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Abstract: With the advancement of spatial analysis approaches, methodological research addressing
the technical and statistical issues related to joint spatial and spatiotemporal models has increased.
Despite the benefits of spatial modelling of several interrelated outcomes simultaneously, there has
been no published systematic review on this topic, specifically when such models would be useful.
This systematic review therefore aimed at reviewing health research published using joint spatial
and spatiotemporal models. A systematic search of published studies that applied joint spatial and
spatiotemporal models was performed using six electronic databases without geographic restriction.
A search with the developed search terms yielded 4077 studies, from which 43 studies were included
for the systematic review, including 15 studies focused on infectious diseases and 11 on cancer. Most
of the studies (81.40%) were performed based on the Bayesian framework. Different joint spatial and
spatiotemporal models were applied based on the nature of the data, population size, the incidence
of outcomes, and assumptions. This review found that when the outcome is rare or the population is
small, joint spatial and spatiotemporal models provide better performance by borrowing strength
from related health outcomes which have a higher prevalence. A framework for the design, analysis,
and reporting of such studies is also needed.

Keywords: spatial analysis; joint spatiotemporal analysis; systematic review; public health; geographic
information system; disease mapping; shared component models

1. Introduction

Recent advances in geographic information systems in medicine have led to the
development of advanced spatial analysis of geocoded data in health research [1]. Disease
mapping, also defined as the spatial analysis of disease risk, is an important area of public
health research [2]. Commonly georeferenced data used in epidemiological investigations
have information about space and perhaps time [3]. In spatial epidemiology, Tobler’s
first law of geography is considered as the foundation of spatial statistics, which asserts
that everything is related to everything else, although proximate things are more closely
related than distant things [4]. Nearby areas are more likely to share similar geographic
characteristics linked to the disease and, likewise, the temporal dependence is greater for
succeeding years than for years apart from one another [5,6].

Spatial models have been in use in the field of public health research for decades [7],
and important progress over decades has enabled the development of complex models to
examine a potential correlation between disease patterns and covariates that are geographi-
cally and/or temporally varied [8]. In disease risk mapping, the Standardised Incidence
Rate (SIR) and Standardised Mortality Ratio (SMR) are frequently used to measure spatial
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risk [9]. However, SIR and SMR have limitations when the outcome is rare or when the
population is small [10]. To overcome these issues, Bayesian spatial models are applied
to obtain smoothed risk by considering spatial dependence (structured and unstructured
spatial random effects) in the model [11,12]. Any overdispersion or spatial dependency in
the data that cannot be accounted for by the covariates is taken into account by the random
effects in the model [13].

Conditional Autoregressive (CAR) and Simultaneous Autoregressive (SAR) prior
distributions are routinely used to model the spatially structured random effects [13,14].
In the majority of spatial studies, the spatially structured random effect is modelled using
the CAR prior distribution. There are four classes of CAR prior distribution including
intrinsic, convolution, Cressie, and Leroux [15]. As mentioned above, data sparseness and
a small population are the common shortcomings in spatial modelling. To overcome these
limitations, the Besag York Models (BYM) were introduced by Besag et al., 1991 [16]. These
models borrow strength from nearby locations and apply spatial smoothing to the risks
of the disease, which could improve the accuracy of risk estimations in areas with limited
cases or small populations [17].

Rapid advancement in geographically indexed data and statistical innovations has con-
tributed to the growth of spatial studies [18]. The univariate disease mapping approaches
have recently been extended to joint disease mapping (modelling multiple interrelated
diseases simultaneously) in space and/or time [19,20]. When the desired outcome is rare,
the joint spatial models can improve the statistical power by borrowing strength from
neighbourhood areas, periods, and/or related highly prevalent outcomes [21]. As many
diseases are interrelated and many public health interventions are planned at several di-
mensions, joint spatial and spatiotemporal analyses are essential for better decision-making
and evaluation of already implemented initiatives [22].

The single disease has been studied using univariate spatial and spatiotemporal mod-
els; however, these models are not capable of borrowing strength from related diseases [23].
Models that take into account the correlation between diseases improve the estimates of
disease risk [24]. The joint spatial and spatiotemporal models combine information from
different diseases that share similar risk factors [25]. The majority of spatial and spatiotem-
poral studies to date have been at the univariate level, considering spatial modelling of
specific diseases. However, as many diseases share similar risk factors [26–28], applying
models that can incorporate data from related diseases is useful from both an epidemiologi-
cal and statistical perspective [29]. A new field of spatial analysis called shared component
spatial and spatiotemporal models [30] analyses both the specific temporal and spatial
patterns for each outcome as well as shared spatial and temporal patterns common to
multiple outcomes [31].

Joint spatial and spatiotemporal models, as opposed to univariate models, concur-
rently account for specific and common spatial and temporal effects by incorporating
shared spatial and temporal terms [32]. The joint spatial and spatiotemporal models
were frequently applied to non-communicable diseases (NCDs) including cancer and
diabetes mellitus (DM) [32–42]. The development of joint spatial and spatiotemporal
methodologies has coincided with a huge advancement in statistical approaches address-
ing technical and statistical issues related to advanced spatial statistics. For example,
authors employed different Bayesian inference techniques such as Markov chain Monte
Carlo (MCMC) [32,33,35–41,43–60] or Integrated Nested Laplace Approximation (INLA)
methods [42,43,61–65] in Bayesian shared component spatial and spatiotemporal models.

Although spatial analysis of multiple health outcomes simultaneously has increased
over the past few years, a systematic review of published research using joint spatial and
spatiotemporal approaches has not yet been undertaken. These studies are heterogeneous in
types of analytical models, methodological gaps, spatial and temporal structures, methods
of inference, etc. For researchers, especially in the area of spatial statistics, a summary and
description of joint spatial and spatiotemporal analysis methods, software, methodological
gaps, and modelling concerns are essential.
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Therefore, we conducted a systematic review of joint spatial and spatiotemporal
models applied to health outcomes to provide insightful recommendations for future
researchers as to when and how to fit a joint spatial and spatiotemporal model. This
systematic review helps to improve the decision-making process through the joint spatial
and spatiotemporal modelling of two or more health outcomes. In addition, the results
could inform researchers in terms of providing insights about advanced joint spatial and
spatiotemporal statistical methods and related issues.

2. Materials and Methods
2.1. Data Source and Search Strategy

We performed a systematic review of peer-reviewed published health research that
employed joint spatial and spatiotemporal methods. For the formulation of the system-
atic review methodology, we used the Preferred Reporting Items for Systematic Reviews
and Meta-analysis (PRISMA) checklist [66]. We registered the systematic review on the
PROSPERO international prospective register of systematic reviews (registration number:
CRD42022365445). A comprehensive search strategy was carried out for joint spatial and
spatiotemporal models (joint spatial autocorrelation, joint spatiotemporal autocorrelation,
joint spatial model, and joint spatiotemporal models) applied to any health or health-related
outcomes with no geographic limits.

In our review, a spatial model incorporates a geo-spatial index, a temporal model
includes a time index, a spatiotemporal model involves both a geospatial and time index,
and joint spatial and spatiotemporal models accommodate a geospatial and/or time index
of two or more health outcomes [67,68]. The search was conducted on 19 September 2022.
Databases such as PubMed, Medline, Scopus, PsycINFO, Emcare, and Embase were
searched. The reference lists of retrieved studies were further searched on Google Scholar
and advanced Google to identify more papers. Search terms for the joint spatial and spa-
tiotemporal studies are detailed in Table S1. Studies published between January 2011 and
October 2022 without geographic restrictions were considered in our review.

Retrieved articles from each database were exported to Endnote version 20 reference
citation software and stored as a single file name and then exported to Covidence for further
processing (Covidence systematic review software (Veritas Health Innovation, Melbourne,
Australia. Available at www.covidence.org, accessed on 20 August 2022)). Duplicates were
deleted manually during the title and abstract and full-text screening and automatically
in Endnote and Covidence software. Searches were conducted using the following terms:
“multivariate spatiotemporal” OR “bivariate spatiotemporal” OR “multivariate spatio-
temporal” OR “bivariate spatio-temporal” OR “joint shared spatial model*” OR “joint space-
time model” OR “multivariate space-time model*” OR “bivariate space-time model” OR
“small area analys*” AND “shared component model” OR “disease mapping” AND “shared
component model” OR “space-time mixture model” OR “shared component model” OR
“spatial analys*” AND “joint model*” OR “joint spatial model*” OR “joint spatial analys*”
OR “shared latent component model” OR “joint model*” AND “spatial model*” OR “spatial
factor analys*” OR “risk map*” AND “shared component model*” OR “shared spatial
model*” OR “multivariate spatial analys*” OR “bivariate spatial analys*” OR “bivariate
conditional autoregressive model” OR “multivariate conditional autoregressive model” OR
“joint conditional autoregressive model” OR “joint spatial autocorrelation” OR “bivariate
spatial autocorrelation” OR “multivariate spatial autocorrelation” OR “spatial co-cluster*”
OR “spatio-temporal co-cluster*” (Table S1).

2.2. Inclusion and Exclusion Criteria

This systematic review covered peer-reviewed studies published in the English lan-
guage between 2011 and 2022 modelled using joint spatial and spatiotemporal models. The
year 2011 was chosen as the starting point because the joint spatial and spatiotemporal
analysis of two or more health outcomes was widely implemented as a new area of study
over the past decades and because of the need for most recent evidence due to the rapid

www.covidence.org
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changes in analytical techniques due to the ongoing advancement in science and technology.
Studies before that date were either outdated or superseded by newer methods included
in our review. Every article retrieved from the databases (Medline, PubMed, PsycINFO,
Emcare, Scopus, and Embase) was exported to Endnote. After excluding duplicates from
Endnote, we transferred to Covidence for additional article screening and extraction.

Title and abstracts and full-texts were screened by two authors (GAT and ZTT) inde-
pendently to identify eligible studies based on the inclusion and exclusion criteria. When
conflicts emerged over the inclusion or exclusion of studies, a consensus was reached
through discussion, and if the conflicts were not resolved a third reviewer (AE) was con-
sulted. Research articles performed their analyses using the joint spatial approaches; joint
spatial and spatiotemporal autocorrelations, joint spatial models, and joint spatiotemporal
models, and the outcomes analysed (could be on health outcomes among humans (not
animal study)) were eligible for this review. No exclusion was made based on geography
and types of health outcomes studied. Conference abstracts, reviews, texts published in a
language other than English, non-human studies, and those not considering joint spatial
and spatiotemporal models were considered as exclusion criteria.

Methods for spatially and temporally modelling two or more health outcomes, or the
same health outcome in two or more subsets of the population at risk, are referred to as
joint spatial and spatiotemporal methods [69].

2.3. Data Extraction

A data extraction template was developed in Microsoft Excel. The tool was developed
considering the review question. Two authors (GAT and ZTT) extracted the data indepen-
dently. When a disagreement appeared, it was resolved by a third author (AE). The data
abstraction tools contained key information such as bibliographic information, research
study objectives, the nature and type of data, covariate type, and data analysis methods,
i.e., modelling approaches, key findings, and methodological gaps.

For each study, data such as the last name of the author, article title, name of the
journal, year of publication, country, data source, spatial data type, outcomes of interest,
number of outcomes, incidence/prevalence of outcomes, inference approaches, estimation
techniques, study design, spatial unit, number of the spatial unit, temporal unit, number
of temporal units, objectives, sample size, spatial model type, spatial structure, temporal
structure, space-time interaction term, assigned priors, the reason for using joint spatial
modelling, covariates used in the model, variable selection approach, number of covariate
considered in the model, standardisation, spatial neighbourhood structure, temporal ad-
jacency, software used, analysis method, model validation, model comparison measures,
effect measure reported, key findings, map reported, script provided, and methodological
gaps were extracted.

2.4. Risk of Bias Assessment

Two authors carried out a thorough assessment of the included studies’ methodologi-
cal quality (GAT and ZTT). All included studies’ risk of bias was evaluated using a quality
assessment tool that has an 8-point scoring system updated and modified to evaluate each
study’s quality based on its aims and objectives, model validity, overall results, and study
conclusion [70,71]. A standardised item list was used to grade the quality and risk of bias
of included studies (Table S2). The checklist consists of 8 questions with possible answers
ranging from 0 to 2, with a maximum overall score of 16. Low-, medium-, high-, and very
high-quality levels were used to classify the overall score (low = score < 8, medium = score
8–10, high = score 11–13, and very high >13). Two authors (GAT and ZTT) independently
assessed each study to determine its score and to determine the overall quality of the
included studies. Discussion between the two authors attempted to settle any differences,
and for those that could not be settled, a third reviewer (AE) was engaged.
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2.5. Data Synthesis and Analysis

Microsoft Excel and STATA version 17 software were used for data entry and analysis,
respectively. The review findings were summarised into texts, tables, and figures. The
descriptive analysis was presented using the proportion, mean, medians, and ranges.

3. Results
3.1. Search Results and Characteristics of Included Studies

A comprehensive search of international peer-reviewed journals yielded a total of
4077 published articles. Of these, 4071 articles (PubMed: 2813, Embase: 103, PsycINFO:
24, Emcare: 45, Medline: 82, and Scopus: 1004) were obtained from 6 databases, and
6 more studies were found by manual searches in Google and Google Scholar. All these
articles were published from 2011 onwards. During title and abstract screening, about
168 duplicates, 1278 non-relevant studies, and 2544 non-joint spatial studies were discarded,
and only 87 studies were left for the full-text screening. A total of 44 studies were excluded
from the 87 articles that met the inclusion and exclusion criteria for full-text screening; of
these, 32 were not joint spatial models, 4 were methodological reviews, 3 were multivariable
analyses, 2 were animal studies, 1 article was a duplication, 1 was a genetic study, and
1 was not a spatial study. The systematic review included 43 research publications that met
the eligibility criteria (Table S3 and Figure 1).
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Since 2011, the number of publications has fluctuated; it increased in 2016 and reached
a peak in 2019 and 2020, then sharply dropped in 2021 before rising again in 2022. More
ongoing research in this area is also anticipated with an increase in the number of clinical
registries being set up. The majority of studies (n = 30, 69.78%) have been published
after 2016 (Figure 2). Nearly one-fifth (18.6%) and 9.3% of the studies were conducted
in Iran and the United States of America (USA), respectively (Figure 3). Of the 43 total
studies, 15 (34.88%) were applied to infectious diseases, such as HIV/AIDS, herpes simplex
virus-2, malaria, Zika, Leishmania, and hookworm, and 11 (25.58%) were applied to cancer,
respectively. The International Journal of Environmental Research and Public Health (16.67%)
and Spatial and Spatio-temporal Epidemiology (11.63%) were the most common journals where
the articles were published (Table 1).

Table 1. General characteristics of the included studies.

Characteristics Frequency Percentage (%) References

Study category

Cancer 11 25.58 [32–42]

Chronic diseases 7 16.28 [44,48,51,58,72–74]

Infectious diseases 15 34.88 [54,57,59–65,75–80]

Health service utilisation 1 2.33 [49]

Maternal and child health outcomes 3 6.98 [46,52,53]

Others * 6 13.95 [43,45,47,50,55,56]

Publication journal

International Journal of Environmental
Research and Public Health 7 16.67 [35,40,49,51,64,72,73]

Spatial and Spatio-temporal Epidemiology 5 11.63 [46,48,55,57,61]

PLOS ONE 3 6.98 [44,54,65]

Statistics in Medicine 2 6.65 [58,78]

Statistical Methods in Medical Research 2 4.65 [52,63]

BMC Public Health 1 2.32 [53]

Malaria journal 1 2.32 [79]

Epidemiology and infection 1 2.32 [80]

Annuals of GIS 1 2.32 [50]

Geospatial Health 1 2.32 [74]

International Journal of Preventive Medicine 2 4.65 [33,39]

International Statistical Review 1 2.32 [62]

African Health Sciences 1 2.32 [43]

Journal of Health, Population, and Nutrition 1 2.32 [75]

Others ** 12 27.91 [32,34,36–38,45,47,56,59,60,76,77]

Others *: Trauma, injury, mental health, drug and substance use: Others **: BMC Paediatrics, Acta Tropica, The
International Journal of Cancer Epidemiology, Detection, and Prevention, Osong Public Health and Research Perspectives,
Accident Analysis and Prevention, Rev Saude Publica (RSP), Asian Pacific Journal of Cancer Prevention, Canadian Journal
of Public Health, Biometrics.
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3.2. Data Source, Study Design, and Unit of Analysis

Seven studies (26.6%) used data from a national health survey or the Demographic
and Health Survey (DHS) [43,46,51,60,64,72,75], while seven other studies (26.6%) used
data from cancer registries. An estimated 11.63% of the studies used data from multiple
surveys. More than one-third (41.86%) and 14 articles (32.56%) were ecological and cross-
sectional studies, respectively. The majority (55.81%) of the studies analysed two outcomes
simultaneously in the model. Twenty-one studies reported the prevalence/incidence of
outcomes, and nearly half of them had a prevalence of less than 10%.
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Given that spatial analysis can be conducted at different spatial scales, about 11 studies
performed analyses at the provincial level, and seven studies performed analyses at the
county level. The mean number of spatial units was 428, ranging from 11 to 3577 spatial
units. Among 43 joint spatial studies considered for the systematic review, 17 employed a
joint spatiotemporal model. Of them, the vast majority (n = 15, 88.23%) used year as the
unit of analysis. The mean temporal period was 21.71, ranging from 5 to 260 (Table 2).

Table 2. Data, study design, and covariates of the reviewed studies.

Item Category Number Percentage (%) References

Data source(s)

DHS or National health
survey 7 16.28 [43,46,51,60,64,72,75]

Malaria indicator
survey 3 6.98 [57,63,75]

HMIS/DHIS 2 4.65 [53,80]

Death and cause of
death registration

system
1 2.33 [33]

Multiple surveys 5 11.63 [37,38,47,65,80]

Hospital records 2 4.65 [44,59]

AIDS indicator survey 1 2.33 [54]

Cancer registry 7 16.28 [35–39,41,42]

Others * 23 53.49 [32,40,46–56,58,61–63,73,74,76–79]

Study design
(More than one

design was
applied in some
of the studies)

Ecological 18 41.86 [32–34,38–40,47–
49,52,55,58,61,73,74,76,77,79]

Cross-sectional 14 32.56 [43,46,51,54,56,57,60,62–
64,72,75,78,80]

Retrospective 9 20.93 [35–37,41,42,44,45,59,65]

Longitudinal 2 4.65 [51,53]

Others ** 2 4.65 [49,50]

Number of
outcomes of the

study

2 24 55.81 [33,34,36,37,40,41,45,46,48–50,52,54,
55,58,60,61,65,72,73,75,76,78–80]

3 7 16.28 [35,39,43,62,64,74,77]

4 2 4.65 [51,53]

5 2 4.65 [44,56]

6 0 0 —-

7 2 4.65 [32,38]

Prevalence of
outcomes of the

study

All less than 10% 11 25.58 [33–37,41,42,46,52,53,61]

Either of them is less
than 10% 4 9.30 [48,51,79,80]

All greater than 10% 6 13.95 [43,45,60,62,73,75]

Not reported 22 51.16 [32,38–40,44,47,49,50,54–
59,63,65,72,74,76–78]

Spatial unit

Provinces 11 25.58 [32,33,35,36,38,39,41,43,45,51,80]

County 7 16.28 [42,47,48,52–54,65]

Municipalities 4 9.30 [40,74,76,77]
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Table 2. Cont.

Item Category Number Percentage (%) References

Spatial unit

Districts 3 6.98 [60,72,73,75]

Schools/Health facility 3 6.98 [34,78,79]

SLAs 1 2.33 [37]

Not reported 1 2.33 [59]

Others *** 12 27.91 [44,46,49,50,55–58,61–64]

Temporal units
(n = 17)

Year 15 88.23 [32–35,37,41,44,45,53,58,62,65,74,76]

Month 1 5.88 [80]

Weeks 1 5.88 [77]

Others *: Food Security and Nutrition Unit, NASA, ABS, Urban Malaria Control Program (UMCP), Others **: Sur-
vey reports, Others ***: residence, constituents, point, cluster, state, ZIP code, dissemination area, intermediate
geography, ten cell count, neighbourhood.

3.3. Spatial Data and Modelling Techniques

Only seven studies (n = 7, 16.28%) used point data, while the majority of the studies
(n = 36, 83.72%) used areal data aggregated at a specific geographic unit, such as a munic-
ipality, province, county, Statistical Local Area (SLA), state, etc. to estimate the diseases’
relative risks [59,61,62,76–79]. The Bayesian estimation approach was used in more than
three-quarters (n = 35, 81.40%) of the included studies [32,33,35–65,73,79]. For Bayesian
inference, the MCMC estimation approach was utilised in 27 studies [32,33,35–41,43–60],
and for seven studies (16.28%), INLA was employed [42,43,61–65].

To analyse two or more health outcomes simultaneously, several joint spatial and
spatiotemporal models were used. To investigate the relative risk of the study variables and
their risk factors, joint spatial models were used in 24 studies [36,38–40,42,43,45–52,54,56,57,
59–62,64,73,75], joint spatiotemporal models in 12 studies [32,33,35,37,41,44,55,58,63,65,80],
and joint spatial and spatiotemporal autocorrelation methods such as Moran Index statistics,
Local Indicator Spatial Analysis (LISA), Getis Ord Gi statistics, or Kulldroff spatial and
Spatio-temporal scan statistical tests used in 7 studies [34,72,74,76–79].

In joint spatial temporal models, the structured and unstructured spatial random ef-
fects were considered to account for the spatial dependence and independent effects, respec-
tively. In more than two-thirds (n = 26, 72.2%) of the studies, prior CAR was considered for
the spatially structured random effect [32,33,35–41,43,44,46–53,55,58,60,61,63–65], and all
assigned Identical and Independent Distribution (IID) for the unstructured spatial random
effects. Out of 12 joint spatiotemporal studies, seven (58.23%) considered prior first-order
random walk to account for the temporal dependence in the model [32,33,35,41,53,58,65].
The simple exchangeable hierarchical structure was taken into consideration for the spa-
tiotemporal interaction terms in five of the joint spatial and temporal studies [32,33,41,53,65].

Of the 43 studies, 26 studies used R software [34–36,42–45,48,51,52,54–65,75,77,79,80],
21 studies used either WinBUGS or OpenBUGS or GeoBUGS [32,33,36–41,43,44,46,49–
51,53,54,56,63,73,78,79], 7 studies used ArcGIS or QGIS [38,41,50,53,60,75,77], 4 studies
used GeoDa [34,45,72,74], 3 studies used for SaTScan [76,77,80], and 2 studies used Fortran
software [47,78]. Numerous joint spatial and spatiotemporal statistical techniques were
used to examine spatial risk factors. Seven studies were joint spatial/spatiotemporal
autocorrelation studies [34,48,72,74,76,77,80], the joint Bayesian shared Spatiotemporal
model was used in four studies [42,53,60,65], and the multivariate Bayesian Spatiotemporal
shared component model with Poisson distribution was used in two studies [33,37]. Other
models included the bivariate Bayesian logit spatial model [46,51,63,64], geo-additive
mixed models [57,75], and the multivariate negative binomial models with CAR random
effects [43,80] (Table 3).
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Table 3. Details of the types, structures, and methods of joint spatial models of included studies
(n = 43).

Items Number Percentage (%) References

Types of spatial data

Point 7 16.38 [59,61,62,76–79]

Area 36 83.72 [32–56,58,60,63–65,72–75]

Methods of inference

Frequentist 8 18.60 [34,72,74–78,80]

Bayesian 35 81.40 [32,33,35–65,73,79]

Estimation techniques (n = 36)

ML 2 4.65 [75,80]

MCMC 27 62.79 [32,33,35–41,43–60]

INLA 7 16.28 [42,43,61–65]

Joint spatial analysis techniques

Joint spatial autocorrelation analysis 7 16.28 [34,72,74,76–79]

Joint spatial models 24 55.81 [36,38–40,42,43,45–52,54,56,57,59–
62,64,73,75]

Joint Spatio-temporal models 12 27.91 [32,33,35,37,41,44,55,58,63,65,80]

Spatial structure (n = 36)

MCAR/BCAR/ ICAR/CAR 26 72.22 [32,33,35–41,43,44,46–53,55,58,60,61,63–65]

SAR 1 2.78 [45]

GMRF 3 8.33 [42,54,57]

Not reported 6 16.67 [56,59,62,73,75,80]

Temporal structure (n = 12)

Prior first-order random walk 7 58.33 [32,33,35,41,53,58,65]

log-linear structure 1 8.33 [44]

Prior first-order autoregressive 2 16.66 [37,55]

Second-order random walk 1 8.33 [63]

Not reported 1 8.33 [80]

Spatio-temporal term (n = 12)

Uncorrelated ST interaction term 1 8.33 [35]

Simple exchangeable hierarchical
Structure 5 41.67 [32,33,41,53,65]

First order autoregressive 1 8.33 [58]

Not reported 5 41.67 [37,44,55,63,80]

The software’s used

R/R-studio/R2WinBUGS/R-INLA 26 60.47 [34–36,42–45,48,51,52,54–65,75,77,79,80]

ArcGIS/QGIS 7 16.28 [38,41,50,53,60,75,77]

WinBUGS/OpenBUGS/GeoBUGS 21 48.84 [32,33,36–41,43,44,46,49–
51,53,54,56,63,73,78,79]

GeoDA 4 9.30 [34,45,72,74]

SaTScan 3 6.98 [76,77,80]

Fortran/MATLAB 2 4.65 [47,78]



Int. J. Environ. Res. Public Health 2023, 20, 5295 11 of 24

Table 3. Cont.

Items Number Percentage (%) References

Spatial models used (n = 36)

A multivariate negative binomial
model with CAR random effects 2 5.56 [43,80]

Multivariate Bayesian Spatio-temporal
shared component model with Poisson

distribution
2 5.56 [33,37]

Poisson generalised linear mixed model
(GLMM) with a shared spatial
component with the log-linear

temporal trend

1 2.78 [44]

Multivariate spatial autocorrelation
and hotspot analysis 7 19.44 [34,48,72,74,76,77,80]

Joint spatial marked point processes
model with Poisson distribution 1 2.78 [61]

Bayesian multivariate ST
mixture model 1 2.78 [35]

Bivariate bayesian logit spatial model 4 11.11 [46,51,63,64]

Bayesian hierarchical geostatistical
shared component model/ Bivariate
bayesian geostatistical logistic model

2 5.56 [62,78]

A bayesian multivariate conditional
auto-regressive model with Poisson

distribution
1 2.78 [48]

Bayesian spatial Polytomous
Logit Model 1 2.78 [39]

Bayesian spatial biprobit model 1 2.78 [52]

Joint bayesian Spatio-temporal shared
component binomial model/Bayesian

joint hierarchical Spatio-temporal
Log-linear model/Bayesian shared

component model

4 11.11 [42,53,60,65]

Bayesian semi-parametric spatial joint
model/Bayesian nonparametric model

using Gaussian processes for the
analysis of spatially distributed

multivariate binary outcome

2 5.56 [54,59]

Geoadditive mixed model 2 5.56 [57,75]

Bayesian geostatistical shared
component multinomial modelling 1 2.78 [78]

Bayesian ANOVA 1 2.78 [56]

Model validation (n = 36)

No 31 86.11 [32,33,35–41,43–57,60–62,64,65,73,75]

Yes 5 13.89 [42,58,59,63,80]

Model comparison metrics (n = 36)

DIC 22 51.16 [32,33,37–39,41,43,44,46–49,52–54,60–
64,73,78]

WAIC 4 9.30 [35,40,55,62]
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Table 3. Cont.

Items Number Percentage (%) References

CPO 2 4.65 [37,62]

PIT 1 2.33 [62]

RMSPE/Mean absolute error 6 13.95 [35,37,44,58,59,78]

KL 1 2.33 [40]

Credible interval plot 1 2.33 [78]

Bayesian p-value and L-criterion 1 2.33 [37]

Others * (AIC, BIC) 2 4.65 [75,79]

Effect measure reported (n = 36)

OR 9 25.00 [43,46,60–64,73,79]

RR 17 47.22 [32,33,36–42,47–50,53–55,65]

Coefficient 8 22.22 [35,44,45,51,52,57–59,80]

Covariates (n = 36)

Demographic 14 38.89 [43,46,47,51,52,54,57,59–61,64,73,75,79]

Socio-economical 16 44.44 [34,37,38,43,46–
48,52,54,55,57,59,60,64,73,75]

Environmental 6 16.67 [37,45,60,75,79,80]

Clinical, health service, and
behavioral related 6 16.67 [32,43,46,53,57,73]

Standardisation (n = 36)

No 31 86.11 [32,33,35–37,39,41–47,49–54,56–60,62–
65,73,75,80]

Yes 5 13.89 [38,40,48,55,61]

Method to define spatial neighbourhood structure

Distance-based neighbourhood matrix 1 2.33 [34]

Queen contiguity 10 23.26 [45,48,50,53–55,60,65,72,75]

Rook contiguity 2 4.65 [46,52]

Non-specified adjacency based 3 6.98 [33,44,49]

Not reported 27 62.79 [32,35–43,47,51,56–59,61–64,73,74,76–80]

Map reported

No 3 6.98 [34,44,77]

Yes 40 93.02 [32,33,35–43,45–65,72–76,78–80]

Script provided (n = 36)

No 31 86.11 [32,33,36–52,55–62,64,73,75,80]

Yes 5 13.89 [35,53,54,63,65]

AIC: Akaike Information Criteria, ANOVA: Analysis of Variance, BIC: Bayesian Information Criteria, CPO:
Conditional Predictive Ordinate, DIC: Deviance Information Criteria, KL: Kullback Leibler Divergence, OR: Odds
Ratio, PIT: Probability Integral Transform, RMSPE: Root Mean square Predictive Error, RR: Relative Risk, WAIC:
Watanabe Akaike Information Criteria.

3.4. Covariates, Model Validation, and Goodness of Fit Assessment

Different measures of joint spatial and spatiotemporal model performance were re-
ported. The majority (n = 22, 51.16%) of the studies considered Deviance Information
Criteria (DIC) for model comparison [32,33,37–39,41,43,44,46–49,52–54,60–64,73,78], and
six studies used Root Mean Predictive Squared Error (RMPSE) [35,37,44,58,59,78]. A com-
bination of model comparison measures was used in many of the studies. The common
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effect measures reported in the included studies were relative risk (n = 17, 47.22%), odds
ratio (n = 9, 25%), and coefficients (n = 8, 22.22%). Very limited studies underwent model
validation (n = 5, 13.89%) [42,58,59,63,80].

Almost all joint spatial and spatiotemporal studies used maps to present the risk
estimates. In the joint spatial and joint spatiotemporal models, socio-economic variables
were the predominant variables among the covariates considered in the model to predict
the outcomes across space or space-time [34,37,38,43,46–48,52,54,55,57,59,60,64,73,75]. Re-
garding standardisation, only five of the joint spatial and spatiotemporal models applied
standardisation for common demographic variables [42,58,59,63,80]. Queen contiguity
was the most commonly used method to define the neighbourhood structure (n = 10,
23.26%) [45,48,50,53–55,60,65,72,75] (Table 3).

3.5. Key Implications of Applying Joint Spatial Modelling, Findings, and Methodological Gaps

The justifications provided in the included studies for fitting the joint spatial and spatiotem-
poral model, shared component spatial and spatiotemporal model, or multivariate spatial and
spatiotemporal model varied. Fourteen (38.89%) studies applied the shared component spatial
and spatiotemporal model to consider the spatial dependence of interrelated outcome variables
and to better explore their overlapping epidemiology [43,44,47,52,57,58,60–62,65,72,73,75,78].
Of the 36 joint spatial and spatiotemporal studies, 12 (33.33%) studies used the joint model for the
ease of interpretation and to improve the precision of estimation [38,39,43,44,49,53–55,57,60,65,76].
Different reasons were provided for using the joint spatial and spatiotemporal analysis.
Nine studies (25%) applied the joint spatial and spatiotemporal model to borrow strength
between diseases and to incorporate data from a more common and related disease when
interest was in a relatively rare disease, thereby strengthening the relevant results of the
rare disease [36,37,42,44,49,53,55,60,61].

Out of 43 studies, 31 studies (72%) found reasonable patterns in the co-occurrence of
health outcomes in geographic prevalence across areas [32,34,35,38,40–42,45–52,54–59,61,
64,65,72,74–77,79,80]. The joint spatial and spatiotemporal model yields more precise and
efficient estimates, especially when the number of observed events is rare [33,43,60,62,73,78].
Besides, the shared component joint spatial model had a better model fit relative to a joint
spatial model without the shared component [36,46,53,62,73].

The studies included in this systematic review have self-reported methodological gaps.
Seven studies acknowledged that in aggregated data, ecological fallacies are introduced,
and some relevant information may be concealed by using large geographical units of
study [40,47–49,53,65,80]. Therefore, using smaller units of analysis as a methodological
gap may be a preferred approach. Four of the studies revealed that a meaningful number
of temporal units is required to efficiently detect the temporal effect [38,41,44,80], and
assuming the shared and specific components as independent ignores the possibility of
interactions between the true covariates [38,44,62,73]. Three of the studies reported that
MCMC has computational problems, model fitting, and convergence issues [42,43,56]
(Table 4).

Table 4. Summary of the purpose of fitting joint spatial model, key findings, and reported method-
ological gaps of selected studies.

Items Number Percentage (%) References

Reasons for using joint modelling (n = 36)

To borrow strength between diseases and
to incorporate data from a more common
and related disease when interest is in a
relatively rare disease strengthens the

relevant results of the rare disease

9 25.00 [36,37,42,44,49,53,55,60,61]
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Table 4. Cont.

Items Number Percentage (%) References

For ease of interpretation, and to improve
the precision of estimation 12 33.33 [38,39,43,44,49,53–55,57,60,65,76]

To consider the spatial dependence of
interrelated outcome variables and to better
understand the overlapping epidemiology

14 38.89 [43,44,47,52,57,58,60–62,65,72,73,75,78]

To account for such unmeasured exposures
that may be common among the diseases 2 5.56 [37,44]

For estimating the relative weight of each
shared component for all related disease 6 16.67 [38,41,50,53,65,73]

Key findings

The joint spatial model yields more precise
and efficient estimates especially when the
number of desired observed cases is low

6 13.95 [33,43,60,62,73,78]

Found reasonable patterns in the
co-occurrence in geographic prevalence

across areas
31 72.09 [32,34,35,38,40–42,45–52,54–

59,61,64,65,72,74–77,79,80]

They had shared risk factors. 7 16.28 [37,39,44,53,60,72,80]

The shared component joint spatial model
had a better model fit relative to a joint

spatial model without the
shared component

5 11.63 [36,46,53,62,73]

Methodological gaps (n = 36)

A meaningful time period is required to
detect the temporal effects 4 11.11 [38,41,44,80]

Assuming the shared and specific
components as independent ignores the
possibility of interactions between the

true covariates

4 11.11 [38,44,62,73]

Edge effects 3 8.33 [36,38,77]

The results are biased by the Modifiable
Areal Unit Problem (MAUP) 2 5.56 [48,55]

Aggregation of the data has the effect of
introducing ecological fallacy and large

geographical units of analysis may mask
some information of interest. Results and

efficiency may be improved by having
smaller units of analysis

7 19.44 [40,47–49,53,65,80]

MCMC has a computational problems,
model fitting, and convergence issues 3 8.33 [42,43,56]

3.6. Assessment of Quality

Using the adapted quality assessment tool of modelling study qualities, the quality
scores ranged from 0 to 16. The median quality score was 12/16, ranging from 8 to 16.
Ten studies were classified as medium quality, twenty-one studies as high quality, and 12
studies as very high quality (Table 5).
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Table 5. Quality assessment of included studies.

ID Author Year AaO SaP MS MM PRD QoD PoR IDOR Sum Rating

1 Freitas et al., 2022 [75] 2022 2 2 1 1 2 2 1 2 13 High

2 Kazembe et al., 2015 [46] 2015 2 2 1 2 2 2 2 2 15 Very
high

3 Kinyoki et al., 2017 [62] 2017 2 2 1 1 2 1 1 2 12 High

4 Besharati et al., 2020 [45] 2020 2 2 1 2 2 1 1 2 13 High

5 Kramer et al., 2013 [48] 2013 1 1 1 1 1 1 1 2 9 Medium

6 Law et al., 2018 [49] 2018 2 2 1 1 2 1 1 2 12 High

7 Lawson et al., 2014 [63] 2014 2 2 2 1 2 0 2 1 12 High

8 Lawson et al., 2020 [51] 2020 1 1 1 1 2 2 1 0 9 Medium

9 Mahaki et al., 2011 [38] 2011 2 2 2 1 2 2 2 1 14 Very
high

10 Mahaki et al., 2018 [32] 2018 2 2 1 1 2 1 2 1 12 High

11 Nasrazadani et al., 2018 [39] 2018 2 2 2 1 2 2 2 2 15 Very
high

12 Desjardins et al., 2014 [76] 2018 2 2 1 1 2 1 2 1 12 High

13 Odhiambo et al., 2021 [53] 2021 2 2 2 2 2 1 2 2 15 Very
high

14 Okango et al., 2015 [54] 2015 2 2 1 1 2 2 1 2 13 High

15 Orunmoluyi et al., 2022 [64] 2022 2 2 1 1 2 2 1 2 13 High

16 Otiende et al., 2020 [65] 2020 2 2 2 2 2 2 2 2 16 Very
high

17 Raei et al., 2018 [41] 2018 2 2 1 1 1 1 1 1 10 Medium

18 Ransome et al., 2019 [55] 2019 2 2 1 1 1 2 1 1 11 High

19 Roberts et al., 2020 [75] 2020 2 2 2 2 2 2 2 2 16 Very
high

20 Schur et al., 2011 [78] 2011 2 2 1 2 2 2 1 1 13 High

21 Stensgaard et al., 2011 [79] 2011 1 2 2 1 1 1 1 1 10 Medium

22 Stoppa et al., 2022 [40] 2022 1 2 2 2 1 2 1 1 12 High

23 Norwood et al., 2020 [56] 2020 2 2 2 2 2 2 1 1 14 Very
high

24 Adebayo et al., 2016 [57] 2016 2 2 2 2 2 2 2 1 15 Very
high

25 Asmarian et al., 2019 [42] 2019 2 2 1 2 2 1 1 1 12 High

26 Huang et al., 2018 [58] 2018 2 1 1 2 2 2 2 1 13 High

27 Kang et al., 2014 [59] 2014 2 2 2 2 2 2 2 1 15 Very
high

28 Law et al., 2020 [50] 2020 2 2 2 2 2 2 2 1 15 Very
high

29 Roberts et al., 2022 [60] 2022 2 2 1 2 2 1 1 1 12 High

30 Carabali et al., 2022 [61] 2022 2 2 2 2 1 2 1 1 13 High

31 Cramb et al., 2015 [37] 2015 2 2 2 2 2 2 1 1 14 Very
high

32 Kinyoki et al., 2017 [62] 2017 2 2 1 1 2 1 1 1 11 High
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Table 5. Cont.

ID Author Year AaO SaP MS MM PRD QoD PoR IDOR Sum Rating

33 Kline et al., 2019 [47] 2019 2 2 1 1 2 2 1 1 12 High

34 Chidumwa et al., 2021 [73] 2021 1 1 1 1 1 1 1 1 8 Medium

35 Adeyemi et al., 2019 [43] 2019 2 2 1 1 2 2 1 1 12 High

36 Darikwa et al., 2019 [74] 2019 2 2 1 1 2 2 1 1 12 High

37 Darikwa et al., 2020 [51] 2020 1 2 1 1 1 1 1 1 9 Medium

38 Chamanpara et al., 2015 [36] 2015 1 1 1 1 1 1 1 1 8 Medium

39 Carroll et al., 2017 [35] 2017 2 2 1 1 1 1 1 1 10 Medium

40 Adegboye et al., 2017 [80] 2017 1 1 1 1 1 1 1 1 8 Medium

41 Neelon et al., 2014 [52] 2014 1 1 1 1 1 1 1 1 8 Medium

42 Ahmadipanahmehrabadi
et al., 2019 [33] 2019 2 2 1 2 2 2 1 1 13 High

43 Bermudi et al., 2020 [34] 2020 2 2 2 2 2 2 2 2 16 Very
high

Range 1–2 1–2 1–2 1–2 1–2 0–2 1–2 0–2 8–16

Median score 2 2 1 1 2 2 1 1 12 High

Mean score 1.79 1.84 1.35 1.42 1.72 1.53 1.33 1.28 12.26

AaO, aims and objectives; SaP, setting and population; MS, model structure; MM, modelling methods; PRDS,
parameter ranges and data sources; QoD, quality of data; PoR, presentation of results; IDoR, interpretation, and
discussion of results.

4. Discussion

In this study, joint spatial and spatiotemporal models in health research were systemati-
cally reviewed. These models were mainly applied to infectious diseases [54,57,59–65,75–80],
cancer [32–42], chronic diseases [44,48,51,58,72–74], and maternal and child health out-
comes [46,52,53]. This showed that infectious diseases, which have a major worldwide
burden and have the potential to spread to nearby areas, are currently receiving significant
attention from researchers [81,82]. The spatial and spatiotemporal studies of interrelated
infectious diseases provide a better understanding of the magnitude, pattern, overlapping
epidemiology, and shared individual and area-level risk factors. The majority of infectious
diseases co-occur in the same patients such as tuberculosis with HIV, herpes simplex virus-2
with HIV, leishmaniasis with malaria, etc. [83].

Joint spatial and spatiotemporal modelling of two or more cancers has become increas-
ingly frequent over the past few decades [24,29,84] to examine the shared and differing
trends of cancers regarding geographic patterns and shared risk factors. Contrary to uni-
variate analysis, joint spatial models include shared components as various groups of
cancers share common risk factors [85,86]. The majority of studies in spatial studies were
based on single health outcomes, even though diseases such as cancer have common risk
factors. Joint spatial and spatiotemporal modelling has recently become popular. It can
model rare and common cancers to improve the estimates by borrowing strengths. It is
feasible to modify behaviour common to cancers, and this has huge potential for preventing
cancer. Major cancer risk factors can be altered by applying behavioural strategies including
ceasing smoking, getting more exercise, managing weight, improving diet, limiting alcohol
consumption, getting regular cancer screening tests, and limiting sun exposure [87]. Given
that many of these cancer-preventive techniques lower the risk of many cancers, these might
be supported by generating evidence through shared spatial and spatiotemporal studies.

The number of publications on joint spatial studies decreased dramatically during the
coronavirus disease (COVID-19) period. It could be explained by the fact that since 2019,
journals have prioritised COVID-19 research since little was known about the disease [88].
Evidence on the route of transmission, typical clinical features, underlying risk factors,
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and pathogenesis was limited, which is why the spatial analysis of COVID-19 with other
infectious diseases was infrequent. In addition, advanced statistical approaches such as
joint spatial and spatiotemporal models were not commonly applied as little was known
about COVID-19’s clinical manifestation, route of transmission, etiology, and treatment.

More than one-third of the studies used ecological data for analysis. This demon-
strates how disease mapping frequently used aggregated data at a specific geographic
level to generate area-level estimates to guide healthcare decisions and effective resource
allocation [89]. Compared with other studies, ecological data can be accessed or retrieved
from reports quite easily. The main data sources were DHS or national health survey
data [43,46,51,60,64,72,75] and cancer registry data [35–39,41,42]. This could be because
of DHS and other national health surveys having location data (GPS) and geolocated co-
variates including environmental, pollution, demographic, and socio-economic covariates
available in these surveys [90].

Some of the studies were exploratory spatial analyses, including joint spatial autocor-
relation techniques such as Moran Index (MI) statistics, Local Indicator Spatial Analysis
(LISA), Getis Ord Gi* statistics, or Kulldroff spatial or spatiotemporal scan statistical
tests [34,72,74,76–79]. Unlike univariate spatial autocorrelations, multivariate spatial auto-
correlations can determine how interrelated health outcomes such as TB and HIV, HSV-2
and HIV, and cancers influence each other spatially or spatiotemporally. They can explore
the overlapping spatial and/or temporal distribution of two or more interrelated diseases.
To detect the local clusters (hotspot and cold spot areas), spatial and space–time scanning
statistical analysis and Getis-Ord Gi statistic are commonly used for cluster detections [91].
The hotspot and coldspot cluster detection is sensitive to the change in the size of the
spatial and temporal units of analysis in which the data are aggregated; thus, analysing at
a small spatial scale is preferable to identify hotspot areas efficiently. Multivariate spatial
autocorrelation methods can investigate the spatial dependence of two or more interrelated
health outcomes. In multivariate spatial autocorrelation analysis, the presence of a disease
in a particular area is not only influenced by the prevalence of diseases in neighbouring
areas, but also influenced by the presence of diseases that are related to one another in the
area. However, they are unable to look at how the existence of one health outcome in one
area may affect the spread of someone else in nearby areas, how one health outcome may
affect the spread of another in adjacent areas, or, further, how it is affected by the spatial
risk factors [92].

When variables were accounted for, the majority of the joint spatial and spatiotemporal
models showed model improvement [32,34,37,38,43,45–48,51–55,57,59–61,64,73,75,79,80].
If the covariates were considered, joint spatial and spatiotemporal models performed much
better than others and offered more insights than univariate models [93]. When the outcome
is rare, the joint spatial models could improve the model performance by borrowing
strength from interrelated diseases, neighbourhood areas, and/or time [10]. Besides, they
can capture the spatial and spatiotemporal effects unexplained by the observed covariates
by introducing random effects. This is well-suited to the data that have limited predictors
and models that capture few covariates.

Only five studies underwent standardisation for common demographic variables [38,
40,48,55,61]. Demographic covariates such as age, sex, race, etc. are the most obvious risk
factors for almost all health and health-related conditions. In the univariate spatial analysis,
the difference in incidence or mortality of given diseases because of age, sex, or other
variables can be addressed by standardisation, which ignores the effects of these variables
in the analysis. Age, sex, and other demographic variables are determinants for a multitude
of health-related and other outcomes. The impacts of age, sex, and other common risk
factors should be estimated using these variables in the model, as well as their interactions
with other factors, such as spatial and temporal effects.

The vast majority of the studies were conducted based on a Bayesian modelling
framework [32,33,35–65,73,79]. This was in line with the advancement of Bayesian statistics
in the field of disease mapping. Bayesian spatial models are now commonly applied
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because of advances in knowledge of advanced statistics, programming, coding skills,
and improved computer power resources that overcome computational problems. This
methodology can provide more reliable area-level estimates specifically when the cases
are rare or the population is small [90]. It can smoothen the observed extreme estimates
towards the global mean or the neighbourhood values and provide more robust estimates,
specifically when studied areas have sparse populations, by assigning prior distributions
to define spatial structure to ensure the closer areas have more contribution than distant
areas [22,94].

The majority of the Bayesian spatial and spatiotemporal studies undertook model
fitting and inference based on MCMC [32,33,35–41,43–60] followed by INLA [42,43,61–65].
The most popular models for spatial studies were Bayesian hierarchical models with
structured and unstructured random effects. The MCMC approach is computationally
very demanding and has convergence issues [95]. This is especially true for hierarchical
models, which by their very nature make MCMC convergence unpredictable and slow. No
matter the model, it is necessary to assess the convergence of posterior samples because
there is no guarantee that such models can be easily fitted, in which additional simulations
and model simplification will be necessary. In contrast, INLA has recently emerged as a
reliable alternative method for fitting Bayesian spatial models that overcomes MCMC’s
drawbacks [96,97]. The package uses INLA to estimate Bayesian models without the need
for posterior sampling techniques. In practical terms, numerical integration is performed
via this approximation; therefore, it does not require a lot of iterative processing [98].
Bayesian estimation utilising the INLA methodology typically takes substantially less time
than MCMC, which is the reason why this package was developed for spatial statistics in
the first place.

The majority of studies applied joint spatial models [36,38–40,42,43,45–52,54,56,57,59–
62,64,73,75] followed by joint spatiotemporal models [32,33,35,37,41,44,55,58,63,65,80]. Un-
like spatial autocorrelation studies, the spatial and spatiotemporal models can inves-
tigate the covariates influencing the distribution of the outcome across space and/or
time [33,37,42,43,53,57,60,65,75,80]. The joint spatial and spatiotemporal models are ap-
plied for spatial analysis of two or more health outcomes or one outcome across different
population groups. They typically rely on Generalised Linear Mixed Models (GLMMs)
that consider shared and specific spatial, temporal, and spatiotemporal random effects.
The data type, distribution, nature, and incidence of the outcomes determine the type of
joint spatial and spatiotemporal models, e.g., poisson or negative binomial GLMM for
count data and logistic regression for categorical outcomes. The dependence between
diseases with similar spatial or temporal patterns is captured by prior distributions [13].
The multivariate CAR models smoothen noisy estimates and leverage information from
nearby areas and interrelated diseases to predict spatially autocorrelated area-level disease
risks [99]. However, multivariate CAR models are unable to show how the correlation of
outcomes varies across space. The Copula geoadditive model overcomes this limitation
and can demonstrate the change in the association between outcomes across geographic
locations [100]. However, it is unable to detect the geographic areas contributing to higher
or lower risk of simultaneous occurrence of multiple outcomes. Recently, the majority of
studies applied the shared spatial and spatiotemporal models that decompose the spatial
effect into shared and disease-specific spatial effects [24].

The majority of studies used a prior CAR for the spatially structured random effects
to account for the spatial dependence [32,33,35–41,43,44,46–53,55,58,60,61,63–65], and all
assigned IID for the unstructured spatial random effects. MCAR models incorporate
both spatially structured and unstructured random effects in the model. The spatial
dependence among adjacent areas is accounted for by assuming a CAR process in the
random effects [101]. Most studies used first-order random walk prior to temporal random
effects [32,33,35,41,53,58,65].

The authors’ reasons for fitting joint spatial and spatiotemporal models over univariate mod-
els were the following: to considering the spatial dependence of related outcomes in the model
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and better explore their overlapping epidemiology [43,44,47,52,57,58,60–62,65,72,73,75,78]; to
improve estimation precision [38,39,43,44,49,53–55,57,60,65,76]; and to strengthen relation-
ships between diseases by borrowing data from a more prevalent and related disease
when the disease of interest is relatively rare [36,37,42,44,49,53,55,60,61]. In addition, the
studies revealed that the shared component models yield more precise and efficient es-
timates, especially when the disease is rare or the population is small [33,43,60,62,73,78].
Moreover, incorporating the shared component in the model could improve the model’s
performance [36,46,53,62,73].

This review pointed out several recommendations for the development of improved
joint spatial and spatiotemporal models. Some studies acknowledged that when data
are aggregated, ecological fallacies are introduced, and some relevant information may
be concealed by using large geographical units of study [40,47–49,53,65,80]. Thus, using
smaller units of analysis increases the precision of the estimates. Assuming the shared
and specific components as independent denies the possibility of interactions between
the true covariates [38,41,44,80], and a relevant number of temporal units is necessary to
efficiently identify the temporal effect [38,44,62,73]. Moreover, some of the studies showed
that MCMC has computational problems, model fitting, and convergence issues [42,43,56].
INLA is better for developing statistical models to obtain efficient risk estimations and
direct the efficient distribution of medical interventions.

DIC was the most commonly used model comparison criteria to measure and compare
the model goodness of fit and model complexity [32,33,37–39,41,43,44,46–49,52–54,60–64,73,78],
followed by RMSPE [35,37,44,58,59,78]. Most of the studies used a combination of goodness-
of-fit measures for model assessment. DIC and WAIC are model performance measures
that are calculated by combining the model likelihood function (deviance (-2LLR)) and a
model complexity term (number of effective parameters) [102,103]. In addition to model
performance assessment, model accuracy assessment such as mean absolute prediction er-
ror and mean square prediction error are considered for model comparison [104]. Moreover,
local measures of fit such as the conditional predictive ordinate are also used for making a
model comparison. Apart from three studies [34,44,77], most studies reported maps for
the visualisation of risk estimates. Maps offer epidemiologists enough evidence to display
spatial risk and/or risk factors across time and/or space. It can give decision-makers
motivation, insight, and assist potential health interventions in high-risk areas.

The scientific community may benefit from the epidemiological and statistical insights
this systematic study provides in terms of joint spatial and spatiotemporal model applica-
tions in health research. First, the utility of joint spatial and spatiotemporal models is more
pronounced in large data registries and when multiple interrelated diseases are fitted simul-
taneously. It is therefore crucial to estimate the smoothed relative risk of lower-prevalence
cases through the borrowing of strength from the related cases and neighbourhood areas.
Although there were joint spatial and spatiotemporal studies, the systematic review found
heterogeneity in methods of estimation technique, statistical models, prior selections, defin-
ing adjacencies, and model complexities. This showed that a consistent framework for
undertaking joint spatial and spatiotemporal models is needed. This framework is currently
a focus of our research program. This systematic review provides insight suggesting that
jointly modelling two or more cases that have shared characteristics is better to detect
clusters of cases specifically when the number of cases is rare, such as in rare cancers and
orphan diseases, or when the population is small. Another important finding was that the
most complex models (joint spatial and spatiotemporal models incorporating covariates
and interaction) performed very well. Overall, the systematic review identified several
areas of improvement in joint spatial studies such as providing data, maps, scripts, and
methodological gaps.

This review has some strengths and limitations, including an extensive search of
six electronic databases to retrieve studies in an area without a previous systematic review.
Careful title/abstract and full-text screening was carried out with predefined inclusion and
exclusion criteria. One of the limitations of this review was that the majority of the studies
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were from a few countries, which might be because of spatial data being limited (GPS data
and software packages for joint spatial and spatiotemporal model) or insufficient funding
or statistical skills, indicating the possibility of publication bias or a focus of research effort
on countries included in research publications. Another limitation was that only articles
published in English were considered, so we may have excluded valuable contributions.

5. Conclusions

Multivariate disease mapping is crucial for understanding the burden of interrelated
health outcomes over space and/or time. Numerous joint spatial and spatiotemporal
methodologies aiming to explore the spatial risk of two or more health outcomes simulta-
neously were reviewed. The majority of studies used Bayesian methods, which handled a
wider range of variance components at different levels in the model and could consider
model uncertainties to provide reliable estimates. The most often utilised covariates in
joint spatial and spatiotemporal models were socio-economic and demographic. Most of
the reviewed studies used shared component spatial and spatiotemporal models with a
Poisson-based and negative binomial modelling approach. Relatively few studies have
been published on the applications of joint spatial and spatiotemporal models since the
COVID-19 pandemic. Reviewed studies have acknowledged that aggregated data are liable
to ecological fallacies and some relevant information may be concealed by using large
geographical units of study. Therefore, this systematic review highlighted the need for
future joint spatial and spatiotemporal models to analyse correlated health outcomes to
guide decision-making for effective prevention and control strategies.
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