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Abstract: Some natural gases are toxic because they contain hydrogen sulfide (H2S). The solubility
pattern of elemental sulfur (S) in toxic natural gas needs to be studied for environmental protection
and life safety. Some methods (e.g., experiments) may pose safety risks. Measuring sulfur solubility
using a machine learning (ML) method is fast and accurate. Considering the limited experimental
data on sulfur solubility, this study used consensus nested cross-validation (cnCV) to obtain more
information. The global search capability and learning efficiency of random forest (RF) and weighted
least squares support vector machine (WLSSVM) models were enhanced via a whale optimization–
genetic algorithm (WOA-GA). Hence, the WOA-GA-RF and WOA-GA-WLSSVM models were
developed to accurately predict the solubility of sulfur and reveal its variation pattern. WOA-
GA-RF outperformed six other similar models (e.g., RF model) and six other published studies
(e.g., the model designed by Roberts et al.). Using the generic positional oligomer importance
matrix (gPOIM), this study visualized the contribution of variables affecting sulfur solubility. The
results show that temperature, pressure, and H2S content all have positive effects on sulfur solubility.
Sulfur solubility significantly increases when the H2S content exceeds 10%, and other conditions
(temperature, pressure) remain the same.

Keywords: sulfur-containing natural gas; sulfur solubility; machine learning; hydrogen sulfide

1. Introduction

The presence of sulfur (S) in the environment is the result of natural processes and
human activities [1,2]. Sour gas fields contain large amounts of elemental sulfur, and
the solubility of sulfur varies under different external conditions [3]. Changes in sulfur
solubility are accompanied by the generation of different products: H2S + Sx ↔ H2Sx+1.
As the equilibrium moves toward the production of polyhydrogen sulfide, the solubil-
ity of elemental sulfur in natural gas increases, and the amount of H2S decreases. The
reaction proceeds in the reverse direction: sulfur solubility decreases and promotes the
production of H2S. Based on the dissolution pattern of sulfur, researchers can control the
production of H2S. H2S is a highly toxic gas that can negatively impact the environment
and biosecurity [4]. For example, it can acidify the soil, freshwater, and marine ecosystems,
making forests more susceptible to frost, drought, and insect infestation. The threat of
H2S to human health is illustrated in Figure 1 [5]. The environmental authorities place
severe restrictions on the gas’s sulfur concentration when using natural gas that contains
sulfur [6,7]. The deep desulphurization of sour gas is important to meet production objec-
tives and emission standards. However, the current desulfurization process consumes a
significant amount of energy, making it impossible to rigorously fulfill emission standards
(e.g., “Emission Standard of Air Pollutants for Onshore Oil and Gas Exploitation and Pro-
duction Industry”: GB 39728—2020), while also failing to meet the criteria for sustainable
development [8]. These outcomes could be the result of improper operating circumstances
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that do not appropriately match the sulfur dissolving pattern of a feed gas, which leads to
a low desulfurization efficiency. In conclusion, considering the risks of sulfur-containing
natural gas to human health, as well as its value to the environment and energy sustain-
ability, researchers need to understand the changing patterns of sulfur solubility and make
accurate predictions of sulfur solubility [9,10].
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Figure 1. Effects of different concentrations of H2S on humans.

Sulfur solubility can be obtained using four different methods, as shown in Figure 2.
Experimental methods are the most accurate and reliable means of determining sulfur
solubility. However, the cost of experimentation is high and there may be safety risks [11].
An equation of state (EOS) and empirical models are limited by high computational re-
quirements. Furthermore, these methods are not generalizable and are limited to specific
systems [12]. Since 2008, machine learning (ML) methods, which have the advantages of a
fast response time and generalization, have been increasingly used to predict sulfur solu-
bility. Although weighted least squares support vector machine (WLSSVM) and random
forest (RF) models have proved advantageous for predicting a variety of problems, the
application of these two models for predicting sulfur solubility is rarely reported in the
literature. Various ML methods are compared in Table 1 [9,13–16].
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Table 1. ML models for obtaining sulfur solubility.

Authors Models Category Number of
Data

Scope
of Data

Input Di-
mension Results Possible Disadvantages

Chen L
(2014) [15] GA-LM-BP ANN 74 303.20–363.20 K

11.82–40 Mpa 5 AARD = 5.54% Inefficient and irregular coding of GA leads to
inaccurate results

Chen HS
(2019) [14] CFA-SVR SVM 110 316.26–433.15 K

6.89–60 Mpa 5 AARD = 4.24%
RMSE = 0.0401

The late convergence speed of CFA is slow and
easily falls into the local optimum

Bian XQ
(2020) [13]

GWO-
LSSVM SVM 239 303.20–433.15 K

10–60 Mpa 5 AARD = 3.50%
RMSE = 1.0832

GWO easily falls into the local optimum, and the
convergence accuracy is not high

Fu L
(2020) [16] T-S FNN ANN 167 303.15–433.15 K

10–66.52 Mpa 5 AARD = 5.35%
RMSE = 0.0600

T S-FNN is slower to learn, prone to local minima,
and may not even function properly

Amar MN
(2020) [9] CFNN ANN 239

303.20–433.15 K
7.03–60 Mpa 5 RMSE = 0.0488

The learning speed of CFNN is slow, and the ability
to obtain a global optimal solution is weak

Artificial neural network (ANN), support vector machine (SVM), genetic algorithm (GA), chaos-based firefly
algorithm (CFA), grey wolf optimizer (GWO), T-S fuzzy neural network (T-S FNN), cascaded forward neural
network (CFNN), average absolute relative deviation (AARD), root mean square error (RMSE).

To obtain a robust and efficient ML model for predicting sulfur solubility, researchers
need to fine-tune the hyperparameters that define the ML model architecture, such as the
penalty parameter in support vector machines. By carefully selecting the ideal hyperpa-
rameters, hyperparameter optimization (HPO) aims to construct the best ML model [17].
According to Table 1, it can be concluded that researchers typically employ a single, in-
telligent algorithm to choose the parameters for the ML model. The no-free-lunch (NFL)
theorem contends that each approach has advantages and disadvantages [18]. With in-
tegrated learning techniques, multiple algorithms or models are cleverly integrated to
improve prediction accuracy [19,20]. A meta-heuristic algorithm may be a better choice for
HPO problems in some tasks because it is effective at a range of tasks and can find the best
solution [21]. Although the metaheuristic algorithm has many benefits, it still carries a risk
of entering local optima and cannot ensure the detection of global optima. Utilizing the
integration idea, the whale optimization algorithm (WOA) and genetic algorithm (GA) are
combined using a serial technique to inhibit the algorithm from entering the local optimum
and to enhance its global search capability [22,23]. To increase algorithm diversity, the
crossover operator (cOPR) and variation operator (vOPR) of the GA are incorporated into
the WOA. Additionally, the adaptive weight update strategy (awuST) is used to accel-
erate convergence and enhance convergence accuracy. Convergence is accelerated, and
convergence accuracy is enhanced by the cross-variance operator (c-vOPR), together with
the awuST.

When building machine learning models, the vast majority of models require an ade-
quate number of samples to be built. However, in many research contexts, the sample size
is not sufficient, and the study of sulfur solubility is one of them. Small sample sizes make
it difficult to train ML models. Cross-validation (CV) can assist researchers in extracting
more information from sparse data. Nested cross-validation (nCV) is an enhanced version
of CV that can effectively help train small samples to obtain the best machine learning
model [24]. However, the standard nCV not only requires extensive calculations, but may
also select too many irrelevant features, thus affecting the interpretation of the model. The
consensus nested cross-validation (cnCV), which was recently developed, successfully
resolves these issues [25]. In this study, cnCV was used to assist the training of the sulfur
solubility prediction model.

Although ML models have been used to achieve sulfur solubility, they still have
some shortcomings:

(1) Researchers appear not to have focused on the impact of hyperparameter optimization
in ML models for sulfur solubility prediction on model performance. Moreover, most of
the studies typically employ a single algorithm to build ML models. Single algorithms
usually have unavoidable drawbacks that may degrade the models’ capabilities.
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(2) Despite the limited actual sample of sulfur solubility, researchers have not focused on
its limitations in training ML models or the use of WLSSVM and RF for predicting
sulfur solubility despite their efficiency and promise.

(3) In previous studies, scholars did not take remedial measures against the black-box
characteristics of the ML model. The lack of interpretability of experimental results may
limit scholars’ exploration of sulfur solubility variation patterns in practical applications.

Combining the above studies, the proposed two integrated optimization machine
learning models, WOA-GA-WLSSVM and WOA-GA-RF, can form a good solution to the
shortcomings of previous ML models for sulfur solubility prediction. The main contribu-
tions of the study are summarized below.

(1) For hyperparameter optimization, with the help of c-vOPR and awuST, the new
method of a whale optimization–genetic algorithm (WOA-GA) balances accuracy
with efficiency, while improving global search capabilities and reducing the risk of
slipping into local extremes in the hyperparameter search process.

(2) The WOA-GA-WLSSVM and WOA-GA-RF integrated optimization ML models were
created. To train ML models that can accurately predict sulfur solubility, this study
uses cnCV as a tool to obtain sufficient information from a limited sample. The
performance of the suggested models, as well as their stability and reliability, are
analyzed from various angles.

(3) The generic positional oligomer importance matrix (gPOIM) is used to estimate how
each variable affects sulfur solubility, from which patterns of variation in sulfur
solubility are extracted.

This paper is organized as follows. In Section 2, modeling techniques are introduced,
and the modeling process is explained. In Section 3, the predicted results and the stability
and reliability of the model are critically assessed and validated. The analysis of the
contribution of characteristics, which revealed the significance of the variables and helped
to analyze the sulfur solubility pattern, is described. Section 4 presents the conclusions and
recommendations of this study.

2. Methods
2.1. Optimization Methods
2.1.1. Consensus Nested Cross-Validation (cnCV)

Small sample sizes make it difficult to train ML models. Cross-validation (CV) can
assist researchers in extracting more information from sparse data. A CV allows all datasets
to be randomly grouped and used for both training and validation. As a result, CV can
be used to solve the insufficient data problem. A k-fold cross-validation (k-fold CV) is a
common cross-validation method. In contrast to k-fold CV, the execution of nCV consists
of two loops, i.e., an outer loop and an inner loop. As such, it is possible to avoid the
leakage of information from data and, therefore, obtain relatively low biases in model
scoring [26,27]. However, nCV may select some irrelevant features, which complicates the
model and is economically unsustainable [25]. Table 2 lists the disadvantages of k-fold CV
and nCV. cnCV was developed using the feature stability concept of differential privacy to
address the shortcomings of standard nCV (as depicted in Table 2). Differential privacy
derives from cryptography and is essentially a trade-off between the degree of privacy
protection and data availability. It extracts useful information about variables while limiting
the leakage of information. The operation of cnCV is broadly divided into two parts [25].
The inner loop performs a cross-validation to determine the optimal hyperparameters and
features of the model, which are used by the outer loop. The outer loop provides training
data for the inner loop, while retaining some data for testing the inner loop model.

Figure 3 explains the procedure diagram of the algorithm. Firstly, the data are divided
into outer folds, and then each outer fold is split. The ReliefF algorithm was used to
calculate the relief scores of each feature in the inner fold. The same features with positive
relief scores in each inner fold were used as consensus features in the inner fold (for
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example, feature “ABC” is shared by the other inner folds; therefore, feature “ABC” is used
as the consensus feature in the inner fold). The consensus features of all inner folds are
used to represent the outer fold set of features. Next, consensus features are identified in
the outer fold using the same method. In the end, all consensus features of the outer folds
are used as the best features.

Table 2. The disadvantages of k-fold CV and nCV.

Disadvantages of
k-fold cross-validation

(k-fold CV)

Disadvantages of
nested cross-validation

(nCV)

a. Overly optimistic results of the assessment
b. Data characteristics cannot be fully learned

c. Knowledge leakage

a. Excessive calculation
b. Complicates the model

c. Selects irrelevant features
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2.1.2. The Hybrid Optimization Algorithm WOA-GA

Optimization is one of the core components of ML, and HPO is a necessary step in the
model optimization process that is crucial to achieving an excellent performance in the ML
model [24,28]. The essence of HPO is to use optimization algorithms to learn and select
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the optimal hyperparameters from the given data to determine the extreme value of the
objective function [21,29]. In other words, the ultimate goal of HPO is to achieve objective
function optimization [30].

For the HPO problem, a metaheuristic algorithm is an effective tool [29]. The GA has
a good ability to find the global optimum and reduce the possibility of falling into the local
optimum due to the variation operator (vOPR) and crossover operator (cOPR). However,
the complex structure means that the GA will take longer to implement. The basic idea of
the WOA is derived from the predatory behavior of humpback whales. Humpback whales
not only contract their envelope when feeding, but also swim in a spiral pattern towards
their prey; therefore, each humpback whale has a 50% probability (probability value p
of predatory behavior) of choosing either a shrinking encircling mechanism or a spiral
updating position. The group-following property causes most individuals to converge to
the region of the current optimal individual. The final search result will easily fall within
the local optimum if the current optimal individual is a local optimum. Incorporating GA’s
cOPR and vOPR into WOA can enhance the global search capability to avoid falling into a
local optimum; that is, WOA-GA is used as an optimization tool for the objective function.
The core principle of the WOA-GA is shown below.

(1) Cross-variance operator (c-vOPR)
The GA takes a real-valued encoding and randomly generates a probability value p of

predatory behavior in the range of (0, 1). If p ≥ 0.5, the individual is mutated according to
Equation (1), with a mutation probability Pm of obtaining a new individual:

X∗(t + 1) = X∗(t) + Pm|X∗(t)− X(t)| (1)

where t is the present number of iterations. In the t-th generation, X(t) represents the
location of individual whales, and X∗(t) is the location of the best individual.

The definition of the stochastic vector is as follows:

A = 2ar− a (2)

where r is a stochastic vector in the range of (0, 1); a is a convergence factor with convergence
bounds from 2 to 0, defined as a = 2− 2t/Tmax (Tmax is the maximum number of iterations).

Assuming p < 0.5 and |A| < 1, the individual further selects the global optimal individ-
ual with the crossover probability Pc to perform the crossover operation with the current
individual and obtains a new individual to replace the current individual. The crossover
formula is: {

Xi(t + 1) = Pc × Xi(t) + (1− Pc)Xj(t)
Xj(t + 1) = (1− Pc)× Xi(t) + PcXj(t)

(3)

where Pm and Pc take random values in the range of (0, 1), Xi and Xj are the global optimal
individual and the current individual, respectively.

(2) Adaptive weight update strategy (awuST)
Though the c-vOPR improves the performance of the algorithm to some extent, its

complex structure may cause the algorithm to fail to balance the global search capability
with the local search capability. Therefore, the awuST is introduced to balance the global
and local search via adjusting the value of the weight ω [31]. The output values are
updated with adaptive variants when p < 0.5 and A ≥ 1. The following formula illustrates
this strategy:

X(t + 1) = ωX∗(t)− A ∗ |C ∗ X∗(t)− X(t)| (4)

ω = ωmax − Gi ∗
ωmax −ωmin

Gmax
(5)

where ω is the weight factor; random vector C = 2r; Gmax is the maximum number of
iterations; and Gi is the current number of iterations.

Figure 4 illustrates the technical principle of the WOA-GA.
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2.2. Modeling of Integrated Optimization

A common understanding of integration is to combine many algorithms that have
different functions and are suitable for different situations to solve a complex problem.
When faced with complicated tasks, a “collective intelligence” model generally performs
better than a single model.

The essence of RF is ensemble learning, and the basic unit is a decision tree, which is
also an effective ML method. Due to two random variables, RF is insensitive to noisy data
and can avoid overfitting. The use of RF is widespread due to its good performance [32], and
support vector machine (SVM) is commonly used, since it is suitable for small samples with
poor information [33]. By assigning weights to the training errors in WLSSVM, the learning
ability of the model is improved and noise in the training samples is effectively reduced.
Therefore, in this study, hybrid models were built using WLSSVM and RF to predict the
solubility of sulfur in acidic gases. Researchers should note that the performances of RF
and WLSSVM are highly dependent on the choice of hyperparameters. However, thus far,
there is little research on the intelligent optimization of the hyperparameters of the two
model, which is usually empirically chosen. When WLSSVM or RF perform optimally
in different application contexts, the hyperparameter values vary. A good ML model is
difficult to obtain using selecting hyperparameters based on “empirical” criteria [17].

As a solution to these problems, this study applies the WOA-GA in search of hy-
perparameters to optimize the objective function and uses the cnCV training model to
obtain more information. Figure 5 shows the implementation steps of WOA-GA-WLSSVM
and WOA-GA-RF.
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As shown in Figure 5, the modeling process is as follows:

(1) Data preprocessing was performed first. To eliminate the effect of different units
and magnitudes of variables on model training, the study normalized all data sets to
between −1 and 1.

(2) The optimal hyperparameters of WLSSVM and RF were selected using WOA-GA to
build the WOA-GA-WLSSVM and WOA-GA-RF models.

(3) The WOA-GA-WLSSVM and WOA-GA-RF models were trained and tested using cnCV.
(4) The data were anti-normalized.
(5) The final results were output.

2.3. Development of Prediction Models
2.3.1. The Original Data

The prediction models were established using 281 sets of actual samples in the open
study [12,16,34–38]. There are 55 sets of data available for pure H2S environments and
226 sets of data for acidic gas mixture environments. Table 3 presents a statistical summary
of the data used.

Table 3. Statistical summary of the sulfur solubility data used.

Symbol Unit Min Max

Temperature T K 303.2 433.15
Pressure P Mpa 7 66.52

H2S content XH2S % 2.93 100
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To eliminate the effect of different units and magnitudes of variables on model training,
the study normalized all data sets to between −1 and 1, with the following expression:

yi =
2(xi − xmin)

(xmax − xmin)
− 1 (6)

where yi points out the normalized value, xi is the collected experimental data, xmax and
xmin represent the maximum and minimum values of the data sets, respectively.

2.3.2. Model Internal Parameters

The objective of the proposed prediction models is to obtain the optimum regression
between sulfur solubility and multiple influencing factors. The algorithm would become
more complicated and interfere with the model’s stability if all the candidate-influencing
factors were included. Based on previous research findings [16], this study used temper-
ature, pressure, H2S content, CO2 content, and CH4 content as input variables. Table 4
presents the main parameters.

Table 4. The model’s detailed composition.

Parameter Value

Input data form [−1, +1]
Input variables 5
Max iterations 200

Population 30
Encoding length 7

Crossover probability Pc 0.7
Mutation probability Pm 0.3

Kernel function Gaussian radial basis (RBF)
Penalty parameter 2.1089

Kernel function parameter 12.5165

3. Results
3.1. Comparison and Validation of Models

To determine whether the suggested model performs effectively, a rigorous evalua-
tion is required. The average absolute relative deviation (AARD), root mean square error
(RMSE), coefficient of determination (R2), standard deviation (SD), and correlation coeffi-
cient (R) are treated as assessment indicators. A global and local assessment of the models
is conducted, which is calculated as follows:

AARD =
100
N

N

∑
i=1

∣∣∣∣∣y
exp
i − ycal

i

yexp
i

∣∣∣∣∣ (7)

RMSE =

√√√√ 1
N

N

∑
i=1

(
yexp

i − ycal
i

)2
(8)

R2 = 1−

N
∑

i=1

(
yexp

i − ycal
i

)2

N
∑

i=1

(
yexp

ave − ycal
i

)2
(9)

SD =

√√√√ 1
N − 1

(
yexp

i − ycal
i

yexp
i

)2

(10)
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R =
∑n

i=1

(
yexp

i − yexp
ave

)(
ycal

i − ycal
ave

)
√

∑n
i=1

(
yexp

i − yexp
ave

)2
∑n

i=1
(
ycal

i − ycal
ave
)2

(11)

where N is the number of samples and yexp
i , ycal

i , yexp
ave , ycal

ave represent the experimental
values, calculated values, mean of the experimental values, and mean of the predicted
values, respectively.

Figure 6 displays the optimal values of WOA-GA-RF and WOA-GA-WLSSVM during
the testing phases. The reference line indicates the most ideal case, in which the predicted
value exactly matches the real value. If the forecast is closer to the reference line, the forecast
will be better, and vice versa. In sour gases (226 data points), the AARD and RMSE values
of WOA-GA-RF on the training set are lower than those of WOA-GA-WLSSVM. The R2 is
closer to 1 compared with that of WOA-GA-WLSSVM. This indicates that the WOA-GA-RF
model has a strong fitting ability. In the testing set, the AARD values of WOA-GA-RF
and WOA-GA-WLSSVM are 2.84% and 3.39%, respectively. The R2 is 0.9986 and 0.9979,
respectively. According to this, the calculated results of both models are very close to reality.
In comparison, WOA-GA-RF has a higher accuracy and better precision. In pure H2S
(55 data points), the values of both AARD and RMSE for WOA-GA-WLSSVM are slightly
lower than those of WOA-GA-RF. This indicates that WOA-GA-WLSSVM outperforms
WOA-GA-RF by a slight margin. Compared to the sour gas background (larger sample
size), this result is different. WOA-GA-WLSSVM outperforms WOA-GA-RF in sour gases,
whereas WOA-GA-WLSSVM outperforms WOA-GA-RF in pure H2S. This phenomenon is
likely caused by the difference in sample size (the sample size on a pure H2S background is
smaller than on a sour gas background). Since WLSSVM is a support vector-based model,
the sample size may have less of an impact on the model’s results.

Figure 7 shows the time spent by the two models in different training and testing stages.
The training time of WOA-GA-WLSSVM is longer, and the overall time is 36.39 s longer than
that of WOA-GA-RF. With the growth in data volume, the advantages of RF become more
significant, whereas WLSSVM encounters significant computational bottlenecks. Because
of the low time complexity of RF, the model training speed is relatively fast, especially for
large datasets. The time complexity of WLSSVM is O(n2) (where n is the size of the training
set), which may increase the time and reduce the efficiency of the model when applied to
large datasets [39]. As a result, WOA-GA-RF has proven to be more effective at predicting
sulfur solubility and is recommended in this study.

The study tested the improvement effect of WOA-GA on the models (on all datasets)
using Taylor diagrams, comparing WOA-GA-WLSSVM, WOA-GA-RF, GA-WLSSVM, GA-
RF, PSO-WLSSVM, PSO-RF, RF, and WLSSVM. This method presents three-dimensional
data on a two-dimensional plane to provide a comprehensive and clear picture of the
model’s performance in various dimensions. In the Taylor diagram, scatter points represent
the model, radial lines represent R, horizontal and vertical axes represent SD, and dashed
lines represent RMSE. As shown in Figure 8, the values of SD for WLSSVM and RF are 2.85
and 2.39, respectively, and the values of RMSE are 2.35 and 2.88, respectively. The error
is much higher than the other six models that have been optimized by the metaheuristic
algorithm, and the prediction accuracy is the lowest. The R values, which are 0.6091
and 0.6776, respectively, are low compared to other similar models, indicating that the
fitting ability is also unsatisfactory. With the optimization of GA and PSO, the R of GA-
WLSSVM and GA-RF improved slightly. As a result of the shortcomings of the premature
convergence and poor convergence performance of GA and PSO, large prediction errors
remain for GA-WLSSVM, GA-RF, PSO-WLSSVM, and PSO-RF. The predicted value is
not well matched with the true value. The values for SD, RMSE, and R of WOA-GA-RF
are 0.051, 0.019, and 0.9995, respectively. In WOA-GA-WLSSVM, SD, RMSE, and R are
0.068, 0.027, and 0.9993, respectively. Compared with the remaining six similar models,
WOA-GA-RF and WOA-GA-WLSSVM provide a good accuracy and fit capability. Thus,



Int. J. Environ. Res. Public Health 2023, 20, 5059 11 of 21

WOA-GA proves to be an effective method of optimizing WLSSVM and RF, as well as
improving model performance.
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Figure 6. Comparison of predicted and real values of sulfur solubility: (a,b) in sour gas, (c,d) in
pure H2S.
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Table 5 compares the proposed model with commonly used empirical models and
ML models to further verify its performance [14,16,34,36,40,41]. This study found that,
compared to empirical models, ML methods are more effective, providing a closer match to
the experimental data, indicating that they are reliable and relevant. In terms of both AARD
and RMSE, the ML models outperformed the empirical models. The ML model developed
by Bian is also of the SVM type. Nevertheless, the performance of the model is not as
effective as WOA-GA-WLSSVM in each index, which may suggest that the hyperparameter
search is an important factor in improving model performance. Among all models, the
WOA-GA-RF model reached the minimum value with an AARD of 2.69% and RMSE
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of 0.019, respectively. This is not very different from the R2 of the ML model, which is
almost always above 0.99. In summary, the WOA-GA-RF model provides the best overall
performance and best represents the actual sulfur solubility variation pattern observed
in the current study. The results described in Section 3.1 show that accurate values and
patterns of variations in sulfur solubility (within a certain range) can be efficiently obtained.
Moreover, the proposed model outperforms current machine learning methods in terms of
accuracy in predicting sulfur solubility.

Table 5. Comparison of common models.

Models AARD (%) SD RMSE R2

Roberts model (empirical model) 65.36 0.86 0.67 0.6792
Guo-Wang model (empirical model) 12.84 0.15 0.17 0.9833

Hu model (empirical model) 17.32 0.22 0.21 0.9731
Fu L model (T-S FNN) 5.35 0.08 0.06 0.9983

Bian XQ model (GWO-LSSVM) 3.50 0.08 0.024 0.9976
Chen HS model (CFA-SVR) 4.24 0.07 0.04 0.9978

WOA-GA-WLSSVM 3.33 0.068 0.027 0.9988
WOA-GA-RF 2.69 0.051 0.019 0.9991

3.2. Stability Analysis

The stability of a machine learning model is fundamentally different from its per-
formance, and researchers cannot simply identify this stability by assessing its accuracy.
There is a direct correlation between the stability of the model and its effectiveness in
practical applications.

In this study, cross-validation correctness was used as an indicator of model stability.
The dataset was divided into five parts, four of which are used, in turn, for training, and
one of which is used for testing. Table 6 shows the correctness of the two ML methods
over the five tests. The correctness for both models is above 0.9, indicating that the model
has good performance. It was found that the correctness of WOA-GA-WLSSVM varies
between 0.9011 and 0.9857, and even though the mean correctness is as high as 0.9467, the
SD is nearly twice the variance of the WOA-GA-RF, which indicates that the WOA-GA-
WLSSVM’s performance is not particularly stable across the different test sets. Because
RF is considered the beginning of ensemble tree models, and multiple decision trees are
used to make decisions together, the model stability may be higher than WLSSVM. As a
matter of course, the prediction result depends on the selection of test data, as well as on
the number of tests conducted.

Table 6. Analysis of correctness.

Number WOA-GA-WLSSVM WOA-GA-RF

1 0.9011 0.9302
2 0.9651 0.9291
3 0.9016 0.9301
4 0.9857 0.9681
5 0.9801 0.9697

Mean Correctness 0.9467 0.9454
Standard Deviation 0.0377 0.0192

3.3. Reliability Analysis

Reliability analysis is usually carried out using the leverage method [42]. Based on the
Williams plot, a model is statistically reliable if the majority of data points are clustered
within a square. Detailed definitions can be found in the literature [43].

Figure 9 shows the Williams plots after outlier detection from both new models.
Both the WOA-GA-RF and WOA-GA-WLSSVM have only isolated abnormal data, which
indicates that both models passed the statistical test.
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3.4. Analysis of the Contribution of Features

In addition to its predictive accuracy, the interpretability of ML models is of equal im-
portance. Compared to commonly used measures, such as Pearson (PR) correlation, gPOIM
is able to avoid exaggerating the contribution of input variables and accurately assess the
effect of the non-monotonicity of input variables; it is now used in practical engineering
applications [44,45]. To compensate for the black box nature of the ML model, the study
used gPOIM to visualize the contribution of the input variables, as shown in Figure 10. The
order of importance of the input variables to sulfur solubility is T > P > H2S > CO2 > CH4.
Temperature (T) has absolute control on sulfur solubility, and pressure (P) and H2S content
also play a significant role. The study of Bian et al. [13] concluded that pressure was the
most important factor, whereas CO2’s effect on solubility can be ignored. This is most likely
caused by the error in the PR when analyzing the non-linear relationship between pressure,
CO2, and solubility [46].
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In Figure 11, actual and predicted values for various temperature, pressure, and H2S
content conditions are shown (taking WOA-GA-RF as an example). The predicted curve
is highly consistent with the experimental value, and temperature, pressure, and sulfur
content all contribute to the solubility of sulfur. The sulfur solubility significantly increases
when the H2S content exceeds 10%, with other conditions (temperature and pressure)
remaining equal. For example, at a pressure of 45 MPa and a temperature of 363.2 K, sulfur
solubility is 0.284 g/m3 when the H2S content is 4.95%, 0.366 g/m3 when the H2S content
is 10.03%, and 0.666 g/m3 when the H2S content is 14.98%. There is a clear cut-off point
of 10% H2S content. With the increase in H2S content, sulfur solubility rapidly grows
after this cut-off point. A rise in temperature and pressure also significantly increased
sulfur solubility. Under the conditions of 40 MPa pressure and 14.98% H2S content, the
sulfur solubility values are 0.287 g/m3 and 0.497 g/m3 at temperatures of 343.2 K and
363.2 K, respectively. Under the conditions of a 363.2 K temperature and 14.98% H2S
content, the sulfur solubility values are 0.497 g/m3 and 0.666 g/m3 at pressures of 40 Mpa
and 45 Mpa, respectively.

The solubility pattern of sulfur is shown in Figure 11. High temperature and pressure
promote the solubility of sulfur, and the higher the H2S content, the more pronounced
this promoting effect. Operators can manipulate the dissolution of sulfur by adjusting
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the temperature and pressure levels during the transportation and processing of natural
gas containing sulfur. Furthermore, sulfur solubility studies may serve as a basis for or
provide new perspectives in a variety of investigations. For example, researchers can
choose an environmentally friendly sulfur solvent that is more soluble in sulfur and easier
to separate and recover when purifying natural gas containing sulfur, depending on sulfur
dissolution patterns.
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4. Conclusions

To help researchers obtain accurate information on sulfur solubility and sulfur dis-
solution patterns, two integrated optimization ML models were developed to predict the
solubility of sulfur in sour natural gas. The main findings of this study can be summarized
in the following three points.

(1) In addition to improving the diversity of algorithms, WOA-GA also optimizes the
performance of traditional WLSSVM and RF models while avoiding their original
drawbacks. By incorporating cnCV in modeling, limited data can provide sufficient in-
formation to effectively train the ML model. Researchers should carefully consider the
trade-off between computational precision and cost and select ML methods according
to the task context, minimizing research costs while ensuring goal completion.

(2) RF was used to predict sulfur solubility for the first time, and its accuracy, stability,
and reliability were verified. Compared to the existing ML model, the WOA-GA-RF
model has a better comprehensive performance and a greater prediction accuracy in
sulfur solubility, with an AARD of 2.69%, SD of 0.051, RMSE of 0.019, and R2 of 0.9991.
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(3) Sulfur solubility was found to be more affected by temperature, pressure, and H2S
content. Temperature is the most significant element influencing sulfur solubility,
followed by pressure. Sulfur solubility significantly increases when the H2S content
exceeds 10%, and other conditions remain the same. This pattern can be used to set
the relevant parameters in the processing of natural gas containing sulfur.

It should be noted that the amount of sulfur solubility data used in the study is small,
and the hybrid models are computationally efficient. In the future, more research is needed
to verify the effectiveness and operability of the models when faced with complex tasks and
larger sample sizes. It is possible to extrapolate the research conclusions to temperatures
and pressures that are higher than the experimental data ranges, but these need to be
verified before being applied to real-life situations.
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