Pleurotus pulmonarius Strain: Arsenic(III)/Cadmium(II) Accumulation, Tolerance, and Simulation Application in Environmental Remediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain, Chemicals, Medium, and Substrates
2.2. Preparation of HM Salts Solutions
2.3. Cd (II) or As (III) Stress Treatment for Hypha
2.4. Remediation Experiment of Contaminated Liquid with Cd and As
2.5. Cd or As Stress Treatment for Fruiting Bodies and Cultivation Management
2.6. Remediation Experiment of Cd- and As-Contaminated Soil
2.7. Statistical Analysis
3. Results
3.1. Effect of Cd Stress on the Hypha of P. pulmonarius MT
3.2. Effect of As Stress on the Hypha of P. pulmonarius MT
3.3. Remediation Effect of P. pulmonarius MT on Cd- and As-Contaminated Liquid
3.4. Effect of Cd Stress on Fruiting Bodies of P. pulmonarius MT
3.5. Effect of As Stress on Fruiting Bodies of P. pulmonarius MT
3.6. Remediation Effect of P. pulmonarius MT on Cd- and As-Contaminated Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thakare, M.; Sarma, H.; Datar, S.; Roy, A.; Pawar, P.; Gupta, K.; Pandit, S.; Prasad, R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr. Res. Biotechnol. 2021, 3, 84–98. [Google Scholar] [CrossRef]
- Fernandez-Luqueno, F.; Lopez-Valdez, F.; Gamero-Melo, P.; Luna-Suarez, S.; Aguilera-Gonzalez, E.N.; Martínez, A.I.; García-Guillermo, M.; Hernandez-Martinez, G.; Herrera-Mendoza, R.; Álvarez-Garza, M.A. Heavy metal pollution in drinking water-a global risk for human health: A review. Afr. J. Environ. Sci. Technol. 2013, 7, 567–584. [Google Scholar]
- Nachana’a Timothy, E.T.W. Environmental pollution by heavy metal: An overview. Chemistry 2019, 3, 72–82. [Google Scholar]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef] [Green Version]
- Ojuederie, O.B.; Babalola, O.O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef] [Green Version]
- Andjelkovic, M.; Buha Djordjevic, A.; Antonijevic, E.; Antonijevic, B.; Stanic, M.; Kotur-Stevuljevic, J.; Spasojevic-Kalimanovska, V.; Jovanovic, M.; Boricic, N.; Wallace, D. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int. J. Environ. Res. Public Health 2019, 16, 274. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy, S.; Yu, T.; Makriyannis, A.; Chen, C.; Liu, J.; Xiong, R. Chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle. Genes Cancer 2019, 10, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Siblerud, R.; Mutter, J.; Moore, E.; Naumann, J.; Walach, H. A hypothesis and evidence that mercury may be an etiological factor in Alzheimer’s disease. Int. J. Environ. Res. Public Health 2019, 16, 5152. [Google Scholar] [CrossRef] [Green Version]
- Moradi, F.; Maleki, V.; Saleh-Ghadimi, S.; Kooshki, F.; Pourghassem Gargari, B. Potential roles of chromium on inflammatory biomarkers in diabetes: A Systematic. Clin. Exp. Pharmacol. Physiol. 2019, 46, 975–983. [Google Scholar] [CrossRef] [Green Version]
- Huybrechts, M.; Cuypers, A.; Deckers, J.; Iven, V.; Vandionant, S.; Jozefczak, M.; Hendrix, S. Cadmium and plant development: An agony from seed to seed. Int. J. Mol. Sci. 2019, 20, 3971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmedo, P.; Grau-Perez, M.; Fretts, A.; Tellez-Plaza, M.; Gil, F.; Yeh, F.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Franceschini, N.; et al. Dietary determinants of cadmium exposure in the Strong Heart Family Study. Food Chem. Toxicol. 2017, 100, 239–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhong, T.; Liu, L.; Ouyang, X. Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE 2015, 10, e0135182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, A.; Nadeem, R.; Sharif, S.; Ansari, T.M.; Munir, H.; Mahmood, A. Study of hybrid immobilized biomass of Pleurotus sajor-caju and Jasmine sambac for sorption of heavy metals. Int. J. Environ. Sci. Technol. 2015, 12, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef]
- Vaseem, H.; Singh, V.K.; Singh, M.P. Heavy metal pollution due to coal washery effluent and its decontamination using a macrofungus, Pleurotus ostreatus. Ecotox. Environ. Safe 2017, 145, 42–49. [Google Scholar] [CrossRef]
- Damodaran, D.; Balakrishnan, R.M.; Shetty, V.K. The uptake mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by mycelia and fruiting bodies of Galerina vittiformis. Biomed. Res. Int. 2013, 2013, 149120. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.H.; Zeng, G.M.; Niu, Q.Y.; Liu, Y.; Zhou, L.; Jiang, L.H.; Tan, X.F.; Xu, P.; Zhang, C.; Cheng, M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour. Technol. 2017, 224, 25–33. [Google Scholar] [CrossRef]
- Liu, P.H.; Huang, Z.X.; Luo, X.H.; Chen, H.; Weng, B.Q.; Wang, Y.X.; Chen, L.S. Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance. PLoS ONE 2020, 15, e0239617. [Google Scholar] [CrossRef]
- Alfaro, M.; Castanera, R.; Lavin, J.L.; Grigoriev, I.V.; Oguiza, J.A.; Ramirez, L.; Pisabarro, A.G. Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus. Environ. Microbiol. 2016, 18, 4710–4726. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Pan, Y.; Yu, H.; Zhang, X.; Shen, Y.; Jiao, S.; Wu, K.; La, G.; Yuan, Y.; et al. Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. J. Hazard. Mater. 2017, 330, 1–8. [Google Scholar] [CrossRef]
- Llorente-Mirandes, T.; Barbero, M.; Rubio, R.; López-Sánchez, J.F. Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chem. 2014, 158, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, P.; Singh, P.C.; Mishra, A.; Tripathi, R.D.; Nautiyal, C.S. Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L.). Ecotoxicol. Environ. Saf. 2015, 117, 72–80. [Google Scholar] [CrossRef]
- Xu, P.; Liang, L.; Zeng, G.; Huang, D.; Cui, L.; Zhao, M.; Chao, H.; Li, N.; Zhen, W.; Wu, H. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 2014, 98, 6409. [Google Scholar] [CrossRef]
- Beneš, V.; Leonhardt, T.; Kaňa, A.; Sácký, J.; Kotrba, P. Heterologous expression of Zn-binding peptide RaZBP1 from Russula bresadolae does not overcome Zn and Cd detoxification mechanisms in Hebeloma mesophaeum. Folia Microbiol. 2019, 64, 835–844. [Google Scholar] [CrossRef]
- Li, Q.; Huang, W.; Xiong, C.; Zhao, J. Transcriptome analysis reveals the role of nitric oxide in Pleurotus eryngii responses to Cd(2+) stress. Chemosphere 2018, 201, 294–302. [Google Scholar] [CrossRef]
- Türkmen, M.; Budur, D. Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chem. 2018, 254, 256–259. [Google Scholar] [CrossRef]
- Osobová, M.; Urban, V.; Jedelský, P.L.; Borovička, J.; Gryndler, M.; Ruml, T.; Kotrba, P. Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol. 2011, 190, 916–926. [Google Scholar] [CrossRef]
- Nguyen, H.; Rineau, F.; Vangronsveld, J.; Cuypers, A.; Colpaert, J.V.; Ruytinx, J. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa and SlMTb genes in the ectomycorrhizal fungus Suillus luteus. Environ. Microbiol. 2017, 19, 2577–2587. [Google Scholar] [CrossRef]
- Dong, X.B.; Huang, W.; Bian, Y.B.; Feng, X.; Ibrahim, S.A.; Shi, D.F.; Qiao, X.; Liu, Y. Remediation and Mechanisms of Cadmium Biosorption by a Cadmium-Binding Protein from Lentinula edodes. J. Agric. Food Chem. 2019, 67, 11373–11379. [Google Scholar] [CrossRef]
- Yan, L.; Xu, R.; Bian, Y.; Li, H.; Zhou, Y. Expression Profile of Laccase Gene Family in White-Rot Basidiomycete Lentinula edodes under Different Environmental Stresses. Genes 2019, 10, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.A.; Hassler, C. Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat. Toxicol. 2014, 146, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.S.; Prasanna, L.; Marmeisse, R.; Fraissinet-Tachet, L. Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 2014, 160, 2235–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sácký, J.; Beneš, V.; Borovička, J.; Leonhardt, T.; Kotrba, P. Different cadmium tolerance of two isolates of Hebeloma mesophaeum showing different basal expression levels of metallothionein (HmMT3) gene. Fungal Biol. 2019, 123, 247–254. [Google Scholar] [CrossRef]
- Arini, A.; Daffe, G.; Gonzalez, P.; Feurtet-Mazel, A.; Baudrimont, M. Detoxification and recovery capacities of Corbicula fluminea after an industrial metal contamination (Cd and Zn): A one-year depuration experiment. Environ. Pollut. 2014, 192, 74–82. [Google Scholar] [CrossRef]
- Xu, P.; Leng, Y.; Zeng, G.; Huang, D.; Lai, C.; Zhao, M.; Wei, Z.; Li, N.; Huang, C.; Zhang, C. Cadmium induced oxalic acid secretion and its role in metal uptake and detoxification mechanisms in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 2015, 99, 435–443. [Google Scholar] [CrossRef]
- Chai, L.; Huang, M.; Cao, X.; Liu, M.; Huang, Y. Potential metal-binding ability of proteins in the extracellular slime of Laccaria bicolor exposed to excessive Cu and Cd. Environ. Sci. Pollut. Res. Int. 2019, 26, 20418–20427. [Google Scholar] [CrossRef]
- Cihangir, N.; Saglam, N. Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotechnol. 1999, 19, 171–177. [Google Scholar] [CrossRef]
- Hložková, K.; Matěnová, M.; Žáčková, P.; Strnad, H.; Hršelová, H.; Hroudová, M.; Kotrba, P. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol. 2016, 120, 358–369. [Google Scholar] [CrossRef]
- Lim, C.J.; Jo, H.; Kim, K. A protective role of methionine-R-sulfoxide reductase against cadmium in Schizosaccharomyces pombe. J. Microbiol. 2014, 52, 976–981. [Google Scholar] [CrossRef]
- Mishra, A.; Malik, A. Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Res. 2012, 46, 4991–4998. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, X.; Xie, L. Pleurotus pulmonarius Strain: Arsenic(III)/Cadmium(II) Accumulation, Tolerance, and Simulation Application in Environmental Remediation. Int. J. Environ. Res. Public Health 2023, 20, 5056. https://doi.org/10.3390/ijerph20065056
Zhang Y, Chen X, Xie L. Pleurotus pulmonarius Strain: Arsenic(III)/Cadmium(II) Accumulation, Tolerance, and Simulation Application in Environmental Remediation. International Journal of Environmental Research and Public Health. 2023; 20(6):5056. https://doi.org/10.3390/ijerph20065056
Chicago/Turabian StyleZhang, Yuhui, Xiaohong Chen, and Ling Xie. 2023. "Pleurotus pulmonarius Strain: Arsenic(III)/Cadmium(II) Accumulation, Tolerance, and Simulation Application in Environmental Remediation" International Journal of Environmental Research and Public Health 20, no. 6: 5056. https://doi.org/10.3390/ijerph20065056
APA StyleZhang, Y., Chen, X., & Xie, L. (2023). Pleurotus pulmonarius Strain: Arsenic(III)/Cadmium(II) Accumulation, Tolerance, and Simulation Application in Environmental Remediation. International Journal of Environmental Research and Public Health, 20(6), 5056. https://doi.org/10.3390/ijerph20065056