump training on jump and sport-speci fi c performances in prepubertal female swimmers. J. Exerc. Sci. Fit. 2021, 19, 25–31. [Google Scholar] [CrossRef]
- Wick, K.; Kriemler, S.; Granacher, U. Effects of a Strength-Dominated Exercise Program on Physical Fitness and Cognitive Performance in Preschool Children. J. Strength Cond. Res. 2021, 35, 983–990. [Google Scholar] [CrossRef]
- Sgro, M.; McGuigan, M.R.; Pettigrew, S.; Newton, R.U. The Effect of Duration of Resistance Training Interventions in Children Who Are Overweight or Obese. J. Strength Cond. Res. 2009, 23, 1263–1270. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; McFarland, J.E.; Johnson, L.; Kang, J.H.; Bloom, J.; Ratamess, N.A.; Hoffman, J.R. Preliminary Evaluation of an After-School Resistance Training Program for Improving Physical Fitness in Middle School-Age Boys. Percept. Mot. Skills 2007, 104, 407–415. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; McFarland, J.E. Resistance training for kids: Right from the Start. ACSM’s Health Fit. J. 2016, 20, 16–22. [Google Scholar] [CrossRef]
- Vingren, J.; Kraemer, W.J.; Ratamess, N.A.; Anderson, J.M.; Volek, J.S.; Maresh, C.M. Testosterone Physiology in Resistance Exercise and Training. Sport. Med. 2010, 40, 1037–1053. [Google Scholar] [CrossRef]
- de Villarreal, E.S.S.; González-Badillo, J.J.; Izquierdo, M. Low and Moderate Plyometric Training Frequency Produces Greater Jumping and Sprinting Gains Compared with High Frequency. J. Strength Cond. Res. 2008, 22, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Schonfeld, B.J.; Contreras, B.; Krieger, J.; Grgic, J.; del Castillo, K.; Belliard, R.; Alto, A. Resistance Training Volume Enhances Muscle Hypertrophy but Not Strength in Trained Men. Med. Sci. Sport. Exerc. 2019, 51, 94–103. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Gorostiaga, E.M.; Arellano, R.; Izquierdo, M. Moderate Resistance Training Volume Produces More Favorable Strength Gains Than High or Low Volumes During a Short-Term Training Cycle. J. Strength Cond. Res. 2005, 19, 689. [Google Scholar] [CrossRef]
- Baena-Marín, M.; Rojas-Jaramillo, A.; González-Santamaría, J.; Rodríguez-Rosell, D.; Petro, J.; Kreider, R.B.; Bonilla, D.A. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports 2022, 10, 8. [Google Scholar] [CrossRef]
- Casolo, A.; Farina, D.; Falla, D.; Bazzucchi, I.; Felici, F.; del Vecchio, A. Strength Training Increases Conduction Velocity of High-Threshold Motor Units. Med. Sci. Sport. Exerc. 2020, 52, 955–967. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Gorostiaga, E.; González-Badillo, J. Effect of Movement Velocity during Resistance Training on Neuromuscular Performance. Int. J. Sport. Med. 2014, 35, 916–924. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Pope, Z.K.; Benik, F.M.; Hester, G.M.; Sellers, J.; Nooner, J.; Schnaiter, J.A.; Bond-Williams, K.E.; Carter, A.S.; Ross, C.L.; et al. Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men. J. Strength Cond. Res. 2016, 30, 1805–1812. [Google Scholar] [CrossRef]
- Falk, B.; Dotan, R. Child-Adult Differences in the Recovery from High-Intensity Exercise. Exerc. Sport Sci. Rev. 2006, 34, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Brearley, S.; Bishop, C. Transfer of Training: How Specific Should We Be? Strength Cond. J. 2019, 41, 97–109. [Google Scholar] [CrossRef]
- Fouré, A.; Nordez, A.; Cornu, C. Plyometric training effects on Achilles tendon stiffness and dissipative properties. J. Appl. Physiol. 2010, 109, 849–854. [Google Scholar] [CrossRef] [Green Version]
- Manna, I. Growth Development and Maturity in Children and Adolescent: Relation to Sports and Physical Activity. Am. J. Sport. Sci. Med. 2014, 2, 48–50. [Google Scholar] [CrossRef] [Green Version]
- Stratton, M.T.; Tinsley, G.M.; Alesi, M.G.; Hester, G.M.; Olmos, A.A.; Serafini, P.R.; Modjeski, A.S.; Mangine, G.T.; King, K.; Savage, S.N.; et al. Four Weeks of Time-Restricted Feeding Combined with Resistance Training Does Not Differentially Influence Measures of Body Composition, Muscle Performance, Resting Energy Expenditure, and Blood Biomarkers. Nutrients 2020, 12, 1126. [Google Scholar] [CrossRef]
- Westcott, W.L. Resistance Training is Medicine. Curr. Sport. Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef]
- McCarthy, H.D.; Cole, T.J.; Fry, T.; Jebb, S.A.; Prentice, A.M. Body fat reference curves for children. Int. J. Obes. 2006, 30, 598–602. [Google Scholar] [CrossRef] [Green Version]
- Marques-Vidal, P.; Marcelino, G.; Ravasco, P.; Camilo, M.E.; Oliveira, J.M. Body fat levels in children and adolescents: Effects on the prevalence of obesity. E. Spen. Eur. E. J. Clin. Nutr. Metab. 2008, 3, e321–e327. [Google Scholar] [CrossRef] [Green Version]
STV | Categories | Reference |
---|---|---|
Physical Activity Level (SC) | Tier 0—Sedentary children (SdCh) | Extracted from McKay et al. [44] |
Tier 1—Recreationally active children (RcCh) | ||
Tier 2—Trained children (TrCh) | ||
Periodization (STP) | Undulating periodization | Extracted from Williams et al. [45] |
Linear/non-linear periodization | ||
No periodization | ||
Duration (STP) | <8 weeks | Extracted from Clark et al. [46] and Lesinski et al. [47] |
8–12 weeks | ||
>12 weeks | ||
Frequency (STP) | 1 day/week | Extracted from Faigenbaum and Myer [40] and Grgic [48] |
2 days/week | ||
3 days/week | ||
Intensity (STP) | Low: TSE → <60% 1 RM Ply → Jumps in place and standing jumps | TSE—extracted from Cormie et al. [33] Ply—modified from Williams [49] TSE and Ply—adapted from Fort-Vanmeerhaeghe et al. [50] |
Moderate: TSE → 60–80% 1 RM Ply → Bounding and hurdles | ||
High: TSE → >80% 1 RM Ply → Depth jumps and drop jumps | ||
Volume * (STP) | Low (18–278 set/reps/exercise) | Adapted from Peña et al. [39] and Ralston et al. [51] |
Moderate (279–540 set/reps/exercise) | ||
High (541–800 set/reps/exercise) | ||
Movement Velocity (STP) | Low | Extracted from Lloyd et al. [20] |
Moderate | ||
High | ||
Rest Interval (STP) | Short (0–1 min) | Extracted from Grgic et al. [52] and Peña et al. [39] |
Medium (1–2 min) | ||
Long (+2 min) | ||
Joints Involved (STP) | Single-joint | Extracted from Peña et al. [39] and Suchomel et al. [53] |
Multi-joint | ||
Exercise Type (STP) | Plyometrics (unilateral/bilateral) | Extracted from Suchomel et al. [53] |
Bodyweight exercises | ||
Free weight exercises | ||
Machine-based exercises | ||
Weightlifting exercises |
Author(s) | Year | Gender (n) | Age (X ± SD) | PAL | Aim(s) of the Study | |
---|---|---|---|---|---|---|
M | F | |||||
Tsolakis et al. [57] | 2000 | 9 | - | 11.78 ± 0.84 | Tier 0—SdCh Sedentary Lifestyle | To investigate the influence of a short (2-month), supervised, progressive resistance training program with isotonic equipment and a 2-month detraining program on T, sex hormone-binding globulin (SHBG), and free androgen index (FAI) blood concentration in two different age groups of untrained prepubertal and pubertal Greek boys |
Diallo et al. [58] | 2001 | 10 | - | 12.30 ± 0.40 | Tier 2—TrCh Regularly Training | To determine the effects of short-term plyometric training and detraining on performance in pubescent soccer players |
Faigenbaum et al. [59] | 2001 | 44 | 22 | 8.10 ± 1.60 | Tier 1—RcCh Recreational Physical Activity | To examine the effects of four different resistance training protocols on upper body performance adaptations in healthy children |
Fuchs et al. [60] | 2001 | 25 | 20 | 7.50 ± 0.16 | Tier 1—RcCh Recreational Physical Activity | To examine the effects of a high-intensity jumping program on hip and lumbar spine bone mineral content (BMC) in prepubescent children |
Sadres et al. [56] | 2001 | 24 | - | 9.20 ± 0.30 | Not Defined | To examine the effect of two school years of progressive resistance training (9 months of training, 3 months of detraining, and 9 months of training) on muscle strength, linear growth, and self-concept as well as to monitor the injury rate during this program among prepubertal boys |
Faigenbaum et al. [61] | 2002 | 26 | 16 | 9.95 ± 1.40 | Tier 1—RcCh Recreational Physical Activity | To compare the responses of a 1 and 2 day per week strength training program on upper body strength, lower body strength, and motor performance ability in children |
Faigenbaum et al. [62] | 2005 | 17 | 14 | 10.40 ± 1.20 | Tier 1—RcCh Recreational Physical Activity | To compare the effects of a low RM (6–10 RM) and a high RM (15–20 RM) resistance training program on measures of muscular fitness in untrained children |
Ingle et al. [63] | 2006 | 33 | - | 12.30 ± 0.30 | Tier 1—RcCh Recreational Physical Activity | To determine the effect of an upper and lower body complex training and detraining program in pre- and early pubertal boys |
Faigenbaum et al. [64] | 2009 | 23 | 17 | 9.00 ± 0.90 | Tier 0—SdCh Sedentary Lifestyle | To examine the effects of plyometric training on the fitness performance of elementary school physical education students |
Granacher et al. [65] | 2011 | 8 | 9 | 8.60 ± 0.50 | Tier 1—RcCh Recreational Physical Activity | To investigate the effects of standardized high-intensity strength training (HIS) on knee extensor/flexor strength, countermovement jump (CMJ) height, static postural control, soft lean mass, and cross-sectional area (CSA) of the quadriceps muscle of the dominant leg |
Souissi et al. [66] | 2012 | 16 | - | 10.50 ± 0.50 | Tier 0—SdCh Sedentary Lifestyle | To investigate the effect of 6 weeks of resistance training scheduled in the morning or evening hours on the daily variations of muscle strength and power during short-lasting physical tests in 10–11-year-old boys |
Michailidis et al. [67] | 2013 | 24 | - | 10.60 ± 0.60 | Tier 2—TrCh Regularly Training | To investigate whether the combination of soccer practice and plyometric training (PT) would enhance athletic ability and soccer-specific performance to a greater extent than soccer practice alone in prepubertal soccer players |
Ramírez-Campillo et al. [68] | 2014 | 37 | - | 10.40 ± 2.30 | Tier 2—TrCh Regularly Training | To compare the effects of plyometric training using 30, 60, or 120 s of rest between sets on explosive adaptations in young soccer players |
Waugh et al. [69] | 2014 | 4 | 5 | 8.90 ± 0.20 | Tier 0—SdCh Sedentary Lifestyle | To examine the effects of plantar flexor resistance training (RT) on the mechanical properties of the Achilles tendon in prepubertal children and to determine the mechanisms underpinning potential adaptations |
Cunha et al. [70] | 2015 | 9 | - | 10.40 ± 0.50 | Tier 1—RcCh Recreational Physical Activity | To investigate the effects of resistance training (RT) on the neuromuscular and cardiorespiratory performance, body composition, and bone mineral content (BMC) of healthy prepubertal boys |
Rodríguez-Rosell et al. [71] | 2016 | 15 | - | 12.70 ± 0.50 | Tier 2—TrCh Regularly Training | To examine the effects of 6 weeks of resistance training (RT) with low loads (~45–60% 1 RM) and low volume (2 or 3 sets and 4–8 repetitions/set) combined with jumps and sprints on lower limb muscle strength, jumping ability, and acceleration capacity in pre-peak high velocity (PHV) soccer players |
Negra et al. [72] | 2018 | 13 | - | 12.70 ± 0.20 | Tier 2—TrCh Regularly Training | To examine the effects of an 8-week plyometric jump training (PJT) program on changes of direction (CoD), speed, jump performance, and repeated-sprint ability (RSA) in prepubertal male soccer players |
Drouzas et al. [73] | 2020 | 46 | - | 9.95 ± 1.15 | Tier 2—TrCh Regularly Training | To evaluate the effects of 10 weeks of periodized unilateral and bilateral plyometric training on strength, sprint, and jumping performance in preadolescent soccer athletes |
Almeida et al. [74] | 2021 | 64 | - | 7.90 ± 0.90 | Tier 0—SdCh Sedentary Lifestyle | To examine the effects of plyometric training (12 weeks, twice/week, 20 min/day) on physical fitness and gross motor coordination in schoolboys aged 7–9 years |
Padrón-Cabo et al. [75] | 2021 | 10 | - | 12.60 ± 0.70 | Tier 2—TrCh Regularly Training | To examine the effects and determine whether plyometric drills with an agility ladder are an effective training strategy to develop jumping, sprinting, and agility performance in prepubertal players |
Sammoud et al. [76] | 2021 | - | 12 | 10.01 ± 0.57 | Tier 2—TrCh Regularly Training | To study the effects of an 8-week plyometric jump training (PJT) program in combination with regular swimming training compared with swimming training alone on measures of muscle power and sport-specific performances in prepubertal female swimmers |
Wick et al. [77] | 2021 | 16 | 16 | 4.60 ± 0.80 | Tier 0—SdCh Sedentary Lifestyle | To examine the effects of an integrative strength-dominated exercise program on measures of physical fitness and cognitive performance in preschool children |
STV | STP—by Strength Training Variable | ||||
---|---|---|---|---|---|
Periodization | Undulating | Linear/Non-Linear | No Periodization | ||
14 (13.46%) | 87 (83.65%) | 3 (2.89%) | |||
Duration | <8 weeks | 8–12 weeks | >12 weeks | ||
9 (8.65%) | 85 (81.73%) | 10 (9.62%) | |||
Frequency | 1 day | 2 days | 3 days | ||
4 (3.85%) | 85 (81.73%) | 15 (14.42%) | |||
Intensity | Low | Moderate | High | ||
16 (15.69%) | 63 (61.76%) | 23 (22.55%) | |||
Volume | Low | Moderate | High | ||
92 (88.46%) | 6 (5.77%) | 6 (5.77%) | |||
Movement Velocity | Low | Moderate | High | ||
2 (5.71%) | 4 (11.43%) | 29 (82.86%) | |||
Rest Interval | Short | Medium | Long | ||
4 (8.16%) | 25 (51.02%) | 20 (40.82%) | |||
Joints Involved | Single-joint | Multi-joint | |||
29 (27.88%) | 75 (72.12%) | ||||
Exercise Type | Ply | BE | F-WE | M-BE | WE |
24 (23.08%) | 27 (25.95%) | 11 (10.58%) | 38 (36.54%) | 4 (3.85%) |
STV | STP | NA—GSS | NA—BPA | MA—BC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Jump | Sprint | Strength | Agility | Coordination | Balance | Flexibility | BF | LBM | ||
↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ||
Periodization | Undulating | 14 * | 7 */7 † | 8 */4 † | 2 */2 † | - | 6 † | - | 6 | 6 |
Linear | 12 */20 † | 6 */1 † | 55 */24 † | - | 2 * | - | 4 */16 † | 13 | 11 | |
No periodization | 3 * | 5 */3 † | 3 * | 3 * | - | - | - | - | - | |
Duration | <8 weeks | 9 * | 3 */2 † | 8 * | 4 * | - | - | - | 2 | 2 |
8–12 weeks | 20 */20 † | 10 */6 † | 50 */28 † | 1 */2 † | 2 * | 6 † | 4 */16 † | 17 | 15 | |
>12 weeks | - | - | 8 * | - | - | - | - | - | - | |
Frequency | 1 day | 4 † | - | 4 † | - | - | - | 4 † | - | - |
2 days | 18 */16 † | 7 */7 † | 60 */20 † | 5 */2 † | 2 * | 2 † | 4 */12 † | 12 | 10 | |
3 days | 11 * | 6 */1 † | 6 */4 † | - | - | 4 † | - | 7 | 7 | |
Intensity | Low | 12 * | 5 */3 † | 13 */2 † | 1 * | 2 * | 2 † | 2 † | 5 | 4 |
Moderate | 6 */16 † | 5 */1 † | 45 */12 † | 1 * | - | - | 4 */8 † | 13 | 12 | |
High | 9 */4 † | 3 */4 † | 8 */12 † | 3 */2 † | - | 2 † | 6 † | 1 | 1 | |
Volume | Low | 25 */19 † | 11 */6 † | 55 */28 † | 5 */2 † | 1 * | 6 † | 4 */14 † | 12 | 10 |
Moderate | 2 * | 2 * | 6 * | - | - | - | - | 6 | 6 | |
High | 2 */1 † | 2 † | 5 * | - | 1 * | - | 2 † | 1 | 1 | |
Movement Velocity | Low | - | 11 */7 † | 4 * | - | - | - | - | - | - |
Moderate | 4 † | - | 18 * | - | - | - | - | - | - | |
High | 20 * | - | 22 */8 † | 5 */2 † | 2 * | 2 † | 4 † | 6 | 4 | |
Rest Interval | Short | 4 * | 2 */2 † | 3 * | 2 * | - | - | - | 2 | 2 |
Medium | 6 */8 † | 5 */3 † | 17 */4 † | 2 * | 2 * | - | 10 † | 10 | 10 | |
Long | 8 */4 † | 7 */2 † | 20 * | 1 */2 † | - | 2 † | - | 2 | - | |
Joints Involved | Single-joint | 4 */2 † | 3 * | 18 */8 † | - | - | - | 2 † | 6 | 6 |
Multi-joint | 25 */18 † | 10 */8 † | 48 */20 † | 5 */2 † | 2 * | 6 † | 4 */14 † | 13 | 11 | |
Exercise Type | Plyometrics | 21 * | 5 */9 † | 16 */2 † | 5 */2 † | 2 * | 4 † | 4 † | 7 | 5 |
Bodyweight | 3 */8 † | 3 */2 † | 13 */14 † | - | - | 2 † | 2 */6 † | - | - | |
Free weight | 3 * | 10 */6 † | 11 * | - | - | - | - | 6 | 6 | |
Machine-based | 2 */12 † | - | 22 */12 † | - | - | - | 2 */6 † | 6 | 6 | |
Weightlifting | - | - | 4 * | - | - | - | - | - | - |
Study/Item | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tsolakis et al. [57] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Diallo et al. [58] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Faigenbaum et al. [59] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Fuchs et al. [60] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Sadres et al. [56] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Faigenbaum et al. [61] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Faigenbaum et al. [62] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Ingle et al. [63] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Faigenbaum et al. [64] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Granacher et al. [65] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Souissi et al. [66] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Michailidis et al. [67] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Ramírez-Campillo et al. [68] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Waugh et al. [69] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Cunha et al. [70] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Rodríguez-Rosell et al. [71] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Negra et al. [72] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Drouzas et al. [73] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Almeida et al. [74] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Sammoud et al. [76] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Padrón-Cabo et al. [75] | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Wick et al. [77] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Pastor, A.; García-Sánchez, C.; Marquina Nieto, M.; de la Rubia, A. Influence of Strength Training Variables on Neuromuscular and Morphological Adaptations in Prepubertal Children: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 4833. https://doi.org/10.3390/ijerph20064833
Sánchez Pastor A, García-Sánchez C, Marquina Nieto M, de la Rubia A. Influence of Strength Training Variables on Neuromuscular and Morphological Adaptations in Prepubertal Children: A Systematic Review. International Journal of Environmental Research and Public Health. 2023; 20(6):4833. https://doi.org/10.3390/ijerph20064833
Chicago/Turabian StyleSánchez Pastor, Alberto, Carlos García-Sánchez, Moisés Marquina Nieto, and Alfonso de la Rubia. 2023. "Influence of Strength Training Variables on Neuromuscular and Morphological Adaptations in Prepubertal Children: A Systematic Review" International Journal of Environmental Research and Public Health 20, no. 6: 4833. https://doi.org/10.3390/ijerph20064833
APA StyleSánchez Pastor, A., García-Sánchez, C., Marquina Nieto, M., & de la Rubia, A. (2023). Influence of Strength Training Variables on Neuromuscular and Morphological Adaptations in Prepubertal Children: A Systematic Review. International Journal of Environmental Research and Public Health, 20(6), 4833. https://doi.org/10.3390/ijerph20064833