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Abstract: Background: Access to oral healthcare is not uniform globally, particularly in rural areas
with limited resources, which limits the potential of automated diagnostics and advanced tele-
dentistry applications. The use of digital caries detection and progression monitoring through
photographic communication, is influenced by multiple variables that are difficult to standardize in
such settings. The objective of this study was to develop a novel and cost-effective virtual computer
vision AI system to predict dental cavitations from non-standardised photographs with reasonable
clinical accuracy. Methods: A set of 1703 augmented images was obtained from 233 de-identified
teeth specimens. Images were acquired using a consumer smartphone, without any standardised
apparatus applied. The study utilised state-of-the-art ensemble modeling, test-time augmentation,
and transfer learning processes. The “you only look once” algorithm (YOLO) derivatives, v5s, v5m,
v5l, and v5x, were independently evaluated, and an ensemble of the best results was augmented,
and transfer learned with ResNet50, ResNet101, VGG16, AlexNet, and DenseNet. The outcomes
were evaluated using precision, recall, and mean average precision (mAP). Results: The YOLO model
ensemble achieved a mean average precision (mAP) of 0.732, an accuracy of 0.789, and a recall of 0.701.
When transferred to VGG16, the final model demonstrated a diagnostic accuracy of 86.96%, precision
of 0.89, and recall of 0.88. This surpassed all other base methods of object detection from free-hand
non-standardised smartphone photographs. Conclusion: A virtual computer vision AI system,
blending a model ensemble, test-time augmentation, and transferred deep learning processes, was
developed to predict dental cavitations from non-standardised photographs with reasonable clinical
accuracy. This model can improve access to oral healthcare in rural areas with limited resources, and
has the potential to aid in automated diagnostics and advanced tele-dentistry applications.

Keywords: cariology; deep learning; model ensemble; object detection; transfer learning

1. Introduction

Oral health conditions, such as dental caries and its sequeales, are common ailments,
aggravated by conditions such as poverty or unsanitary habits, yet only 4.6% of global
medical spending is anticipated to go towards oral healthcare [1]. Dental caries is the
pathological breakdown of tooth tissue due to a shift in microbiological flora in the oral
cavity and an increased secretion of acid. Caries formation is affected by a host of pref-
erential habits, systemic disorders, and congenital anomalies. Incipient carious lesions
are often ignored by the patient and treated conservatively by the practitioner, following
minimally invasive dentistry protocols. As such, the rates of misdiagnosis and misman-
agement are also very high, especially among young practitioners performing visual and
radiographic investigations. In rural economies that have limited access to advanced dental
infrastructure and experienced practitioners, caries mismanagement can be costly and
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might leave the patient vulnerable to future periapical, osseus, and fascial space spread of
the infection [2]. These issues can be resolved with early detection and regular monitoring
via an automated low-cost system that does not discriminate between patients based on
their sociodemographic standing in society. The use of mobile handheld devices, such as
smartphones, has seen exponential growth in emerging economies, as smartphone owner-
ship and network connectivity has substantially increased within the rural population [3].
As such, recent biomedical research has begun utilising the full functionalities of the sen-
sors in the said devices, to provide affordable solutions to complex problems in remote
dental healthcare [4–7].

Most clinical research that utilises photographs, adheres to strict standardisation
protocols, to ensure minimal variations. Strict omission of variables however, translates
to a less than optimal performance of the exact same research, when applied in the real
world [8]. The current efforts to bridge geographic inequalities in dental diagnostics, will
require a robust and adaptive approach, acknowledging that most users in technologically
disadvantaged rural regions may not have the skills or expertise to standardise the images
captured for remote or automated diagnostics [9]. This is in addition to the ambient light
variations present in different regions and at different times of the day, and the masking
filters baked into smartphone camera software, that sometimes do a poor job of representing
the true colours of an image [10].

Computer vision systems primarily detect regions of interest from multimedia, and
have seen a rapid growth in care diagnostics over the last decade. The YOLO (you only
look once) system, is a state-of-the-art object detection algorithm, recently used in computer
vision, a form of real-time artificial intelligence [11]. YOLO uses a single neural network
to process the entire image, segmenting it into sections and forecasting bounding boxes
and probabilities for each region [12]. Although several algorithms have been applied in
caries diagnostics, YOLO has only been reported for caries diagnostics using radiomic
data [13]. When using radiomics for caries diagnostics in rural populations, the application
of AI introduces the model to specialist interpretation [14], which can be counterintuitive,
because the purpose of the model is to aid in areas where specialist consultations are scarce.
The creation of a model ensemble, is a technique that employs various computer vision algo-
rithms on a dataset, to isolate the best performing ones, and then combines the top models
to form a ‘super predictor algorithm’. Transfer learning, is another technique that creates a
framework for an object detection model to use previously acquired knowledge from differ-
ent datasets to solve machine learning problems in other fields that have similarities with
the existing datasets. To the authors’ knowledge, no previous studies have implemented
and validated all three methods together, to generate a caries diagnostic model.

To date, image standardisation has been a serious limitation in digital dentistry, owing
to geographic variations in ambient light, operator-induced errors, and availability of high-
end imaging hardware [10,15]. Said variables can rarely be addressed in rural clinics with
limited resources, thereby limiting the possibilities of automated diagnostics and advanced
tele-dentistry applications. There is limited research reporting the diagnostic accuracy
of AI-based caries detection using free-hand smartphone photography [4]. The objective
of the current study was, therefore, to develop and validate a novel and inexpensive
system, utilising a model ensemble and transfer learning, that can predict dental cavitations
instantaneously from non-standardised photographs, with reasonable clinical accuracy.

2. Material and Methods

The current study design adhered to Nature Medicine’s minimum information for
clinical artificial intelligence modeling (MI-CLAIM) protocol [16].

2.1. Data Input and Pre-Processing

The study consisted of 233 de-identified, pre-extracted anterior teeth. The in vitro
simulation study was classified as exempt from ethical review by the relevant ethics
committees. A smartphone camera system (12 MP, f/1.8, 26 mm (wide), 1/1.76”, 1.8 µm,
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Dual Pixel PDAF, OIS; Galaxy s20 5G, Samsung Inc., Seoul, Republic of Korea), focused
with a 60× fixed focus optical zoom lens (Lens 9595; Yegren Optics Inc., Anyang, China),
was used to capture free-hand images of carious lesions, with no ambient light control. To
minimise variations that might adversely affect algorithm training, only human anterior
teeth specimens exhibiting visible smooth surface caries and cariogenic activity were
selected and isolated from de-identified sources. Molars were excluded, due to potential
factors such as shadow casts, altered translucency, occult pit and fissure lesions, and
occlusal surface morphology.

The dataset was visually categorised into three classes, based on the appearance of the
lesions within the photographs, which were a visual adaptation of the ICDAS classification:
‘visible change without cavitation’, ‘visible change with micro cavitation’, and ‘visible
change with cavitation’, following the success documented with the method in recent
publications [6,17,18]. The images were labelled by three dentists, after physically inspect-
ing each tooth with a loupe and explorer. A blinded inter-rater reliability Chronbach’s
analysis, demonstrated α = 0.958 and r = 0.89 ± 0.06. Each image was processed only when
a κ = 1.00 agreement was achieved on the proposed classification, following an interactive
discussion. Of the 233 images, 68 were excluded, due to not clearly meeting any of the
three categories, leaving 165 images for processing. The dataset was split randomly into the
following three sets: training data, which consisted of 65% of the images; validation data,
which had 15%; and final testing data, which had 20%. While the dataset was considered
very small for deep learning, the goal was to create a fully functional model with the least
amount of workable data, such that an AI model could be generated that was not primarily
limited by the dataset.

2.2. Data Augmentation

The training and validation sets underwent augmentation by 13 different methods. For
this purpose, CLoDSA (cross-language object detection and segmentation augmentation) [19],
a Python library, was used to simulate real-world variations in the image capture pro-
cess, including blurry images, images out of focus, incorrect angulation, over- or under-
sharpened images, abnormal ambient light filters, etc. [20]. This increased the sam-
ple size to 1703 images following augmentation. Figure 1 shows the 13 methods of
image augmentation.

Following data pre-processing and augmentation, a hybrid pipeline for predicting
carious lesions using smartphone images of teeth was validated. The pipeline consisted of
two steps, namely (1) object detection using a model ensemble and test-time augmentation,
followed by (2) transfer learning of the model ensemble. Figure 2 demonstrates the flow
chart of the method applied.

2.3. Object Detection

YOLO v5, v5n, v5s, v5m, and v5l models of object detection algorithms were re-
designed for use in the current study. The YOLOv5 family of models differ in size and
number of parameters. YOLOv5n is the smallest, being less than 2.5 MB in INT8 format
and roughly 4 MB in FP32 format, designed for use in edge and IoT devices. YOLOv5s has
approximately 7.2 million parameters, and is effective at executing inference on the CPU.
YOLOv5m is a medium-sized model, with 21.2 million parameters, and is considered the
most appropriate for dataset training, due to its balance of speed and accuracy. YOLOv5l
is a large-sized model, with 46.5 million parameters, and is useful for detecting smaller
objects. YOLOv5x is the largest, with 86.7 million parameters, and has the highest mAP,
despite being slower than the others. The models use CSPDarknet as the framework to
extract features from images created using cross-stage partial networks, and use binary
cross-entropy and the logit loss function, to determine the loss of the trained model, by
comparing the target and predicted output values. Figure 3 shows the architecture of
YOLO v5. The neck of the models use a feature pyramid network developed by PANet, to
combine the features and transmit them to the head for prediction. The YOLOv5 head uses
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layers to produce predictions from a set of predefined bounding boxes of a certain height
and width, also known as anchor boxes.
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Figure 1. Examples of image augmentation.

2.4. Ensemble Modelling

Ensemble modelling is a process in which numerous different models are developed
to predict a result, either by employing various statistical modelling techniques or by using
a variety of training datasets. The approach then combines each base model’s predictions,
yielding a single final prediction for the unseen data.

2.5. Test-Time Augmentation

Test-time augmentation (TTA) is a technique used to improve the performance of
object detection models, by applying various modifications to the test images during the
testing phase. The goal of TTA is to improve the robustness of the model, by making it
more resistant to variations in the input data. The process generates numerous enhanced
copies of each picture in the test set, having the model predict each, and then returning
an aggregate of those predictions. In this study, test-time augmentation was applied to all
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YOLO models to compare the outcomes of the TTA approach with the non-TTA method. In
our study, the TTA approach increased the performance of all YOLO models.
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2.6. Transfer Learning

The images were pre-processed prior to transfer learning. All images, after the aug-
mentation, were cropped and labeled according to their classes and set. A comparative
analysis, following different transfer learning models, was performed, based on perfor-
mance metrics (namely accuracy, precision, recall, and F1 score). Transfer learning models
such as ResNet-101, ResNet-50, VGG16, AlexNet, and DenseNet-121 were used for the
purpose [21–24]. ResNet-50 and ResNet-101 are both convolutional neural networks, de-
signed for image classification, with ResNet-50 having 50 layers and ResNet-101 having
101 layers. Both models use skip connections to improve the flow of information between
layers, and ResNet101 is pretrained to recognise 1000 different object categories. VGG16,
a model developed by the Visual Geometry Group, has 16 weighted layers, including
13 convolutional layers, 5 max pooling layers, and 3 dense layers, and contains a total of
138 million parameters. AlexNet, a groundbreaking model in deep learning for image
classification, has eight weighted layers, with the first five being convolutional and the
last three being fully connected. It outputs a distribution over 1000 class labels using a
1000-way softmax. DenseNet is another neural network designed for visual object detec-
tion, that is similar to ResNet but with some notable differences. It reduces the number
of parameters, while improving feature propagation and reuse, and solves the vanishing
gradient problem [21–24].

2.7. The Experimental Setup

All hyperparameters and settings were set to ensure uniformity throughout the tests
when evaluating the performance of each object detection and transfer learning model. For
the object detection model, YOLOv5 has around 30 hyperparameters, that are utilised for
various training settings. We utilised the default parameters. During model training, the
optimiser of choice was “SGD”, with a learning rate of 10−2. The batch size was set to 16,
and the number of training epochs was set to 50. Every model was trained on a free GPU
from Google Colab on cloud computing, and therefore a learning cost analysis was not
performed. The same parameters were used for the transfer learning model training. The
optimiser was “SGD”, with a learning rate of 10−3. The batch size and epochs were the
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same as what was used in the object detection model training. ‘Cross entropy loss’ was
used as a loss function, with a decay in learning rate of 0.1 every seven epochs.
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2.8. Evaluation Metrics

Accuracy, precision, recall, F1 score, and mean average precision (mAP) were analysed
using a confusion matrix, to evaluate the performance of the models. Mean average preci-
sion (mAP) is a commonly used metric in computer vision, for evaluating the performance
of object detection models. The metric is calculated by comparing predicted bounding
boxes to ground truth boxes. A bounding box is considered correct if the intersection over
union (IoU) between the predicted and ground truth boxes is above a certain threshold.
IoU is a metric that measures the degree of overlap between the predicted and ground truth
boxes. To calculate mAP, precision and recall are computed for various IoU thresholds, and
a precision–recall curve is plotted. The average precision (AP) for each class, is calculated
by finding the area under the precision–recall curve for that class. Finally, the mAP is
calculated as the average of the AP for all classes. The value of mAP ranges from 0 to 1,
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where higher values indicate better performance. An ideal object detection model would
have a mAP of 1, while a model that fails to detect any objects would have a mAP of 0.

mAP =
1
n

k=n

∑
k=1

APk

APk = the AP o f classk

n = the number o f classes

3. Results
3.1. Model Ensemble and Test-Time Augmentation

YOLO v5x and YOLO v5l achieved the highest independent mean average precision
(mAP) values. Table 1 documents the results of the individual YOLO network models, in
diagnosing carious lesions. Precision was the highest (0.853) when the YOLOv5l model
was used. YOLOv5l and YOLOv5m had the highest overall results of all metrics, thus an
ensemble of YOLOv5l and YOLOv5m was further augmented, producing the highest recall
(0.705) and mAP (0.717) values. Table 2 displays the results of the test-time augmentation
for the YOLO network models.

Table 1. Results obtained following model ensemble for YOLO network.

Model Classification Precision Recall Test Map@0.5

YOLO v5n

Visible change without cavitation 0.30 0.40 0.28
Visible change with microcavitation 0.76 0.54 0.65

Visible change with cavitation 0.72 0.88 0.87
Overall 0.59 0.60 0.60

YOLO v5s

Visible change without cavitation 0.60 0.54 0.41
Visible change with microcavitation 0.89 0.64 0.72

Visible change with cavitation 0.80 0.75 0.86
Overall 0.76 0.64 0.66

YOLO v5m

Visible change without cavitation 0.55 0.54 0.39
Visible change with microcavitation 0.99 0.58 0.69

Visible change with cavitation 0.85 0.75 0.86
Overall 0.80 0.62 0.65

YOLO v5l

Visible change without cavitation 0.55 0.54 0.56
Visible change with microcavitation 0.94 0.62 0.74

Visible change with cavitation 0.91 0.75 0.83
Overall 0.80 0.64 0.71

YOLO v5x

Visible change without cavitation 0.52 0.43 0.53
Visible change with microcavitation 0.82 0.58 0.69

Visible change with cavitation 0.95 0.88 0.92
Overall 0.76 0.63 0.71

Table 2. YOLO network results obtained with test-time augmentation.

Model Classification Precision Recall Test Map@0.5

YOLO v5n

Visible change without cavitation 0.38 0.46 0.47
Visible change with microcavitation 0.66 0.58 0.61

Visible change with cavitation 0.82 0.75 0.84
Overall 0.62 0.60 0.64
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Table 2. Cont.

Model Classification Precision Recall Test Map@0.5

YOLO v5s

Visible change without cavitation 0.60 0.54 0.49
Visible change with microcavitation 0.77 0.63 0.70

Visible change with cavitation 0.99 0.75 0.81
Overall 0.77 0.64 0.67

YOLO v5m

Visible change without cavitation 0.48 0.57 0.50
Visible change with microcavitation 0.87 0.63 0.72

Visible change with cavitation 0.83 0.88 0.91
Overall 0.73 0.69 0.71

YOLO v5l

Visible change without cavitation 0.63 0.52 0.48
Visible change with microcavitation 0.93 0.71 0.75

Visible change with cavitation 1.00 0.82 0.89
Overall 0.85 0.68 0.71

YOLO v5x

Visible change without cavitation 0.54 0.46 0.46
Visible change with microcavitation 0.83 0.61 0.67

Visible change with cavitation 0.99 0.75 0.92
Overall 0.79 0.61 0.68

YOLO model
ensemble

(v5m + v5l)

Visible change without cavitation 0.51 0.54 0.50
Visible change with microcavitation 0.94 0.71 0.74

Visible change with cavitation 0.87 0.87 0.91
Overall 0.77 0.71 0.72

3.2. Transfer Learning

Transfer learning models outperformed the base YOLO networks, in terms of precision
and recall, across all classifications. The class ‘visible changes without cavitation’, deemed
the most challenging to learn, saw an improvement in maximum precision from 0.53 with
base YOLO, to 0.76 on a transfer-learned YOLO model. When the VGG16 model was used,
the precision (0.89), recall (0.88), and F1 (0.88) scores were the highest. The application
of transfer learning on a model ensemble, yielded a diagnostic accuracy of 86.96% on
non-standardised free-hand images. The performance outcomes of the transfer learning
models on a test dataset, are shown in Table 3.

Table 3. Transfer learning model performance result.

Model Classification Precision Recall F1 Score Accuracy

VGG16

Visible change without cavitation 0.76 0.93 0.84
Visible change with microcavitation 0.91 0.83 0.87

Visible change with cavitation 0.99 0.88 0.93
Overall 0.89 0.88 0.88 86.96%

Resnet50

Visible change without cavitation 0.64 0.64 0.64
Visible change with microcavitation 0.88 0.92 0.90

Visible change with cavitation 0.71 0.62 0.67
Overall 0.75 0.73 0.74 78.26%

Resnet101

Visible change without cavitation 0.73 0.79 076
Visible change with microcavitation 0.88 0.92 0.90

Visible change with cavitation 0.99 0.75 0.86
Overall 0.87 0.82 0.84 84.78%

Alexnet

Visible change without cavitation 0.68 0.93 0.79
Visible change with microcavitation 0.95 0.83 0.89

Visible change with cavitation 0.83 0.62 0.71
Overall 0.82 0.80 0.80 82.60%
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Table 3. Cont.

Model Classification Precision Recall F1 Score Accuracy

Densenet121

Visible change without cavitation 0.75 0.86 0.80
Visible change with microcavitation 0.91 0.88 0.89

Visible change with cavitation 0.86 0.75 0.80
Overall 0.84 0.83 0.83 84.78%

4. Discussion

The current study aimed to develop an inexpensive automation system, to predict
dental cavitations instantaneously from non-standardised microphotographs, with reason-
able clinical accuracy. For the purpose, the two top YOLO object detection algorithms, with
the highest mean average precision (mAP), were used, following test-time augmentation
and transfer learning. Mean average precision (mAP) is a metric used to evaluate the
performance of computer vision object detection models, that measures the model’s ability
to correctly identify and locate objects within an image by considering both precision and
recall, while subsequently highlighting possible areas for improvement. The implementa-
tion of data augmentation was performed with careful consideration. Augmentation in
medical machine learning, ensures that existing data is transformed by incorporating real-
world variations [20,25,26]. Zones of carious decay in the current dataset, were digitally
augmented to different inclinations and blurs, to simulate images taken by someone with
a hand–brain coordination disorder or someone who may not be very well versed with
smart devices, such as those in rural outreaches of developing countries that have only
recently opened up to the technology [9,27]. The elaborate method of data augmentation
was complimented by test-time augmentation. Test-time augmentation (TTA) is a novel
approach to caries detection. In the current research, TTA served to provide the model with
a ‘reality check’, by applying various modifications to the images during testing, making
the model more robust and versatile, improving its ability to handle real-world variations.

Ironically, the core foundation of automated caries detection from real-world variations
was built on previously established research on mathematical approaches that generated
‘rule-based’ AI models [28]. These rule-driven models were always more efficient in
diagnosing caries than human practitioners [28,29]. Data collected from interviews, to train
these models, have a relatively predictable set of variations [30]. Automated classification
of carious involvement from radiographs or thermal imaging, by comparison, is an easier
task, as the core principle is to differentiate across pixels of radiolucency and opacities,
or changes in Fourier or wavelet-based features, on a relatively standardised imaging
modality [31,32]. This held true when radiographic data was collected from 100 clinics
and the AI model was able to successfully classify all the lesions [31]. In both cases, the
sensitivity and specificity were above 90%. If oral photographs were collected as data
from 100 clinics, there would likely be over a thousand variations from a lack of image
standardisation alone [15].

Radiographic image processing through older methods, such as support vector ma-
chine (SVM), back-propagation neural networks (BPNN), and fast convolutional neural net-
works (FCNN), have also been documented in the past, with approximately 3% variations
in classification accuracy across the models, yet were still 10% more accurate and consistent
than dental practitioners in classifying carious lesions [33,34]. The use of ICDAS [35] for
visual classification of carious lesions from photographs, generates mixed opinions, as
experts argue that caries classifications should be based on the depth of the lesion, and a
2-dimensional image may be inadequate in determining the actual extent, without sup-
porting images of histologically cross-sectioned teeth [18]. Yet, the use of such invasive
methods in vivo are rightfully contraindicated in patient care, and the use of ICDAS caries
classification models remains very popular in carious image recognition in SVM, BPNN,
and FCNN, with studies of 500+ intraoral images yielding overall accuracies of 80 to 90%
without histological cross-sectioning [18,36]. The current study also applied the ICDAS



Int. J. Environ. Res. Public Health 2023, 20, 5351 10 of 13

classification, but on a comparatively smaller dataset of lesions, where the ensemble and
VGG16 transfer-learned model performed as efficiently and more reliably than previously
documented classification models such as SVM, BPNN, FCNN.

Many dental researchers have transitioned to YOLO-based object detection, to auto-
mate carious lesion detection. Sonavane et al. found YOLO to successfully classify carious
lesions at 87% accuracy, when the threshold for positivity was leniently set at a cutoff
value of 0.3 [37]. The current study stressed the models further, by setting a cutoff value
at 0.5, ensuring higher scrutiny. Diagnosing visual changes that have not cavitated, is a
clinical challenge in minimally invasive dentistry and atraumatic restorative treatment
(ART) procedures [38]. Thanh et al. implemented a mobile phone-based diagnostic tool for
self-reporting of carious lesions. Similar to the current study, the authors classified smooth
surface caries, as they were deemed the most challenging to diagnose, and implemented
different deep learning models [39]. Even for the top performing models, YOLO v3 and
FRCNN, that produced overall accuracies of 71.4 and 87.4%, respectively, the diagnostic
sensitivity in detecting non-cavitated lesions was only 36.9% and 26%, respectively [6]. Ap-
plication of an ensemble YOLO model and transfer learning in the current study, was able
to improve the outcomes drastically, to over 85%. In contrast to existing work performed
on caries detection [13], the current study focuses on images taken from handheld devices,
with the justification that underdeveloped regions of emerging economies may not have
access to professional imaging equipment. The current study also implemented a blend
of object detection classifiers, a model ensemble, test-time augmentation, and multiple
transfer learning classifiers, and statistical evaluation through mean average precision, all
of which have not been performed in any previous reports documenting AI application in
caries diagnostics [13].

Limitations

Models of carious lesion detection rely on heavy computational hardware. Recent
documentation of 8554 carious images’ diagnostics, using transformer mechanisms on a
RDFNet architecture during feature extraction, had to be trained on very high-end ma-
chines, running on an NVIDIA GeForce RTX 3090 graphics card, with 24 GB of RAM, using
the Pytorch deep-learning framework [40]. The current study was directed by previous re-
ports of caries diagnostics, that recommended 103 to 585 images to be appropriate [18,36,41].
However, a formal power analysis was not performed in the current study, which could
serve as a limitation. The current study was also performed using cloud computing (Co-
laboratory; Google Inc., Mountain View, CA, USA), which can serve as both an advantage
and limitation. The advantage is that the cost of hardware procurement is avoided, making
the model feasible for development using data obtained in less resource-rich communities.
Such an installation, however, is predominantly dictated by the network’s bandwidth,
through which they are transmitted, and fluctuations in network strength can significantly
delay inference time, thereby introducing noticeable latency in real-time diagnostics. A cost
sensitive analysis [42] could not be performed on the model for the very same reasons. Due
to the absence of discernible differences in enamel and dentin caries within the available
dataset, an estimation of caries depth could not be performed.

Future research should include working on greater variations in the carious dataset,
cross-sectional imaging for caries depth analyses, the application of multi-label classifi-
cations [43], processing the data through Explainable AI [44], and the installation of the
trained models into smart glasses, to pilot a single centre patient population.

5. Conclusions

Within the limitations of the current in vitro simulation, it can be concluded that:

1. An ensemble model, created using various YOLO computer vision models, and
transferred to VGG16 methods of deep learning, can generate accurate predictions in
diagnosing smooth surface caries from free-hand photography.
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2. Ensembles of computer vision algorithms, that undergo augmentation and transfer
learning, can lead to the formation of inexpensive digital diagnostic markers, that
practitioners can use to screen and monitor progression of carious lesions.

Author Contributions: A.T., M.I.F., M.S.I., N.S.R. and T.C.: conceptualisation, methodology, soft-
ware, formal analysis, manuscript writing; S.A.: conceptualisation, methodology, software, formal
analysis, reviewing, supervision; T.H.F.: conceptualisation, validation, resources, writing, reviewing,
supervision; N.M. and J.D.: validation, supervision, project administration. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: The current simulation study was deemed exempt from
ethical review according to the Australian Code for the Responsible Conduct of Research 2018
National Statement and The University of Adelaide Human Research Ethics Committee guidelines.

Informed Consent Statement: Not applicable.

Data Availability Statement: The repository https://github.com/Tareq361/Dental-caries-detection-
using-a-Hybrid-Ensembled-YOLO-and-Transfer-Learning-Model (accessed on 8 February 2023)
contains the codes and additional relevant data related to the current study.

Acknowledgments: The authors thank Nafij Bin Jamayet, Farah Rashid, Aparna Barman, Sarwer
Biplob, and Nishat Sharmeen for assistance in the data capture and labelling procedures.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Listl, S.; Galloway, J.; Mossey, P.A.; Marcenes, W. Global economic impact of dental diseases. J. Dent. Res. 2015, 94, 1355–1361.

[CrossRef] [PubMed]
2. Maru, A.M.; Narendran, S. Epidemiology of dental caries among adults in a rural area in India. J. Contemp. Dent. Pract. 2012, 13,

382–388. [CrossRef] [PubMed]
3. Shankar, V.; Narang, U. Emerging market innovations: Unique and differential drivers, practitioner implications, and research

agenda. J. Acad. Mark. Sci. 2020, 48, 1030–1052. [CrossRef]
4. Al-Jallad, N.; Ly-Mapes, O.; Hao, P.; Ruan, J.; Ramesh, A.; Luo, J.; Wu, T.T.; Dye, T.; Rashwan, N.; Ren, J.; et al. Artificial

intelligence-powered smartphone application, AICaries, improves at-home dental caries screening in children: Moderated and
unmoderated usability test. PLoS Digit. Health 2022, 1, e0000046. [CrossRef]

5. Farook, T.H.; Bin Jamayet, N.; Asif, J.A.; Din, A.S.; Mahyuddin, M.N.; Alam, M.K. Development and virtual validation of a novel
digital workflow to rehabilitate palatal defects by using smartphone-integrated stereophotogrammetry (SPINS). Sci. Rep. 2021,
11, 8469. [CrossRef]

6. Thanh, M.T.G.; Van Toan, N.; Ngoc, V.T.N.; Tra, N.T.; Giap, C.N.; Nguyen, D.M. Deep learning application in dental caries
detection using intraoral photos taken by smartphones. Appl. Sci. 2022, 12, 5504. [CrossRef]

7. Farook, T.H.; Rashid, F.; Bin Jamayet, N.; Abdullah, J.Y.; Dudley, J.; Alam, M.K. A virtual analysis of the precision and accuracy of
3-dimensional ear casts generated from smartphone camera images. J. Prosthet. Dent. 2021, 128, 830–836. [CrossRef]

8. Hackam, D.G.; Redelmeier, D.A. Translation of research evidence from animals to humans. JAMA 2006, 296, 1727–1732. [CrossRef]
9. Heimerl, K.; Menon, A.; Hasan, S.; Ali, K.; Brewer, E.; Parikh, T. Analysis of smartphone adoption and usage in a rural community

cellular network. In Proceedings of the Seventh International Conference on Information and Communication Technologies and
Development, Singapore, 15–18 May 2015; pp. 1–4.

10. Rashid, F.; Bin Jamayet, N.; Farook, T.H.; Al-Rawas, M.; Barman, A.; Johari, Y.; Noorani, T.Y.; Abdullah, J.Y.; Eusufzai, S.Z.; Alam,
M.K. Color variations during digital imaging of facial prostheses subjected to unfiltered ambient light and image calibration
techniques within dental clinics: An in vitro analysis. PLoS ONE 2022, 17, e0273029. [CrossRef]

11. Li, S.; Wang, X. YOLOv5-based Defect Detection Model for Hot Rolled Strip Steel. J. Phys. Conf. Ser. 2022, 2171, 012040. [CrossRef]
12. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
13. Khanagar, S.B.; Alfouzan, K.; Awawdeh, M.; Alkadi, L.; Albalawi, F.; Alfadley, A. Application and Performance of Artificial

Intelligence Technology in Detection, Diagnosis and Prediction of Dental Caries (DC)—A Systematic Review. Diagnostics 2022,
12, 1083. [CrossRef] [PubMed]

14. Farook, T.H.; Dudley, J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics. A systematic
review. J. Oral Rehabil. 2023; Early View. [CrossRef]

15. Farook, T.H.; Rashid, F.; Alam, M.K.; Dudley, J. Variables influencing the device-dependent approaches in digitally analysing jaw
movement—A systematic review. Clin. Oral Investig. 2022, 27, 489–504. [CrossRef] [PubMed]

https://github.com/Tareq361/Dental-caries-detection-using-a-Hybrid-Ensembled-YOLO-and-Transfer-Learning-Model
https://github.com/Tareq361/Dental-caries-detection-using-a-Hybrid-Ensembled-YOLO-and-Transfer-Learning-Model
http://doi.org/10.1177/0022034515602879
http://www.ncbi.nlm.nih.gov/pubmed/26318590
http://doi.org/10.5005/jp-journals-10024-1155
http://www.ncbi.nlm.nih.gov/pubmed/22918014
http://doi.org/10.1007/s11747-019-00685-3
http://doi.org/10.1371/journal.pdig.0000046
http://doi.org/10.1038/s41598-021-87240-9
http://doi.org/10.3390/app12115504
http://doi.org/10.1016/j.prosdent.2020.12.041
http://doi.org/10.1001/jama.296.14.1731
http://doi.org/10.1371/journal.pone.0273029
http://doi.org/10.1088/1742-6596/2171/1/012040
http://doi.org/10.3390/diagnostics12051083
http://www.ncbi.nlm.nih.gov/pubmed/35626239
http://doi.org/10.1111/joor.13440
http://doi.org/10.1007/s00784-022-04835-w
http://www.ncbi.nlm.nih.gov/pubmed/36577849


Int. J. Environ. Res. Public Health 2023, 20, 5351 12 of 13

16. Norgeot, B.; Quer, G.; Beaulieu-Jones, B.K.; Torkamani, A.; Dias, R.; Gianfrancesco, M.; Arnaout, R.; Kohane, I.S.; Saria, S.;
Topol, E.; et al. Minimum information about clinical artificial intelligence modeling: The MI-CLAIM checklist. Nat. Med. 2020, 26,
1320–1324. [CrossRef]

17. Duong, D.L.; Kabir, M.H.; Kuo, R.F. Automated caries detection with smartphone color photography using machine learning.
Health Inform. J. 2021, 27, 14604582211007530. [CrossRef] [PubMed]

18. Duong, D.; Nguyen, Q.; Tong, M.; Vu, M.; Lim, J.; Kuo, R. Proof-of-Concept Study on an Automatic Computational System in
Detecting and Classifying Occlusal Caries Lesions from Smartphone Color Images of Unrestored Extracted Teeth. Diagnostics
2021, 11, 1136. [CrossRef]

19. Casado-García, Á.; Domínguez, C.; García-Domínguez, M.; Heras, J.; Inés, A.; Mata, E.; Pascual, V. CLoDSA: A tool for
augmentation in classification, localization, detection, semantic segmentation and instance segmentation tasks. BMC Bioinform.
2019, 20, 1–14. [CrossRef]

20. Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A review of medical image data augmentation
techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563. [CrossRef]

21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

22. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
24. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
25. van Dyk, D.A.; Meng, X.-L. The art of data augmentation. J. Comput. Graph. Stat. 2001, 10, 1–50. [CrossRef]
26. Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings

of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; IEEE: Toulouse, France,
2018; pp. 117–122.

27. Micheletti, N.; Chandler, J.H.; Lane, S.N. Investigating the geomorphological potential of freely available and accessible structure-
from-motion photogrammetry using a smartphone. Earth Surf. Process. Landf. 2015, 40, 473–486. [CrossRef]

28. Yu, Y.; Li, Y.; Li, Y.; Wang, J.M.; Lin, D.; Ye, W. Tooth decay diagnosis using back propagation neural network. In Proceedings of
the 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 13–16 August 2006; IEEE: Toulouse,
France, 2006; pp. 3956–3959.

29. Cantu, A.G.; Gehrung, S.; Krois, J.; Chaurasia, A.; Rossi, J.G.; Gaudin, R.; Elhennawy, K.; Schwendicke, F. Detecting caries lesions
of different radiographic extension on bitewings using deep learning. J. Dent. 2020, 100, 103425. [CrossRef]

30. Hung, M.; Voss, M.W.; Rosales, M.N.; Li, W.; Su, W.; Xu, J.; Bounsanga, J.; Ruiz-Negron, B.; Lauren, E.; Licari, F.W. Application of
machine learning for diagnostic prediction of root caries. Gerodontology 2019, 36, 395–404. [CrossRef]

31. Srivastava, M.M.; Kumar, P.; Pradhan, L.; Varadarajan, S. Detection of tooth caries in bitewing radiographs using deep learning.
arXiv 2017, arXiv:1711.07312.

32. Ghaedi, L.; Gottlieb, R.; Sarrett, D.C.; Ismail, A.; Belle, A.; Najarian, K.; Hargraves, R.H. An automated dental caries detection and
scoring system for optical images of tooth occlusal surface. In Proceedings of the 2014 36th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Toulouse, France, 2014;
pp. 1925–1928.

33. Farook, T.H.; Bin Jamayet, N.; Abdullah, J.Y.; Alam, M.K. Machine learning and intelligent diagnostics in dental and orofacial
pain management: A systematic review. Pain Res. Manag. 2021, 2021, 1–9. [CrossRef] [PubMed]

34. Li, W.; Kuang, W.; Li, Y.; Li, Y.-J.; Ye, W.-P. Clinical X-ray image based tooth decay diagnosis using SVM. In Proceedings of the
2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007; IEEE: Toulouse,
France, 2007; pp. 1616–1619.

35. Gugnani, N.; Pandit, I.K.; Srivastava, N.; Gupta, M.; Sharma, M. International caries detection and assessment system (ICDAS): A
new concept. Int. J. Clin. Pediatr. Dent. 2011, 4, 93. [CrossRef]

36. Berdouses, E.D.; Koutsouri, G.D.; Tripoliti, E.E.; Matsopoulos, G.K.; Oulis, C.J.; Fotiadis, D.I. A computer-aided automated
methodology for the detection and classification of occlusal caries from photographic color images. Comput. Biol. Med. 2015, 62,
119–135. [CrossRef]

37. Sonavane, A.; Kohar, R. Dental cavity detection using yolo. In Data Analytics and Management: ICDAM 2021; Springer:
Berlin/Heidelberg, Germany, 2022; Volume 2, pp. 141–152.

38. Peters, M.C.; McLean, M.E. Minimally Invasive Operative Care: II. Contemporary Techniques and Materials: An Overview.
J. Adhes. Dent. 2001, 3, 17–31. [PubMed]

39. Kohara, E.K.; Abdala, C.G.; Novaes, T.F.; Braga, M.M.; Haddad, A.E.; Mendes, F.M. Is it feasible to use smartphone images to
perform telediagnosis of different stages of occlusal caries lesions? PLoS ONE 2018, 13, e0202116. [CrossRef]

40. Jiang, H.; Zhang, P.; Che, C.; Jin, B. Rdfnet: A fast caries detection method incorporating transformer mechanism. Comput. Math.
Methods Med. 2021, 2021, 1–9. [CrossRef]

41. Kositbowornchai, S.; Siriteptawee, S.; Plermkamon, S.; Bureerat, S.; Chetchotsak, D. An artificial neural network for detection of
simulated dental caries. Int. J. Comput. Assist. Radiol. Surg. 2006, 1, 91–96. [CrossRef]

http://doi.org/10.1038/s41591-020-1041-y
http://doi.org/10.1177/14604582211007530
http://www.ncbi.nlm.nih.gov/pubmed/33863251
http://doi.org/10.3390/diagnostics11071136
http://doi.org/10.1186/s12859-019-2931-1
http://doi.org/10.1111/1754-9485.13261
http://doi.org/10.1145/3065386
http://doi.org/10.1198/10618600152418584
http://doi.org/10.1002/esp.3648
http://doi.org/10.1016/j.jdent.2020.103425
http://doi.org/10.1111/ger.12432
http://doi.org/10.1155/2021/6659133
http://www.ncbi.nlm.nih.gov/pubmed/33986900
http://doi.org/10.5005/jp-journals-10005-1089
http://doi.org/10.1016/j.compbiomed.2015.04.016
http://www.ncbi.nlm.nih.gov/pubmed/11317381
http://doi.org/10.1371/journal.pone.0202116
http://doi.org/10.1155/2021/9773917
http://doi.org/10.1007/s11548-006-0040-x


Int. J. Environ. Res. Public Health 2023, 20, 5351 13 of 13

42. Ling, C.X.; Sheng, V.S. Cost-sensitive learning and the class imbalance problem. Encycl. Mach. Learn. 2008, 2011, 231–235.
43. Tawiah, C.A.; Sheng, V.S. A study on multi-label classification. In Industrial Conference on Data Mining; Springer: Berlin/Heidelberg,

Germany, 2013; pp. 137–150.
44. Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.-Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019,

4, eaay7120. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1126/scirobotics.aay7120
http://www.ncbi.nlm.nih.gov/pubmed/33137719

	Introduction 
	Material and Methods 
	Data Input and Pre-Processing 
	Data Augmentation 
	Object Detection 
	Ensemble Modelling 
	Test-Time Augmentation 
	Transfer Learning 
	The Experimental Setup 
	Evaluation Metrics 

	Results 
	Model Ensemble and Test-Time Augmentation 
	Transfer Learning 

	Discussion 
	Conclusions 
	References

