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Abstract: The purpose of this study was to investigate the physiological recovery effects of olfactory,
visual and olfactory–visual stimuli associated with garden plants. In a randomized controlled study
design, ninety-five Chinese university students were randomly selected to be exposed to stimulus
materials, namely the odor of Osmanthus fragrans and a corresponding panoramic image of a
landscape featuring the plant. Physiological indexes were measured by the VISHEEW multiparameter
biofeedback instrument and a NeuroSky EEG tester in a virtual simulation laboratory. The results
showed the following: (1) In the olfactory stimulation group, from before to during exposure to
the stimuli, the subjects’ diastolic blood pressure (DBP) (∆DBP = 4.37 ± 1.69 mmHg, p < 0.05) and
pulse pressure (PP) values increased (∆PP = −4.56 ± 1.24 mmHg, p < 0.05), while their pulse (p)
values decreased (∆P = −2.34 ± 1.16 bmp, p < 0.05) significantly. When compared to the control
group, only the amplitudes of α and β brainwaves increased significantly (∆α = 0.37 ± 2.09 µV,
∆β = 0.34 ± 1.01 µV, p < 0.05). (2) In the visual stimulation group, the amplitudes of skin conductance
(SC) (∆SC = 0.19 ± 0.01 µΩ, p < 0.05), α brainwaves (∆α = 6.2 ± 2.26 µV, p < 0.05) and β brainwaves
(∆β = 5.51 ± 1.7 µV, p < 0.05) all increased significantly relative to the control group. (3) In the
olfactory–visual stimulus group, DBP (∆DBP = 3.26 ± 0.45 mmHg, p < 0.05) values increased, and PP
values decreased (∆PP = −3.48 ± 0.33 bmp, p < 0.05) significantly from before to during exposure to
the stimuli. The amplitudes of SC (∆SC = 0.45 ± 0.34 µΩ, p < 0.05), α brainwaves (∆α = 2.28 ± 1.74 µV,
p < 0.05) and β brainwaves (∆β = 1.4 ± 0.52 µV, p < 0.05) all increased significantly relative to the
control group. The results of this study show that the interaction of olfactory and visual stimuli
associated with a garden plant odor landscape was able to relax and refresh the body to a certain
extent, and this physiological health effect was greater with regards to the integrated response of the
autonomic nervous system and central nervous system than the effect of only smelling or viewing
the stimuli. In the planning and designing of plant smellscapes in garden green space, it should
be ensured that plant odors and corresponding landscapes are present at the same time in order to
ensure the best health effect.

Keywords: restorative landscape; garden plant; smellscape; olfactory–visual stimulus; physiological
relaxation

1. Introduction

Today, due to the rapid development of urbanization and diversified and complex
social pressures, people’s various health risks are aggravated [1]. In this post-COVID period,
public health has become a serious concern globally. An increasing number of researchers
have attempted to improve living environments to help people relieve pressure and relax
their bodies and minds. Urban green space environments are closely related to human
health. Garden plants, as an important part of urban green space, are closely related to
relieving pressure and inducing relaxation. In recent years, scholars have increasingly paid
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attention to the restorative effect of garden plants on human health, including the effects of
smell, visual landscapes, etc., which are related to plants in garden environments [2–8].

Researchers have found that plant scents stimulate nerves in the brain through the
olfactory sulci, inducing the central nervous system and endocrine system to secrete
hormones, thereby affecting various physiological reactions [9]. Tong et al. found that the
living aroma of rosemary and lemon grass can regulate the nervous system of the human
body and induce an antidepression effect [10]. The odor of Abies holophylla Maxim. has
been found to have a positive effect on the autonomic nervous system (blood pressure,
heart rate variability, etc.), to alleviate stress and to improve vascular function [11]. Torii
found that the scents of sandalwood, bergamot, lemon, marjoram, chamomile and lavender
essential oils are calming [2]. Lehrner et al. tested the effect of aroma on the mood of
patients waiting for dental treatment, and their results showed that orange and lavender
smells seemed to reduce patients’ anxiety and significantly improve their mood [3].

In addition, many studies have shown that viewing landscapes of green spaces can reduce
stress and promote mental health [12]. A previous study found that the visual stimulation
of forest images resulted in a decrease in the concentration of oxygen Hb in the prefrontal
cortex [13]. Watching videos of bamboo forests with a high canopy density (0.83–0.85) may
significantly decrease α waves, relaxing the human body [14]. Li X, adopting a biofeedback
measurement and psychological test, found that under the visual stimulation of flower
plants and leaf plants of different kinds and colors, the blood pressure (BP), heart rate (HR)
and brainwaves of subjects showed positive physiological responses; their anxiety, anger
and fatigue were significantly reduced; and their vitality levels increased [15].

Previous studies have shown that the stimulation of plant smells or plant landscapes
can affect the health of humans. Three kinds of indicators are used to measure human
physiological health, namely autonomic nervous system (ANS) indicators, central nervous
system (CNS) indicators and biological indicators reflecting the stress response. The
autonomic nervous system is also known as the visceral or involuntary nervous system,
and its function is not under conscious, voluntary control. The ANS is related to vital
functions such as respiration, heart rate and blood pressure and plays an important role
in dynamically controlling the body’s response to internal and external stimuli and in
subtly regulating biological homeostasis [16]. The autonomic nervous system is mainly
composed of the sympathetic nervous system (SNS) and the parasympathetic nervous
system (PNS). In general, the SNS is activated by excitement and nervousness, and it is
often accompanied by an increase in heart rate and blood pressure. The PNS, activated by
relaxation, plays a dominant role in states of quiet rest and is associated with reduced heart
rate and blood pressure [17].

The central nervous system, composed of the spinal cord and the brain, plays an
important role in the pattern of human behavior. People’s hearing, tasting, smelling, feeling
and seeing are all controlled by the central nervous system [18,19]. Indexes used to study the
central nervous system generally include brainwave measurement (which can be recorded
by an electroencephalogram, biofeedback instrument, brainwave instrument, etc.) [6,20],
cerebral blood flow dynamics (judged by changes in hemoglobin concentration) [21], brain
activation regions (judged by functional MRI and fMRI imaging of brain regions or near-
infrared optical brain imaging systems) [22–25] and electromyography (EMG) [26]. In terms
of the biological indicators of the stress response, currently, common indicators used in the
study of the relationship between human and the natural environment include salivary
alpha-amylase activity [27], salivary cortisol concentration, salivary immunoglobulin (IgA)
concentration [21], etc.

‘It penetrates people’s hearts and spleens’ is a Chinese idiom used to describe the
fragrance of plants as comforting [28]. The ‘heart’ and ‘spleen’ mentioned here are not
the heart and spleen in the modern medical sense. In the theory of traditional Chinese
medicine, it is believed that the ‘heart’ is closely related to mental thinking activities [29],
which can be regarded as the function of the brain, namely the central nervous system
in modern medicine. According to the theory of the ‘spleen main muscle’ in traditional
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Chinese medicine, the ‘spleen’ corresponds to the function of the autonomic nervous system
in modern medicine. In this sense, interpreting the health benefits of odors from the central
nervous system and autonomic nervous system dimensions has a long history in China.
The traditional medical system of Western Europe also has a long history of research on the
effects of plant components on the human central nervous system and autonomic nervous
system [30,31]. At present, in the study of the physiological effects of smell or plant odors
on the human body, a lot of attention has been paid to the central nervous system and the
autonomic nervous system [11,31–34]. However, in the field of garden plant smellscapes,
studies that focus on these systems are still scarce.

In addition, most previous studies on the restorative function of garden plants only
focused on the olfactory or visual level, in other words, on a single dimension. As we
know, people’s activities in urban green space involve comprehensive experiences of vision,
smell and other senses [4,7,8,12,15,33]. In order to further study the relationship between
green space and human health, it is necessary to move from studying only a single sensory
dimension to analyzing the impact of multidimensional sensory interactions on the human
body, such as olfactory and visual interaction.

Therefore, the aim of this study was to move past the single sensory dimension
approach by adopting ‘multidimensional perception’ as its research core. We used the smell
of a common Chinese garden plant (Osmanthus fragrans) and a panoramic image of the
corresponding landscape (a garden landscape photograph with Osmanthus trees as the
main content taken by a panoramic camera) as the stimulus materials and used a group
of college students with normal olfactory and visual abilities to compare and analyze the
effects of olfactory, visual and olfactory–visual stimuli on various physiological indexes.
Our aim was to expound the relationship between garden plant smellscapes and human
health in order to provide a theoretical basis for the objective evaluation of the effect of the
smell landscapes of garden plants on human health and to guide the scientific construction
of garden plant smell studies. The following specific questions were put forward: (1) Are
people’s autonomic nervous systems or central nervous systems affected by their smelling
an Osmanthus, viewing a landscape of an Osmanthus or smelling the plant’s fragrance
while viewing the landscape? (2) If so, are there any differences among the above three
cases? (3) If there are differences, are they manifested in the autonomic or central nervous
system? What are the differences between the two nervous systems?

2. Materials and Methods
2.1. Subjects

This study was conducted among university students (undergraduate and graduate
students) aged 18–26 years old; all subjects were recruited through the campus network
and chose to participate in the experiment voluntarily and knowingly. After a preliminary
interview, patients with rhinitis, cold and olfactory disorders were screened out. Subjects
were required to have adequate sleep the day before the test, to not smoke or drink alcohol
and to not use perfume or strong fragrance cosmetics on the day of the test. For some
myopic subjects, after they were asked about their degree of myopia before the test, the
focus of their virtual reality (VR) glasses was adjusted to ensure that the scene seen through
their glasses was clear. In addition, subjects with color blindness or color weakness were
excluded. The test for color blindness or weakness was conducted using the fifth edition
of the Color Blindness Test Map [35]; this was carried out in the experimental preparation
stage. If the subjects reported color blindness or color weakness, they were withdrawn
from participating in the experiment. Finally, 95 students (24 men and 71 women) were
selected to participate in the experiment. In order to ensure the effect of the experiment
and avoid a practice effect caused by repeated participation of the subjects [36], the subjects
in each group did not overlap.
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2.2. Experimental Design

All the data collected in this study were measured in the Virtual Simulation Room
of the Landscape Architecture and Art College at Northwest A&F University, and all
the participants were exposed to the same environmental conditions. The experiment
was carried out in a room with white walls and ceilings, and the interior space was
4 m (long) × 3 m (wide) × 3.1 m (high). In order to prevent the mood of the subjects from
being affected by weather and light, the indoor environment was kept the same: ambient
light was 300 lx, ambient sound was not higher than 45 ± 5 dB, temperature was 25 ± 2 ◦C
and relative humidity was 55 ± 5%. The physiological test instruments were placed behind
the chair the subjects were sitting on, and on the opposite side of the chair was a white wall
to avoid unnecessary visual influence (Figure 1).
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Figure 1. Experimental procedure.

A single-blind test was performed using a randomized and crossover design, and
physiological reactions, including autonomic nervous system indicators and changes in the
central nervous system, were measured. Participants were randomly assigned to different
processing sequences (olfactory, visual, olfactory–visual stimulus sequences and the control
group). In each group of experiments, subjects were randomly subjected to stimuli, and the
flows of other steps were the same except for different stimulus types set in the intervention
stage of the experiment, as shown in Figure 1. In the control group, the subjects sniffed
blank scents and wore VR glasses to view the white lab wall. The average test time for each
person was about 34 min. During each test interval, the door and window were opened
for ventilation for 10 min to remove residual odor in the air. The research protocol was
approved by the University Ethical Committee.

2.3. The Stimulus

The olfactory stimulus materials were the flowers of Osmanthus fragrans var. thun-
bergia, which is not only widely distributed but also one of the ten most famous flowers in
China [37]. The flower is very commonly found in urban green space. In order to ensure
the authenticity of the plant’s smell, plant materials were collected 0.5~1 h in advance on
the test day and placed in a colorless and odorless cylindrical PE plastic airtight container
with a volume of 600 mL. Flower volatiles are mixtures composed of various substances,
and in nature, these are also mixed with air. The treatment method used in this study can
truly reflect the influence of volatiles [38]. To prevent visual cues from influencing olfactory
perception, a special box was added to the outside of the container (Figure 1), which was
covered before the test and opened during the sniffing phase. The olfactory stimulation
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material device was fixed on a tripod with an adjustable height, and the horizontal distance
between the device and the nose of the subject was 10 cm, while both were at the same
height [31,39,40], which ensured that the sniffing radius of each subject was consistent.
Olfactory stimulation odor concentration refers to the fragrance concentration of natural
volatilization of Osmanthus fragrans in real environments of garden green space when
there is no wind on sunny days. The data were measured by a COSMOS XP-329IIir (Osaka,
Japan) portable odor sensor. The visual stimulus material was a panorama photo of Os-
manthus trees, which was collected through the network and imported into virtual reality
equipment (Figure 1). The olfactory–visual stimulus was a combination of visual and
olfactory stimuli. The control group was exposed to white wall images in the laboratory
under an odorless condition, which did not produce stimuli related to plant smells or a
garden landscape. All visual stimuli were generated while the subject wore VR glasses.

2.4. Physiological Measurements

The selected physiological indicators were divided into autonomic nervous system
(ANS)-related indicators (blood pressure, pulse pressure difference, pulse and skin con-
ductance) and central nervous system (CNS)-related indicators (alpha brainwaves and
beta brainwaves).

2.4.1. Measurements of Indicators Related to the Autonomic Nervous System

After sitting for 20 min and taking a full rest, the subjects were fitted with equip-
ment, and their blood pressure (BP) and pulse (P) were measured using an upper-arm
electronic sphygmomanometer (OMRON, HEM-7211, Kyoto, Japan). Both BP and P were
measured twice and averaged for analysis. After the intervention, BP and P were measured
again. Pulse pressure difference (PP) data were calculated and recorded by the staff. As a
basic physiological index of the human body, BP (including SBP and DBP) is often used
to measure the relationship between garden plant smells and human health [11,30,31].
Excitation of sympathetic nerves is manifested by an increase in BP, and increased parasym-
pathetic nerve activity is manifested by a decrease in BP [11]. PP is the difference between
SBP and DBP, which, like blood pressure and pulse, can reflect the health of the human
body [32]. Pulse is an important indicator of cardiovascular health. Generally speaking,
when the human body is in a stressful state or environment, p values increase; otherwise,
they fall [33].

Skin conductance (SC) was measured by a multiparameter biofeedback instrument
(VISHEEW, Infiniti3000A, Nanjing, China), and these data were recorded by Bioneuro soft-
ware(BioNeuro Infiniti v5.0), which is a physiological indicator that can reflect emotional
stress and that is significantly affected by skin sweat secretion [34]. Before the experiment,
the subjects were fitted with a biofeedback device, as shown in Figure 1. At baseline
measurement and during the test stimulation, Bioneuro software was used to continuously
record changes in the SC values of the subjects for 60 s and 120 s. Physiological psychol-
ogists measure the activity of sweat glands in order to study the related psychological
activities [41]. While SC, which is controlled by the sympathetic nervous system, cannot
function as the sole indicator of sympathetic activity [42], it is considered to be a reliable
physiological measure of emotional arousal [43]. Under conditions of emotional excitement,
tension, fear or anxiety, sweat gland secretion increases, and sweat on the skin surface
increases, resulting in an increase in electrical conductivity and an increase in SC values.
When a person’s mood is calm, their SC values decrease [44].

2.4.2. Measurements of Indicators Related to the Central Nervous System

The brainwave types tested in this experiment were α waves and β waves, which
were monitored by a brainwave device (made by NeuroSky (Silicon Valley, American),
an American company; the device contains a TGAM brainwave chip) and numerically
processed by the eSense TM algorithm. EEG signals are derived from the hyperpolarizing
and depolarizing postsynaptic potentials in populations of pyramidal neurons, which exit
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the lower portion of the cerebral cortex [45]. An EEG can record these electrical signals from
the scalp surrounding the human brain [46,47]. Data collected by an electroencephalogram
(EEG) device when participants are faced with a stimulus are more objective and can better
reflect participants’ true thoughts compared with data collected by traditional methods
such as interviews or questionnaire surveys, and they are a kind of real-time physiological
data [48]. Brainwaves are an internal scientific indicator of mood changes [49]; α waves
are called ‘relaxing waves’ and ‘creative waves’ and are related to the active activity of the
brain [50]; when the energy released by α waves is strong, this represents the brain being
in a heightened state of learning and thinking. β waves are associated with concentration;
when beta waves emit higher energy, they represent a positive increase in attention [51].

2.5. Statistical Analyses

Physiological indexes were analyzed and derived by the Bioneuro software platform
and the eSense TM algorithm platform, and the data were processed by SPSS25.0 software.
A paired-sample t-test was used to analyze the influence of the three intervention methods
on the physiological indexes of the subjects before and during stimulation, and ANOVA
and an LSD post test were used to analyze the differences in the variation in each groups’
physiological indexes. Microsoft Office PowerPoint and Photoshop CS6 were used for
graphs. In order to standardize the data, when analyzing the physiological indicators of
the subjects, the physiological indicators of blank smell and white wall stimulus state in
the early stage of the experiment were taken as the baseline. The value of the change in
the data from the baseline (∆) was obtained according to the following calculation method:
∆ = PSV − BSV (∆: the value of change in the data from the baseline; PSV: change in index
data during stimulus; BSV: baseline value).

3. Results
3.1. Changes in Autonomic Nervous System Indicator Data

In this study, a paired-sample t-test was used to analyze the influence of olfactory,
visual and olfactory–visual stimulation methods on the physiological indexes of the sub-
jects before and during stimulation. Table 1 shows that from before to during olfactory
stimulation, the subjects’ systolic blood pressure (SBP) values did not change significantly
(before, 108.06 ± 10.91 mmHg; during, 107.88 ± 11.14 mmHg; p > 0.05), but their diastolic
blood pressure (DBP) values increased significantly (before, 62.88 ± 8.41 mmHg; during,
67.25 ± 10.10 mmHg; p < 0.05), and their pulse pressure difference (PP) values (before,
45.19 ± 8.29 mmHg; during, 40.63 ± 7.05 mmHg; p < 0.05) and pulse (P) values (before,
77.67 ± 12.56 bmp; during, 75.33 ± 11.4 bmp; p < 0.05) decreased significantly. During
visual stimulation, the subjects exhibited no significant changes in their SBP, DBP, PP and
p values. During olfactory–vision stimulation, significant increases in the subjects’ DBP
(before, 61.04 ± 6.93 mmHg; during, 64.30 ± 6.48 mmHg; p < 0.05) and SC values (before,
2.95 ± 2.14 µΩ; during, 3.40 ± 2.48 µΩ; p < 0.05) were recorded, and there was a significant
decrease in their PP values (before, 44.76 ± 4.84 mmHg; during, 40.92 ± 5.17 mmHg;
p < 0.05), while their SBP (before, 105.80 ± 7.92 mmHg; during, 105.22 ± 7.45 mmHg;
p > 0.05) and p values (before, 72.28 ± 9.95 bmp; during, 71.56 ± 10.19 bmp; p > 0.05) did
not change significantly. As shown in Table 1, the subjects exhibited no significant changes
in their SC values during olfactory (before, 2.94 ± 2.92 µΩ; during, 2.78 ± 2.68 µΩ; p > 0.05)
and visual stimulation (before, 3.03 ± 2.17 µΩ; during, 3.22 ± 2.18 µΩ; p > 0.05), while these
values increased significantly during olfactory–vision stimulation (before, 2.95 ± 2.14 µΩ;
during, 3.40 ± 2.48 µΩ; p < 0.05).
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Table 1. Changes in physiological indexes before and during olfactory, visual and olfactory–
visual stimulation.

Stimulus Type Variable
(Unit)

Before During
T

Mean SD Mean SD

O

SBP (mm Hg)

108.06 10.91 107.88 11.14 0.185
V 105.89 11.14 104.91 9.81 0.603

O&V 105.80 7.92 105.22 7.45 0.579
C 106.54 9.15 104.94 7.10 1.406

O

DBP (mm Hg)

62.88 8.41 67.25 10.10 3.400 **
V 63.48 6.70 63.89 9.32 −0.203

O&V 61.04 6.93 64.30 6.48 −2.783 **
C 61.00 7.93 62.46 5.85 −1.421

O

PP (mm Hg)

45.19 8.29 40.63 7.05 3.518 **
V 42.41 8.58 41.02 10.34 0.577

O&V 44.76 4.84 40.92 5.17 3.373 **
C 45.54 6.84 42.48 5.15 2.899 **

O
V

O&V
P (bpm)

77.67 12.56 75.33 11.40 2.874 **
73.96 11.82 73.80 11.29 0.160
72.28 9.95 71.56 10.19 0.946

C

SC (µΩ)

74.38 10.40 74.40 7.86 −0.21
O 2.94 2.92 2.78 2.68 0.969
V 3.03 2.17 3.22 2.18 −1.774

O&V 2.95 2.14 3.40 2.48 2.824 **
C 3.35 2.05 2.88 2.06 3.284 *

O 17.67 6.64 18.04 4.55 −0.303
V

α waves (µV) 13.90 7.19 20.10 9.45 −4.785 **
O&V 16.03 5.03 18.31 6.77 −2.241 *

C 19.78 17.16 14.60 10.52 2.486 *

O 11.49 4.47 11.83 5.48 −0.374
V

β waves (µV)
8.27 5.09 13.78 6.79 −6.067 **

O&V 10.12 4.35 11.52 4.87 −2.153 **
C 13.37 12.65 10.11 9.15 2.537 *

p < 0.01 indicates an extremely significant difference; 0.01 < p < 0.05 indicates a significant difference; p > 0.05
indicates that the difference was not significant. O: olfactory stimulation; V: visual stimulation; O&V: olfactory–
visual stimulation; C: control; SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse pressure
difference; P: pulse; SC: skin conductance. ** indicates that the difference between the two was extremely
significant, p < 0.01; * indicates a significant difference between the two, 0.01 < p < 0.05.

The differences in the variation in each group’s physiological indexes were analyzed
through ANOVA and an LSD post test. Among the three stimulation conditions, there were
no significant differences relative to the mean values from the baseline in the blood pressure,
pulse pressure difference and pulse values (∆SBP: control, −1.60 ± 1.14 mmHg; olfactory,
−0.19 ± 1.01 mmHg; visual, −0.98 ± 1.62 mmHg; olfactory–visual, −0.58 ± 1.00 mmHg;
p > 0.05, Figure 2; ∆DBP: control, 1.46 ± 1.03 mmHg; olfactory, 4.38 ± 1.29 mmHg; vi-
sual, 0.41 ± 2.04 mmHg; olfactory–visual, 3.26 ± 1.17 mmHg; p > 0.05, Figure 2; ∆PP:
control, −3.06 ± 1.06 mmHg; olfactory, −4.56 ± 1.30 mmHg; visual, −1.39 ± 2.41 mmHg;
olfactory–visual, −3.84 ± 1.14 mmHg; p > 0.05, Figure 2; ∆P: control, 0.02 ± 1.01 bmp;
olfactory, −2.33 ± 0.81 bmp; visual, −0.15 ± 0.95 bmp; olfactory–visual, −0.72 ± 0.76 bmp;
p > 0.05, Figure 3). Furthermore, the average SC values relative to the baseline during the
stimulus period were calculated for each participant; the mean values of these averages
are shown in Figure 4. Both the visual stimulation and the olfactory–visual stimulation
conditions showed significant differences relative to the control condition (∆SC: control,
−0.47 ± 0.01 µΩ visual, 0.19 ± 0.01 µΩ; olfactory–visual, 0.45 ± 0.34 µΩ; p < 0.001). No
significant difference was observed for the olfactory stimulation condition.
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3.2. Changes in Central Nervous System Indicator Data

As shown in Table 1, the subjects exhibited significant increases in both α-wave
and β-wave values from before to during visual and olfactory–visual stimulation (α
waves: visual, before, 13.90 ± 7.19 µV; during, 20.10 ± 9.45 µV, p < 0.001; olfactory–
visual, before, 16.03 ± 5.03 µV; during, 18.31 ± 6.77 µV, p < 0.05; β waves: visual, before,
8.27 ± 5.09 µV; during, 13.78 ± 6.79 µV, p < 0.001; olfactory–visual, before, 10.12 ± 4.35 µV;
during, 11.52 ± 4.87 µV, p < 0.05), but no significant changes in α-wave and β-wave values
from before to during olfactory stimulation (α waves: before, 17.67 ± 6.64 µV; during,
18.04 ± 4.55 µV, p > 0.05; β waves: before, 11.49 ± 4.47 µV; during, 11.83 ± 5.48 µV, p > 0.05)
were recorded.

Figure 5 shows the overall α-wave and β-wave mean values relative to the baseline
during the four stimulus conditions. All three stimulation conditions showed significant
differences from the control condition (∆αwaves: control, −5.18 ± 6.64 µV; olfactory,
0.37 ± 2.09 µV, p < 0.05; visual, 6.20 ± 2.26 µV, p < 0.001; olfactory–visual, 2.28 ± 1.74 µV;
p < 0.05, Figure 5; ∆β waves: control, −3.26 ± 3.5 µV; olfactory, 0.34 ± 1.01 µV, p < 0.05;
visual, 5.51 ± 1.7 µV, p < 0.001; olfactory–visual, 1.40 ± 0.52 µV, p < 0.05, Figure 5).
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3.3. Differences in Physiological Effects of Different Stimuli Related to Garden Plant Smellscape

Through one-way analysis of variance (ANOVA), we found that there were significant
differences in three physiological indexes, i.e., SC (p = 0.000), α waves (p = 0.000) and β

waves (p = 0.000), between the control group and each stimulus group.
There were three combinations that recorded significant differences in changes in skin

conductivity (Table 2). In addition to the differences with regards to the control group,
significant differences were found between the olfactory and olfactory–visual stimulus
responses. There were four combinations that recorded significant differences in the
changes in α brainwave amplitude. In addition to the differences with regards to the
control group, significant differences were found between the olfactory and visual stimulus
modes. In terms of the values of the changes in β brainwave amplitude, there were
significant differences among the five combinations, and there were two combinations of
different stimulus modes involved, namely the combination of the visual and olfactory
stimulus modes and the combination of the visual and the olfactory–visual stimulus modes.
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Table 2. Significance analysis of the influence of different stimulation methods on skin conductance,
α waves and β waves (SC, α waves and β waves).

P (LSD)

O V O&V

SC O&V 0.004 – –
C – 0.001 0.000

αwaves O – 0.006 –
C 0.009 0.000 0.001

βwaves V 0.001 – 0.006
C 0.010 0.000 0.001

p < 0.01 indicates an extremely significant difference; 0.01 < p < 0.05 indicates a significant difference; p > 0.05
indicates that the difference was not significant. Those not shown were a combination of p > 0.05. O: olfactory
stimulation; V: visual stimulation; O&V: olfactory–visual stimulation; C: control; SC: skin conductance.

4. Discussion
4.1. Effects of Olfactory, Visual and Olfactory–Visual Stimuli on the Autonomic Nervous System

Regarding the indicators selected in this study, olfactory stimulation had no significant
effect on the autonomic nervous system, while both visual stimulation and olfactory–visual
stimulation significantly affected the autonomic nervous system. The ANOVA of the
variation in each ANS index revealed that except for the SC values, the variation in the BP,
PP and p values was not significantly different from that of the control group. For the SC
values, except for olfactory stimulation, there were significant differences between visual
stimulation and olfactory–visual stimulation. Similar findings have also been found in
previous studies on the effects of plant smellscapes on the human ANS. Jo et al. found that
the naturally volatile odor of Pinus densiflora failed to have a significant impact on human
blood pressure (BP) and pulse (P) values or on the values of other ANS indicators [52].
Fan et al. found that there were no significant differences in the variation in ANS-related
indexes such as systolic blood pressure (SBP) and heart rate after the skin absorbed aroma
substances of plants such as Rosa setate × Rosa rugosa [53].

In this study, only smelling Osmanthus had no significant effect on the autonomic
nervous system, while simply viewing the Osmanthus landscape or viewing the landscape
while smelling the Osmanthus odor led to significant increases in the SC index values of
the autonomic nervous system. Previous research may be able to explain these results.
Baer et al. found that odor stimuli did not cause significantly different cutaneous electrical
responses [54]. This is consistent with the findings of this study, namely, that the SC values
of the subjects after stimulation by the Osmanthus scent presented a downward trend,
although this change was not significant. According to a study by Yuqian et al., human SC
values increased significantly after subjects watched bamboo videos for 1–3 min [55]. This
is consistent with the findings of the present study, namely that the short-term viewing of
a garden landscape caused a significant increase in the subjects’ SC values, sympathetic
nerve activity and emotional excitement. This finding also verifies the long-held belief that
the visual system is the main method humans use to receive information from the external
environment [56] and that it is also the most important sense organ in terms of yielding
information about the outdoor environment [57].

In this study, the effect of visual stimulation on the BP, PP and P physiological index
value of the autonomic nervous system was not significant, but it had a significant effect on
the SC values. This phenomenon reminds us that when selecting physiological indicators,
we need to consider their diversity to ensure the comprehensiveness of experimental results.

4.2. Effects of Olfactory, Visual and Olfactory–Visual Stimuli on the Central Nervous System

All three types of stimulation affected the central nervous system, which can be seen
from the ANOVA results for the α and β brainwave amplitudes. The ANOVA results
suggest that during exposure to the olfactory, visual and olfactory–visual stimulus modes,
the subjects’ alpha and beta brainwave amplitudes exhibited significant increases compared
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with the control group. In addition, the visual stimulation group exhibited significantly
higher increases in these amplitudes than the olfactory stimulation group, suggesting that
compared with single-smell stimulation, the degree of influence of visual stimulation on
the central nervous system was more obvious. This finding confirms the long-held belief
that the visual system is the main method humans use to receive information from the
external environment [56]. In addition, research in the field of neuroscience may also
explain this phenomenon; olfactory neuronal transduction is the slowest among all the
senses; olfactory detection takes about 400 milliseconds, which is ten times longer (i.e.,
slower) than visual detection [58,59]. Furthermore, the projection of olfactory images in
the brain is significantly weaker than that of visual images. Specifically, there are about
fifty thousand mitral cells for olfactory images, while there are one million pixels per visual
image represented by retinal cells [60,61]. As a result, the human brain is relatively weak at
processing olfactory cues in the absence of other cues [62].

Moreover, Fang M found that after subjects smelled the aroma of Osmanthus distilla-
tion extraction, their alpha wave amplitudes reduced significantly [63], a finding which
does not agree with our study. The reasons for these differences are very complex and
may be related to the source of the floral fragrance (from the natural release of flowers
or distillation extraction), the concentration of the scent, the subjects’ sniffing threshold,
sniffing duration and other factors [64]. This means that EEG technology is sensitive in
sniff experiments, and the use of this technology may require more diverse test designs
tailored to the characteristics of EEG activity.

4.3. Different Effects of Olfactory, Visual and Olfactory–Visual Stimuli on Human
Physiological Indexes

In this study, it was found that the changes in the physiological indicators differed
considerably among the different stimulation methods. These significant differences were
recorded in both the autonomic nervous system (SC) and the central nervous system (α
and β brainwaves).

From the perspective of SC, the SC values significantly increased under the olfactory–
visual stimulus method, and this increase was significantly higher than that of the single
olfactory stimulus method. It can be speculated that the olfactory–visual stimulus method
caused a surge in the sympathetic nerve activity in the human ANS, which had a cumula-
tive effect. This may mean that people become subconsciously (not subject to subjective
consciousness) sympathetically excited when they smell and view garden plants, and this
degree of excitement is much higher than when they purely smell or view these plants.
Song found that forest-related olfactory–visual stimuli had cumulative effects on parasym-
pathetic activity [13], a finding consistent with the results of this study to some extent.

In this study, in terms of CNS indicators and, in particular, the changes in α and
β brainwaves caused by the Osmanthus fragrance, the olfactory–visual stimulus group
recorded increases that fell between those of the olfactory and visual groups. Therefore,
it can be concluded that the degree of activity of the human CNS when subjected to
an olfactory–visual stimulus falls between that when subjected to a pure smell stimulus
and a pure visual stimulus, a compromise effect. This indicates that the degree of the
stability, relaxation and refreshing effects on the brain levels dominated by the subjective
will when people smell Osmanthus and watch an Osmanthus landscape at the same
time may fall between the degrees for pure sight and for pure smell. Research in the
domain of neuroscience suggests that visual processing has a potential causal effect on
olfactory perception [65]. The orbitofrontal cortex area in the brain is the site of a variety
of sensory modalities, including olfactory and visual information [66–68]. Differential
effects of individual sensory inputs can occur based on the interactions of these sensory
modalities. In addition, in this study, the increases in α and β brainwave amplitudes under
visual stimulation were significantly greater than those under olfactory stimulation. This is
consistent with the conclusions of previous studies, which found that visual stimuli are
the dominant sensory stimuli in a wide range of situations [69–71]. In general, people
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tend to believe that vision induces more stability, relaxation and refreshing effects than the
other senses.

In this study, based on the above analysis, it can be determined that when the subjects
were stimulated by Osmanthus-related olfactory–visual stimuli, they became very excited
and subconsciously happy (ANS control), while such excitement was inhibited in their
subjective consciousness (CNS control). As the ‘effect of images on olfaction’ is still poorly
understood [25], the mechanism of this result is still unclear. In order to further explore
this phenomenon, multidimensional sensory stimuli related to garden plant smells should
be used in future research.

5. Conclusions

This study revealed that exposure to olfactory–visual stimuli of a garden plant odor
and landscape relaxed and refreshed the subjects’ bodies to a certain extent, and this
physiological health effect was greater with regards to the integrated response of the
autonomic nervous system and central nervous system than the effect of only the visual
or olfactory stimulus. Therefore, in the planning and designing of plant smellscapes in
garden green space, it should be ensured that plant odors and corresponding landscapes
are present at the same time in order to ensure the best health effect or, in other words, to
ensure ‘It penetrates people’s hearts and spleens’.

Another finding of this study is that the CNS and ANS showed different physiological
responses to the stimulus types associated with the smellscape. Under the olfactory–
visual stimulation mode, the degree of the activity of the human central nervous system
fell between that under the olfactory alone and only visual stimulation modes, with a
compromise effect, while the degree of the excitation of the sympathetic nervous system
was much higher than that under any of the single stimulus modes, with a cumulative
effect being recorded.

All of these findings support the possibility that short-term exposure to olfactory–
visual stimuli associated with garden plant smellscapes can induce physical and mental
pleasure. From the late 1990s to the early 2000s, people’s interest in aromatherapy soared,
but its influence is remains relatively limited. People need specific space and time and
must pay certain costs to engage in aromatherapy. In today’s busy society, if people were to
take in the interacting stimuli of the fragrant scent of garden plants and beautiful scenery
when they visit park green spaces or walk in street green spaces, they may be able to
relieve pressure and relax, could be very beneficial to public health. The results of this
study provide valuable data for the realization of this possible approach, in addition to
contributing to the development of a theoretical basis for the design of odor landscapes in
garden plant landscapes.

However, this study is subject to some limitations. In terms of the study’s research
objects, the subjects were mainly young college students; people of other age groups, edu-
cation levels and living backgrounds were not involved. More population samples should
be included in future studies to further validate the results of this study. Furthermore,
although the study’s experimental design, which involved olfactory, visual and olfactory–
visual stimuli, was scientific and innovative, there is still a variety of other components in
garden green space environments, such as sound. Other environmental stimuli such as
sound should be incorporated into future studies as evidence to support the health benefits
of garden green space. In terms of the study’s measurement indicators, we only focused on
the measurement of physiological indicators, not psychological indicators. Psychological
indicators should be measured in future studies in order to verify the results of this study
more comprehensively.

Although smell, which is directly related to aromatic odor, is the primary factor that
triggers the perception of a smellscape, such perception not only involves the sense of
smell but also the interaction of multidimensional senses. The future design of garden
plant smellscapes should not only focus on odor elements but also make full use of all the
perception elements related to smellscapes, i.e., those interacting multidimensional senses,
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so as to improve the environmental quality of garden green space and give full play to the
health effects of garden plant smellscapes.
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