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Abstract: An emerging area of research extends work on couple functioning and physical health to
gut health, a critical marker of general health and known to diminish with age. As a foray into this
area, we conducted a pilot study to (1) determine the feasibility of remote data collection, including
a fecal sample, from older adult couples, (2) examine within-couple concordance in gut microbiota
composition, and (3) examine associations between relationship functioning and gut microbiota
composition. Couples (N = 30) were recruited from the community. The participants’ demographic
characteristics were as follows: M (SD) age = 66.6 (4.8), 53% female, 92% White, and 2% Hispanic.
Two of the couples were same-sex. All 60 participants completed self-report measures and supplied
a fecal sample for microbiome analysis. Microbial DNA was extracted from the samples, and the
16S rRNA gene V4 region was amplified and sequenced. The results indicated that individuals
shared more similar gut microbial composition with their partners than with others in the sample,
p < 0.0001. In addition, individuals with better relationship quality (greater relationship satisfaction
and intimacy and less avoidant communication) had greater microbial diversity, p < 0.05, a sign of
healthier gut microbiota. Further research with a larger and more diverse sample is warranted to
elucidate mechanisms.

Keywords: couples; relationship satisfaction; intimacy; gut microbiome; gut microbial diversity

1. Introduction

An extensive literature on health and social relationships suggests that social ties are
salutary [1]. Social isolation, by contrast, is a risk factor for poor physical health, ranging
from greater susceptibility to the common cold [2] to greater odds of mortality [3,4]. Effect
sizes from large-scale prospective studies linking social isolation to morbidity and mortality
are comparable, in fact, to those for well-established risk factors such as smoking [4].

We focus here on a specific type of social tie, intimate cohabiting relationships. Mar-
riage in particular has been found to be health-protective across a large number of samples,
clinical endpoints, and biomarkers [5]. For example, in the cancer arena, married versus
unmarried patients are less likely to present with metastatic disease and to die of the
disease [6]. Being married per se, however, is not necessarily protective. The health benefits
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of marriage are stronger for males than females [6,7]. Relationship quality also matters [8].
Greater marital satisfaction has been associated with better self-reported health, better sleep,
fewer physical symptoms, fewer physician visits, less disability, and lower mortality [7,9].
It has also been associated with more adaptive health behaviors such as better compliance
with medical regimens [7].

A related literature provides strong support for the notion that members of a couple
are similar or concordant with regard to health status and health behaviors. For example,
within-couple concordance has been observed for weight [10], BMI [10,11], waist/hip
ratio [10], and blood pressure [10]. It has also been observed for perceived health [12],
depressive symptoms [12,13], and health behaviors ranging from smoking [10,11] to dietary
intake [11] and exercise frequency [11]. One explanation for these associations is assortative
mating, the tendency to select a mate with like characteristics including sociodemographic
factors, attitudes, and behavioral patterns [14,15]. Couples also share spaces/environments
and one partner (often the female in different-sex relationships) is likely to exert influence
on the other, termed social control [16]. For example, one partner might attempt to regulate
the other’s dietary intake.

Within-couple concordance extends to a biomarker receiving increasing attention
in medicine, that of the gut microbiome [17]. Gut microbiota consist of thousands of
microorganisms including bacteria, archaea, and fungi [18], and play a key role in digestion
and immune functioning [17]. The composition of gut microbiota matters. Diversity is
adaptive and lack of diversity, maladaptive. Lower bacterial diversity has been linked
to risks for obesity, dyslipidemia, insulin resistance, inflammation, and gastrointestinal
disorders such as irritable bowel syndrome and inflammatory bowel disease [17,19,20].
Gut microbial composition is influenced by social and environmental factors. It is more
similar among cohabitants than non-cohabitants [21]. Evidence to date primarily comes
from research with animals. Studies with non-human primates reveal similar gut microbial
communities among those in closer proximity and with more contact time [22]. In addition,
within social groups, close grooming partners have more similar core microbiota than
those who rarely groom one other [23–25]. Research with humans similarly indicates
that cohabiting family members share microbiota with one another [26,27], especially
couples [26]. As with other health states and health behaviors, concordance may be
explained by similar environments [28] and diets, but unlike blood pressure or physical
activity, concordance of gut microbiota may be explained by microbial sharing as a function
of proximity [28], common surfaces [28], and close contact [25].

Dill-McFarland and colleagues examined associations between social relationships
and gut microbiota [29] using data from the Wisconsin Longitudinal Study, a prospective
cohort of Wisconsin high school graduates (N = 10,317). Participants were first assessed in
1957 and repeatedly thereafter. Their significant others were also assessed, namely siblings
(in 1977, 1994, 2005, and 2011) and spouses (in 2004 or 2006). The Dill-McFarland et al.
sample comprised 408 individuals: 179 graduates, 134 siblings of graduates, 63 spouses of
graduates, and 32 spouses of siblings. Major findings related to the present study were as
follows: (1) The gut microbiota of cohabiting spouse/partnered pairs were more similar in
composition as compared to those of sibling pairs and unrelated participants. (2) Among
spouses, the length of cohabitation was positively correlated with similarity. (3) The
gut microbial composition of cohabiting spouses/partners was more diverse and richer
than that of persons living alone. (4) Within the cohabiting married group, gut microbial
composition was especially diverse among those reporting to be in closer relationships,
with closeness assessed by a single item: “How close are you and your current spouse?” The
gut microbial diversity of participants reporting to be in very close relationships was greater
than that of persons living alone, but that of participants in somewhat close relationships
was not. As suggested by the authors, proximity alone may not explain the greater diversity
among those in closer relationships [29]. Relationship intimacy likely plays a role.

While innovative, informative, and leveraging an existing cohort, the Dill-McFarland
et al. study [29] used a single (unvalidated) item to assess relationship closeness. The
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investigators also did not assess other dimensions of relationship functioning such as
relationship satisfaction, intimacy, or how couples communicate, which have been found
to predict psychological and relational well-being [30] and even survival [9]. In addition,
the study was based on a non-diverse sample from the Midwest including no same-sex
couples, and relationship partners were recruited via available cohort participants and their
siblings, rather than a priori sampling and recruiting of intact couples. Moreover, to our
understanding, subgroups of participants were assessed at different points in time between
1957 and 2015.

We sought to advance this emerging line of research in multiple ways. First, we
pilot-tested the feasibility of collecting fecal samples from older adult partners using remote
methods (necessitated in part by study timing, during the early phases of the SARS-CoV-2
pandemic). Second, we examined the concordance of microbial diversity and composition
in a national sample of older adult spouses. Third, we examined associations between
gold standard measures of relationship functioning and gut microbial composition. To
our knowledge, no study has examined these associations but there is a rationale for
doing so, especially among older adult couples. As noted above, marital satisfaction
has been linked to better health. In contrast, marital conflict has been associated with
cardiovascular, immune, and endocrine dysregulation [7], and perceived spousal criticism
is a risk factor for mortality [31]. The impacts of marital discord, moreover, are greater for
older versus younger couples [32]. Older adults are more reactive to disagreements with
their partner and may have more limited social contacts, thus placing greater emotional
weight on their spousal relationship [32]. Interactions characterized by avoidance can
also be maladaptive. Withholding or lack of disclosure has been associated with lower
relationship satisfaction [33] and adverse medical outcomes in prospective studies [34], and
older adults may be more likely to avoid conflict [32]. Lastly, the aging population is at risk
for age-related decrements in gut microbial composition associated with inflammation and
immune decline [32,35].

2. Materials and Methods

The study was cross-sectional in design. All procedures were approved by the Institu-
tional Review Board of Arizona State University (study #00012144), and all methods were
performed in accordance with the ethical principles for medical research involving human
participants outlined in the Declaration of Helsinki.

Restrictions related to the SARS-CoV-2 pandemic necessitated shifting from originally
planned in-person participant recruitment and fecal sample collection to remote processes.
Participants were recruited through social media and by approaching individuals in a larger
study of older adults who had agreed to be contacted for future research. The inclusion crite-
ria were age 60+, marriage or cohabiting partnership, and English speaking/understanding.
The exclusion criteria were a gastrointestinal disorder, receiving enteral nutrition (i.e., “tube
feeding”), use of antibiotics in the past month, cancer treatment in the past 6 months, a
positive COVID-19 diagnosis in the past two months, and currently residing outside the US.

The consent process was initiated by phone, with a research coordinator describing
the study’s purpose, procedures, risks, and benefits. Individuals expressing willingness
to participate were then sent a unique email link to access the full consent form through
Research Electronic Data Capture (REDCap), with an option to sign digitally and download
a pdf version of the signed form for their records. Those completing this signing process
proceeded automatically to the one-time survey, also administered via REDCap. The
self-report measures are described in turn below.

2.1. Self-Report Measures

Relationship quality. To assess relationship quality, we administered the 10-item rela-
tionship satisfaction subscale of the Dyadic Adjustment Scale [36]. Example items include,
“How often do you think that things between you and your partner are going well?” and
“How often do you discuss or have you considered divorce, separation, or termination of
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your relationship?” (reverse-scored). Subscale scores can range from 0 to 50 with higher
values indicative of greater satisfaction. Cronbach’s alpha for this sample (N = 60) was 0.94,
indicating high internal consistency. To assess intimacy, we administered the 17-item Miller
Social Intimacy Scale [37]. Six items assess the frequency of relevant behaviors, e.g., “How
often do you show your partner affection?”, and 11 items assess intensity, e.g., “How close
do you feel to your partner most of the time?”. Mean scores range from 1 to 10 with higher
values indicative of greater intimacy. Cronbach’s alpha for this sample was 0.88, indicating
high internal consistency.

Couple communication. We assessed open sharing of thoughts and feelings, and holding
back from such sharing, with a modified version of the Emotional Disclosure Scale [38].
This measure asks respondents to rate the extent to which they talked to their spouse about
7 different concerns: concerns about their physical health; concerns about their emotional
well-being; their own negative feelings, such as fear, worry, or sadness; concerns about
their relationship with their spouse; concerns about their relationship with others (family
members, friends); job-related concerns; and financial concerns. We added an 8th item,
concerns about the coronavirus or COVID-19. A parallel set of items asks respondents
to rate the extent to which they held back from talking to their spouse about the same
concerns; these constitute the holding back subscale. All ratings are made on a 1–5 (not
at all to a lot) scale and averaged. Higher values indicate greater levels of the construct.
Cronbach’s alpha values were 0.85 and 0.88 for disclosure and holding back, respectively.

We also administered the Communication Patterns Questionnaire [39] which prompts
respondents to consider how they and their partner behave (a) when a problem in their
relationship arises, (b) during discussion of a relationship problem, and (c) after discussion
of a relationship problem. Nine items such as “both my partner and I try to discuss the
problem,” “both my partner and I suggest possible solutions and compromises,” and
“both my partner and I feel understood by the other” are averaged to assess constructive
communication. Ratings are made on a 1–9 (very unlikely to very likely) scale. Cronbach’s
alpha was 0.83.

Sexual satisfaction. A single item was used to assess sexual satisfaction: Please rate the
extent to which sexual activity has been satisfying for you in the past month, from 0 to 10,
with 0 being not at all satisfied and 10 extremely satisfied.

Dietary intake. Dietary intake information was gathered using the NCI Dietary Screener
Questionnaire (National Health and Nutrition Examination Survey 2009-10) [40] and scored
following the guidelines described at https://epi.grants.cancer.gov/nhanes/dietscreen/
scoring/current/ (accessed on 24 July 2021). We focused on the daily consumption of fiber,
calcium, and added sugars because these are known to affect the gut microbiota [41–45].

Medications and chronic conditions. Participants were asked to indicate whether they
currently take certain medications that can affect gut microbiota, including the following
acid-reducing medications: Prilosec, Prevacid, Protonix, Aciphex, Nexium, Dexilant, Zan-
tac, Pepcid, or Tagamet. They were also asked to indicate whether they currently take a
prebiotic such as fructo- and galacto-oligosaccharides, or a probiotic such as Lactobacillus,
Bifidobacterium, Align, or Culturelle. The prebiotic and probiotic use was grouped as
“supplement use” in microbiota analyses, with “0” representing no use at all and “1” use of
either or both.

We used the Charlson Comorbidity Index [46] to assess chronic disease conditions.
Participants were asked, “As far as you know, do you have any of the following health
conditions at the present time?” The list included 10 conditions: asthma, emphysema, or
chronic bronchitis; arthritis or rheumatism; cancer (diagnosed in the past 3 years); diabetes;
digestive problems such as ulcer, colitis, or gallbladder disease; heart trouble such as angina,
congestive heart failure, or coronary artery disease; HIV illness or AIDs; kidney disease;
liver problems such as cirrhosis; and stroke. We added an 11th item to assess the presence
of COVID-19. Affirmative responses were coded “1” and negative responses “0”. For the
microbiota analysis, the disease conditions were further grouped to “0” (no disease) and
“1” (at least one disease).

https://epi.grants.cancer.gov/nhanes/dietscreen/scoring/current/
https://epi.grants.cancer.gov/nhanes/dietscreen/scoring/current/
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2.2. Fecal Sample Collection, Sequencing, and Microbiota Analysis

Fecal samples were collected using the OMR-200 collection kit (DNAgenotek, Inc.,
Kanata, ON, Canada). This kit was chosen for its ease of use, simplicity, and because
samples can be stored at room temperature for up to 60 days, thus negating the need
for special storage or shipping. Participants received the kit via United Parcel Service
(UPS), including step-by-step collection instructions, a study-provided specimen bag,
and a study-provided return envelope. Each participant was asked to provide one fecal
sample. Participants were directed to their nearest UPS for return (or provided UPS
pick-up if requested); the samples were shipped to Arizona State University and stored
in a −80 ◦C freezer. Prior to DNA extraction, the samples (from the −80 ◦C freezer)
were thawed at room temperature and vortexed vigorously for 10 s. DNA was then
extracted from 250 µL of each sample using the MagAttract® PowerSoil Pro® DNA kit
(QIAGEN). The V4 region of the 16S rRNA gene was amplified with the primers 515F
(5′-GTGCCAGCMGCCGCGGTAA) and 806R (5′-GGACTACHVGGGTWTCTAAT) [47],
and sequenced using the Illumina MiSeq platform with a paired-end sequencing of 250 base
pair lengths [48].

QIIME 2 (version 2021.2) [49] was used for sequence quality control, feature table
construction, and phylogenetic tree generation. The DADA2 plugin [50] was used to filter
and merge the forward and reverse reads. Sequences were then mapped to the Silva
138 SSURef NR99 database for microbiota composition analysis. A classifier was trained
with the forward and reverse primers used in this study. The relative abundances of
microorganisms in each sample were exported at the phylum and genus levels. The relative
abundances of individual taxa relative to the abundances of total taxa were visualized
using the R ggplot2 package (version 3.3.6) [51] and taxa with low relative abundances
(<5%) were grouped as “others”.

The feature table, taxonomy, and rooted tree files from QIIME2 and metadata were
imported into R as a phyloseq object using the qiime2R package (version 0.99.6) [52], and
then rarified using the phyloseq package (version 1.40.0) [53] for alpha and beta diversity
analyses. The rarefaction depth was 27,105, which was the size of the smallest library of all
samples. Alpha diversity measures the number of unique taxa (richness) and how equally
abundant the taxa are (evenness) in an individual sample [54]. Beta diversity measures
dissimilarity in microbial composition between samples [54]. The alpha diversity metrics,
Chao1, Shannon’s diversity, and Faith’s phylogenetic diversity (Faith’s PD), were calculated
using the R packages microbiome (version 1.18.0) [55] and picante (version 1.8.2) [56]. The
beta diversity matrices, Jaccard dissimilarity and Bray–Curtis dissimilarity, were calculated
using the R rbiom package (version 1.0.3) [57].

2.3. Analytic Plan

All statistical analyses were conducted in R (version 4.2.0) [58] with the exception of
descriptive analyses to characterize the sample with regard to self-report variables; these
were conducted using IBM’s Statistical Package for the Social Sciences (version 28). p-values
of less than 0.05 were considered statistically significant.

Pearson product–moment correlations for associations between alpha diversity metrics
and psychosocial measures were computed using the cor function in R. Univariate outliers
in alpha diversity were identified with the boxplot.stats function in R with default settings.
To compare “within couples” and “non-couples” in beta diversity, the permuted Brunner–
Munzel test was conducted using the brunnermunzel package (version 2.0) [59] in R.
This distribution-free (nonparametric) analysis of differences between groups is robust to
imbalances in group sizes and group variances [60]. To examine associations between beta
diversity indices and the psychosocial measures, permutational analyses of variance were
conducted with the “adonis2” function (permutations = 9999, other settings as default) in
the vegan R package (version 2.6–2) [61]. The UPGMA (unweighted pair group method
with arithmetic mean) hierarchical cluster analysis was performed using R’s hclust function.
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Variable selection was performed to identify psychosocial characteristics associated
with gut microbiota composition, using a forward stepwise method. First, the characteris-
tics measured in this study were pre-processed for this analysis. Ethnicity and race were
removed from this step because over 90% of the participants were non-Hispanic White.
Gender, income, education, proton pump inhibitor use, supplement use, and chronic dis-
ease were coded as categorical variables, and other characteristics as continuous variables,
which were scaled to zero mean and unit variance using the decostand function of the
vegan package. Multicollinearity was checked using the pairs.panels function of the psych
package (version 2.2.5) [62], and all Pearson r values were less than 0.7, indicating low
collinearity among variables. Next, the Bray–Curtis distance-based redundancy analysis
(db-RDA) was conducted using the vegan package’s capscale function, with the variables
of interest set as constraints (Table S1). Variation inflation factors calculated using the
vegan’s vif.cca function were all less than 5. Variable selection was then performed for the
db-RDA ordination using the vegan “ordiR2step” function (R2permutations = 9999, other
settings as default). As three non-psychosocial variables (gender, income, supplement use)
were selected, which contributed significantly to the microbial composition variation, a
second db-RDA was conducted by setting these non-psychosocial variables as “condition”
to remove their impact, and psychosocial variables as constraints. A second “ordiR2step”
selection was then performed to identify the more predictive psychosocial variables.

To further investigate microorganisms associated with the psychosocial variables
identified in the forward selection, we estimated a linear regression using the glm function
in the basic stats package. In the rarefied data, core microbiota (relative abundance > 0.1%,
prevalence > 50%) in all participants were first identified at the amplicon sequence variant
(ASV) level using the R microbiome package (version 1.14.0) [55]. The count of each ASV
was modeled with fixed effects of holding back, gender, income, and supplement use
(identified in the first forward variable selection step), with the family set as quasipoisson
(link = “log”) to allow overdispersion. We did not incorporate the effect of interactions
among these variables due to the sample size. This model (i.e., full model) was then
compared with a null model without the effect of holding back using R’s anova function
(test = “F”), with p-values adjusted for multiple comparisons using the Benjamini and
Hochberg (BH) method with the R stats package. The model equations are shown below.

Full model : ASV count = holding back + gender + income + supplement use

Null model : ASV count = 1 + gender + income + supplement use

3. Results
3.1. Remote Recruitment and Assessment of Older Adult Couples, including Collection of Fecal
Samples, Is Feasible

Participants were recruited through multiple sources as noted previously. Of the
41 persons responding with interest across recruitment sources, 32 were contacted for
screening. A total of 30 of 31 eligible couples consented. Enrollment and assessment were
completed within a three-month period.

Participants (N = 60 individuals, Table 1) ranged in age from 60 to 79. While roughly
half of the overall sample identified as female, the majority (83%) of “index” participants
(those who responded to recruitment ads or emails and then involved their partner) were
female. All couples were married. Two couples were same-sex.

Table 2 lists the psychosocial and behavioral characteristics of the sample. Measures of
relationship satisfaction and intimacy indicated that relational well-being was, on average,
moderate to high. Forty-three percent of participants reported at least one chronic health
condition and approximately one-quarter reported the use of a proton pump inhibitor
(which can affect gut microbiota composition and function), though none daily.
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Table 1. Demographic characteristics of the sample.

N 60

Age, M (SD) 66.57 (4.78)

Age, range 60–79

Gender, n (%)
Male 28 (46.7)
Female 32 (53.3)

Ethnicity, n (%)
Hispanic or Latinx 1 (1.7)
Not Hispanic or Latinx 58 (96.7)
Unknown 1 (1.7)

Race, n (%)
Asian 4 (6.7)
White 55 (91.7)
More than one race 1 (1.7)

Educational status, n (%)
≤High school or GED 2 (3.4)
Some college or technical school 11 (18.3)
4-year college degree 18 (30.0)
Post-baccalaureate degree 29 (48.3)

Income, n (%)

USD 20k–USD 39,999 2 (3.3)
USD 40k–USD 59,999 10 (16.7)
USD 60k–USD 79,999 16 (26.7)
USD 80k–USD 99,999 2 (3.3)
USD 100k–USD 120,999 10 (16.7)
USD 121k+ 20 (33.3)

Table 2. Psychosocial and behavioral characteristics of the sample.

Measure Total

N 60

DAS relationship satisfaction (0–50 scale), M (SD) 39.50 (4.09)

Miller Social Intimacy Scale (1–10 scale), M (SD) 8.13 (1.15)

Emotional Disclosure Scale: disclosure (1–5 scale), M (SD) 2.35 (0.86)

Emotional Disclosure Scale: holding back (1–5 scale), M (SD) 1.66 (0.73)

Communication Patterns Questionnaire: constructive
communication (1–9 scale), M (SD) 6.54 (1.39)

Sexual satisfaction in past month (0–10 scale), M (SD) 5.86 (3.65)

Comorbidities, n (%) chronic conditions
None 34 (56.7)
One 20 (33.3)
Two 5 (8.3)
Three 1 (1.7)

Current medication use, n (%)
Prilosec 8 (13.3)
Nexium 2 (3.3)
Dexilant 1 (1.7)
Pepcid 5 (8.3)

Current supplement use, n (%)
Prebiotic 2 (3.3)
Probiotic 9 (15.0)

Dietary intake per Dietary Screener Questionnaire, M (SD)

Fiber, g/day 16.97 (2.61)
Calcium, mg/day 985.80 (202.33)
Added sugars, teaspoon equivalents/day 15.62 (6.15)
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3.2. Gut Microbiota of Couples Share More Similarity Than Those of Non-Couples

To examine within-couple concordance versus non-couple concordance, we compared
similarity within married couples (30 pairs) to similarity within all possible pairs of indi-
viduals not connected by marriage (1740 pairs) on measures of alpha and beta diversity. To
reiterate, alpha diversity measures the number of unique taxa (richness) and how equally
abundant the taxa are (evenness) in an individual sample; beta diversity measures dis-
similarity in microbial composition between samples [54]. We used three alpha diversity
metrics: (1) Chao1 [63], which estimates sample richness by considering rare taxa missed
from undersampling, (2) Shannon’s diversity [64], which calculates richness and evenness
using a natural logarithm, and (3) Faith’s phylogenetic diversity (Faith’s PD) [65], which
measures sample richness by incorporating the phylogenetic difference between taxa. As
displayed in Figure 1, most individuals shared similar alpha diversity with their partner,
except for a subset of four couples who had much larger within-couple differences than
other couples (those labeled couples C, G, J, and CC in Figure 1A).
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Figure 1. (A) Alpha diversity metrics. The labels on the x-axis represent anonymized couple identi-
fiers. (B) Within-couple differences in alpha diversity metrics. Each point represents the absolute
difference of the alpha diversity measures between individuals of one couple. Couples with differ-
ences larger than the upper whisker of the boxplot (1.5 times the interquartile range above the hinge)
are labeled and were treated as outliers. Faith’s PD: Faith’s phylogenetic diversity.
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Two common indices were used to assess beta diversity: Jaccard dissimilarity [66]
(fraction of distinct taxa between samples, regardless of taxa abundance) and Bray–Curtis
dissimilarity [67] (fraction of distinct taxa between samples based on taxa abundance).
We calculated dissimilarity between each pair of samples and categorized them into
“within-couple” and “between-non-couple”. Jaccard and Bray–Curtis indices showed
that within-couple similarity was greater than non-couple similarity (p < 0.0001, Figure 2).
A downstream cluster analysis using the unweighted pair group method with arithmetic
mean (UPGMA) algorithm and Bray–Curtis dissimilarity (Figure S1) further revealed
which individuals were closely clustered with their partners and contributed to the sig-
nificantly smaller dissimilarity. For example, couples B, C, H, K, and DD had the highest
within-couple similarity as they fell at the lowest level of the clades. Couples E, F, O, U, X,
and Z had relatively low within-couple similarity since they joined at the upper levels of
the clades.
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Figure 2. Dissimilarity between each pair of individuals. The “Between non-couple” dissimilarity
values were calculated from pairs of non-coupled individuals, and the “Within couple” dissimilarity
values were calculated from pairs of couples. The p-value above each bracket shows the significance
between “Within couple” and “Between non-couple” for each dissimilarity index. ****: p < 0.0001.
See Supplemental Table S3 for exact p-values.

We next explored associations between the self-reported psychosocial measures listed
in Table 2 and gut microbial diversity. We examined correlations between individual
measures and each microbial diversity metric. As seen in Figure 3, we observed positive
associations of relationship satisfaction and intimacy with the Chao1 and Faith’s PD di-
versity indices (ps < 0.05). Avoidant communication (holding back from disclosure) was
inversely related to Chao1 (p = 0.0050) and Faith’s PD (p = 0.0021). Intimacy was positively
associated with Shannon’s diversity (p = 0.030); no other relationship measure was related
to this metric. Other measures of relationship functioning (disclosure and constructive
communication) were not associated with alpha diversity (ps > 0.05).
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Figure 3. Pearson correlation between alpha diversity metrics and individual psychosocial measures.
The value in each color block represents the Pearson correlation coefficient between one alpha
diversity metric and one psychosocial measure. ** p < 0.01; * p < 0.05; Faith’s PD: Faith’s phylogenetic
diversity. See Supplemental Table S3 for exact p-values.

Beta diversity analyses showed that psychosocial characteristics were associated with
overall microbial composition (Table S2). Among these characteristics, holding back was
most strongly associated with microbial composition variation, as assessed by the Jaccard
and Bray–Curtis dissimilarity indices (ps < 0.05). We then examined these associations ad-
justing for potential background confounders. Our relatively small sample size precluded
consideration of all potential confounders (demographics, chronic disease, medication,
supplement use, and dietary intake); accordingly, we applied a forward variable selection
method [68] to identify those most strongly related to dissimilarity (Table S1). Gender iden-
tity (female versus male), income (<USD 100k versus >USD 100k), and prebiotic/probiotic
supplement use (none versus either or both), but no dietary intake variables (sugar, fiber,
or calcium) were selected based on this analysis. We then modeled beta diversity as a
function of the relationship characteristics, using the distance-based redundancy analysis
(Bray–Curtis). From these measures, only holding back was identified as being related
to the microbial composition variation via forward variable selection. This characteristic,
as revealed by our linear regression model, was associated with the abundance of am-
plicon sequence variants (ASVs) belonging to the genera Bacteroides and Subdoligranulum
(unadjusted ps = 0.025 and 0.020, respectively; BH-adjusted p = 0.044, Figure 4).
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Figure 4. Distance-based redundancy analysis (Bray–Curtis) showing the impact of psychosocial
characteristics on the gut microbial composition in older adult couples. The red solid vector represents
the psychosocial characteristic (i.e., holding back) that remained after “ordiR2step” variable selection,
and the black dashed vectors represent other non-selected psychosocial characteristics. The red
triangles and italic labels represent amplicon sequence variants (ASVs) potentially associated with
holding back. The other demographic (income, gender) and disease (supplement use) variables were
set as conditional variables.

4. Discussion

To our knowledge, this is the first study of older adult couples designed to examine
associations between multiple indicators of relationship functioning and gut microbial
composition. Remote recruitment and data collection necessitated by SARS-CoV-2 miti-
gation efforts proved quite feasible, with all 60 participants successfully completing an
online survey and supplying a fecal sample. This suggests that this emerging area of
research within the broader arena of social determinants of health is amenable to further
scientific examination.

In addition to establishing feasibility, we replicated work showing within-couple
concordance in gut microbial composition. Specifically, participants’ gut microbial com-
positions were found to be more similar to that of their partners than to those of oth-



Int. J. Environ. Res. Public Health 2023, 20, 5435 12 of 17

ers. This pattern of similarity could be due to microbial sharing through common living
spaces/cohabitation, similar diet, and environment, as seen in prior work in both animal
and human samples, suggesting that close proximity and social interactions are associated
with more similar gut microbial communities [21–23,25,29,69]. Recognizing the potential
issues posed by unequal sample sizes (n = 30 for “within couple” and n = 1740 for “between
non-couples”), we applied the Brunner–Munzel test to mitigate the potential impact of un-
equal variances on the test of this difference [60]. Additional research with a larger sample is
needed to elucidate the correlates and consequences of within-couple concordance. Despite
similarities within couples, we also observed substantial between-individual variation.
For instance, one participant from the couple CC had a completely different microbiota
compared with other individuals (Figure S1), likely due to a high relative abundance (30%)
of the phylum Actinobacteriota (consisting of 66% Collinsella, 32% Bifidobacterium, and 2%
other genera) which was not observed in other individuals (Figures S2 and S3). Three
individuals (from couples G, R, and Y) formed a separate cluster (Figure S1), suggesting
that they shared similar gut microbiota (e.g., over 50% of Prevotella, Figure S3) that were
distinct from others.

Our most novel findings are those suggesting associations between gold standard
measures of relationship functioning and gut microbial composition. The findings were in
predicted directions, such that greater relationship satisfaction and intimacy were associated
with greater gut microbial alpha diversity, as were lower levels of holding back. Alpha
diversity has been associated with a healthier gut microbiota and a lower risk of chronic
disease [17,20,70]. Thus, better relationship functioning could be associated with better
gut microbiota and health. Additional research is needed to elucidate mechanisms by
which relationship functioning is associated with gut microbial health (e.g., more time
spent together and/or more physical contact). Moreover, the finding that holding back
from sharing thoughts and feelings was associated with lower alpha diversity (Figure 3)
and significant shifts in microbial composition is intriguing. Specifically, holding back was
positively associated with the relative abundance of Bacteroides ASV and negatively with
Subdoligranulum ASV (Figure 4). Although Bacteroides species play a key role in nutrient
metabolism in the human gut, some of them are also recognized as opportunistic pathogens
related to conditions such as hypertension and intestinal disorders [71,72]. The abundance
of Subdoligranulum has been positively associated with a healthy metabolic status [73,74].

A growing body of evidence suggests that holding back from sharing thoughts and
feelings with one’s partner is deleterious and associated with greater psychological and
relational distress [75–77]. Holding back may involve expressive suppression, the act of
experiencing a given emotion but suppressing its outward expression [78], e.g., putting
on a happy face. Experimental work has demonstrated that expressive suppression is
associated with physiological indicators of stress such as increased blood pressure [79].
Holding back could be linked to poorer gut health through repeated activation of the stress
response [80], but this is speculative.

Scientific examination of links between social connections and gut microbiota requires
an inter-disciplinary approach, drawing on expertise from fields such as psychology, micro-
biology, gerontology, internal medicine, and gastroenterology, as reflected in this project’s
research team, and using established social science methods to gather rich data on couple
functioning [81], along with established microbiota assessment and analytic methods to
characterize gut microbial composition. Longitudinal designs are warranted to prospec-
tively examine associations among trajectories of communicative exchanges, gut microbial
composition, and health outcomes. These would allow for inferences regarding temporal
sequencing and lags, and possible identification of bacterial biomarkers.

Conclusions and recommendations put forth by an expert panel in 2019 are highly
relevant and critical to consider moving forward [82]. The panel, convened to review
evidence regarding “what constitutes a healthy human gut microbiome”, noted large
between-person differences in core microbiota structure, as well as large between-person
differences in response to “perturbations”, such as dietary changes or the use of probiotics.
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Accordingly, investigations designed to examine the effect of exposures or interventions
should assess the microbiome repeatedly over time and be adequately powered to account
for such variability. The panel also determined that clear linkages between changes in gut
microbiome structures and health have yet to be elucidated; certainly, that causality has not
been established [82].

Because gut microbiota diversity typically declines with age [83] and because close
relationships play a critical role in health or lack thereof [3], it is important to study and
to develop, test, and provide low-cost effective supportive care for the aging population,
to facilitate healthy aging. Social exchanges may modify gut microbiota. Work by Kiecolt-
Glaser and colleagues [32] provides a theoretical framework for this emerging area of
research by positing pathways linking relationship factors (e.g., conflictual dynamics, life
stressors, unhealthy behaviors, and shared spaces) with accelerated aging through changes
in gut microbial communities (e.g., low diversity) and resulting physiological sequelae
ranging from a leaky gut to inflammation. Pathways in this model are ripe for testing with
middle-aged and older adult couples. The findings will inform next-step novel mechanistic
studies which could, in turn, inform testing of couple-based communication interventions to
improve relational and physical well-being among older adults. Alternatively, interventions
could target microbial composition or dietary behavior among those most at risk for health
decrements based on relationship quality or other factors. Concordance between partners’
gut microbiota, as well as between their health behaviors, can be capitalized upon to
affect change (better communication, improved health behaviors) in not just one but both
partners and to bolster and leverage dyadic strength and partner support to do so. While
increasing in number, few large-scale dyadic interventions have been tested, and none to
our knowledge have been tied to gut health.

Our pilot study, designed primarily to test the feasibility of methods and explore
patterns of associations, did not include features of a full-scale study. The small sample size,
selected to be sufficient for the primary study aims, did not allow for formal hypothesis test-
ing. Moreover, the lack of demographic diversity (92% White, 78% college-educated, 93%
different-sex couples) did not allow for meaningful examination of potential moderation of
associations by background variables and limits the generalizability of the findings. Further,
the cross-sectional design precludes inferences regarding temporal or causal relationships
between the psychosocial variables and microbial composition. Finally, we did not assess
relationship length or length of cohabitation, which may play important roles in the system
of associations linking relationship functioning and microbial diversity [27].

5. Conclusions

The results from this pilot study indicate that remote collection of fecal samples
from older adult couples is entirely feasible using a kit that allows samples to sit at room
temperature for an extended period (see description in the Methods section), that microbial
composition within couples is concordant (extending previous research), and that better
relationship quality is associated with a healthier microbial composition. These findings
contribute to scientific work in this growing area and provide support for current keen
interest (at multiple ecological levels and across sectors) [84] in the social aspects of health.
More research is needed with human samples, employing rigorous social science methods
to identify the extent to which social factors affect gut health in particular, especially in
older adults at risk for multiple health decrements, and to tease out pathways linking
characteristics of relationships and persons in them to health outcomes. This in turn
can inform public health efforts to bolster social connections in this current zeitgeist of
challenges including social isolation and loneliness [85].



Int. J. Environ. Res. Public Health 2023, 20, 5435 14 of 17

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijerph20085435/s1. Table S1: Variable selection; Table S2: Per-
mutational analysis of variance showing associations between two beta diversity indices and the
psychosocial measures; Table S3: p-value summary for Figures 2 and 3; Figure S1: Unweighted pair
group method with arithmetic mean (UPGMA) dendrogram showing the relationships of gut micro-
biota composition among the 60 participants based on the Bray–Curtis dissimilarity index; Figure S2:
Relative abundance of gut microorganisms at the phylum level; Figure S3: Relative abundance of gut
microorganisms at the genus level.

Author Contributions: Conceptualization, S.L.L., J.K.D. and R.K.-B.; methodology, S.L.L., Q.C. and
R.K.-B.; formal analysis, Q.C., M.T. and S.L.L.; investigation, Q.C. and J.M.; resources, S.L.L., R.K.-B.
and M.A.G.; data curation, S.L.L., Q.C. and J.M.; supervision, S.L.L. and R.K.-B.; visualization, Q.C.;
writing—original draft preparation, S.L.L. and Q.C.; writing—review and editing, all authors; project
administration, S.L.L. and R.K.-B.; funding acquisition, S.L.L. and R.K.-B. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was funded by an award from the Center for Innovation in Healthy and Resilient
Aging within the College of Nursing and Health Innovation at Arizona State University, #PG13061
(PI Shelby Langer).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Arizona State University
(study #00012144 on 07.09.20).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The raw sequence data were deposited in the National Center for
Biotechnology Information Sequence Read Archive database (BioProject accession #PRJNA928837).
De-identified questionnaire data are available upon request to the corresponding author.

Acknowledgments: The authors acknowledge resources and support from the Biodesign Institute
core facilities at Arizona State University. They also wish to thank Melissa Tolson for her assistance
with project management.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Holt-Lunstad, J. Loneliness and social isolation as risk factors: The power of social connection in prevention. Am. J. Lifestyle Med.

2021, 15, 567–573. [CrossRef] [PubMed]
2. Cohen, S.; Doyle, W.; Skoner, D.; Rabin, B.; Gwaitney, J. Social ties and susceptibility to the common cold. J. Am. Med. Assoc. 1997,

277, 1940–1944. [CrossRef]
3. Holt-Lunstad, J.; Smith, T.; Layton, J. Social relationships and mortality risk: A meta-analytic review. PLoS Med. 2010, 7, e1000316.

[CrossRef]
4. House, J.; Landis, K.; Umberson, D. Social relationships and health. Science 1988, 241, 540–545. [CrossRef] [PubMed]
5. Robles, T.; Slatcher, R.; Trombello, J.; McGinn, M. Marital quality and health: A meta-analytic review. Psychol. Bull. 2014, 140,

140–187. [CrossRef]
6. Aizer, A.; Chen, M.-H.; McCarthy, E.; Mendu, M.; Koo, S.; Wilhite, T.; Graham, P.; Choueiri, T.; Hoffman, K.; Martin, N.; et al.

Marital status and survival in patients with cancer. J. Clin. Oncol. 2013, 31, 3869–3876. [CrossRef]
7. Kiecolt-Glaser, J.; Newton, T. Marriage and health: His and hers. Psychol. Bull. 2001, 127, 472–503. [CrossRef]
8. Cornelius, T.; Birk, J.; Edmondson, D.; Schwartz, J. Romantic relationship satisfaction and ambulatory blood pressure during

social interactions: Specificity or spillover effects? Ann. Behav. Med. 2019, 53, 223–231. [CrossRef]
9. Whisman, M.; Gilmour, A.; Salinger, J. Marital satisfaction and mortality in the United States adult population. Health Psychol.

2018, 37, 1041–1044. [CrossRef]
10. Di Castelnuovo, A.; Quacquaruccio, G.; Donati, M.; de Gaetano, G.; Iacoviello, L. Spousal concordance for major coronary risk

factors: A systematic review and meta-analysis. Am. J. Epidemiol. 2008, 169, 1–8. [CrossRef]
11. Macken, L.; Yates, B.; Blancher, S. Concordance of risk factors in female spouses of male patients with coronary heart disease. J.

Cardiopulm. Rehabil. 2000, 20, 361–368. [CrossRef]
12. Bookwala, J.; Schulz, R. Spousal similarity in subjective well-being: The Cardiovascular Health Study. Psychol. Aging 1996, 11,

582–590. [CrossRef]
13. Meyler, D.; Stimpson, J.; Peek, M. Health concordance within couples: A systematic review. Soc. Sci. Med. 2007, 64, 2297–2310.

[CrossRef] [PubMed]
14. Jiang, Y.; Bolnick, D.; Kirkpatrick, M. Assortative mating in animals. Am. Nat. 2013, 181, E125–E138. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijerph20085435/s1
https://www.mdpi.com/article/10.3390/ijerph20085435/s1
http://doi.org/10.1177/15598276211009454
http://www.ncbi.nlm.nih.gov/pubmed/34646109
http://doi.org/10.1001/jama.1997.03540480040036
http://doi.org/10.1371/journal.pmed.1000316
http://doi.org/10.1126/science.3399889
http://www.ncbi.nlm.nih.gov/pubmed/3399889
http://doi.org/10.1037/a0031859
http://doi.org/10.1200/JCO.2013.49.6489
http://doi.org/10.1037/0033-2909.127.4.472
http://doi.org/10.1093/abm/kay030
http://doi.org/10.1037/hea0000677
http://doi.org/10.1093/aje/kwn234
http://doi.org/10.1097/00008483-200011000-00005
http://doi.org/10.1037/0882-7974.11.4.582
http://doi.org/10.1016/j.socscimed.2007.02.007
http://www.ncbi.nlm.nih.gov/pubmed/17374552
http://doi.org/10.1086/670160
http://www.ncbi.nlm.nih.gov/pubmed/23669548


Int. J. Environ. Res. Public Health 2023, 20, 5435 15 of 17

15. Lichter, D.; Qian, Z. The study of assortative mating: Theory, data, and analysis. In Analytical Family Demography; The Springer
Series on Demographic Methods and Population, Analysis; Schoen, R., Ed.; Springer: Cham, Switzerland, 2019.

16. Umberson, D. Gender, marital status and the social control of health behavior. Soc. Sci. Med. 1992, 34, 907–917. [CrossRef]
[PubMed]

17. Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut
microbiota. Nature 2012, 489, 220–230. [CrossRef] [PubMed]

18. Pickard, J.; Zeng, M.; Caruso, R.; Nunez, G. Gut microbiota: Role in pathogen colonization, immune responses and inflammatory
disease. Immunol. Rev. 2017, 279, 70–89. [CrossRef]

19. Durack, J.; Lynch, S. The gut microbiome: Relationships with disease and opportunities for therapy. J. Exp. Med. 2019, 216, 20–40.
[CrossRef]

20. Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.;
et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [CrossRef]

21. Finnicum, C.T.; Beck, J.J.; Dolan, C.V.; Davis, C.; Willemsen, G.; Ehli, E.A.; Boomsma, D.I.; Davies, G.E.; de Geus, E.J.C.
Cohabitation is associated with a greater resemblance in gut microbiota which can impact cardiometabolic and inflammatory risk.
BMC Microbiol. 2019, 19, 230. [CrossRef]

22. Amato, K.R.; Van Belle, S.; Di Fiore, A.; Estrada, A.; Stumpf, R.; White, B.; Nelson, K.E.; Knight, R.; Leigh, S.R. Patterns in gut
microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Microb. Ecol. 2017, 74,
250–258. [CrossRef]

23. Grieneisen, L.E.; Livermore, J.; Alberts, S.; Tung, J.; Archie, E.A. Group living and male dispersal predict the core gut microbiome
in wild baboons. Integr. Comp. Biol. 2017, 57, 770–785. [CrossRef] [PubMed]

24. Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.; Godneva, A.; Kalka, I.; Bar, N.; et al.
Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [CrossRef] [PubMed]

25. Tung, J.; Barreiro, L.B.; Burns, M.B.; Grenier, J.C.; Lynch, J.; Grieneisen, L.E.; Altmann, J.; Alberts, S.C.; Blekhman, R.; Archie, E.A.
Social networks predict gut microbiome composition in wild baboons. Elife 2015, 4, e05224. [CrossRef]

26. Song, S.J.; Lauber, C.; Costello, E.K.; Lozupone, C.A.; Humphrey, G.; Berg-Lyons, D.; Caporaso, J.G.; Knights, D.; Clemente, J.C.;
Nakielny, S.; et al. Cohabiting family members share microbiota with one another and with their dogs. Elife 2013, 2, e00458.
[CrossRef]

27. Valles-Colomer, M.; Blanco-Miguez, A.; Manghi, P.; Asnicar, F.; Dubois, L.; Golzato, D.; Armanini, F.; Cumbo, F.; Huang, K.;
Manara, S.; et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature, 2023; Epub ahead of print.

28. Lax, S.; Smith, D.; Hampton-Marcell, J.; Owens, S.; Handley, K.; Scott, N.; Gibbons, S.; Larsen, P.; Shogan, B.; Weiss, S.; et al.
Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014, 345, 1048–1052.
[CrossRef] [PubMed]

29. Dill-McFarland, K.; Tang, Z.-Z.; Kernis, J.; Kerby, R.; Chen, G.; Palloni, A.; Sorenson, T.; Rey, F.; Herd, P. Close social relationships
correlate with human gut microbiota composition. Sci. Rep. 2019, 9, 703. [CrossRef] [PubMed]

30. Baucom, D.; Porter, L.; Kirby, J.; Hudepohl, J. Couple-based interventions for medical problems. Behav. Ther. 2012, 43, 61–76.
[CrossRef] [PubMed]

31. Bookwala, J.; Gaugler, T. Relationship quality and 5-year mortality risk. Health Psychol. 2020, 39, 633–641. [CrossRef]
32. Kiecolt-Glaser, J.; Wilson, S.; Madison, A. Marriage and gut (microbiome) feelings: Tracing novel dyadic pathways to accelerated

aging. Psychosom. Med. 2019, 81, 704–710. [CrossRef]
33. Langer, S.; Romano, J.; Todd, M.; Strauman, T.; Keefe, F.; Syrjala, K.; Bricker, J.; Ghosh, N.; Burns, J.; Bolger, N.; et al. Links

between communication and relationship satisfaction among patients with cancer and their spouses: Results of a fourteen-day
smartphone-based ecological momentary assessment study. Front. Psychol. 2018, 9, 1843. [CrossRef] [PubMed]

34. Helgeson, V. The effects of masculinity and social support on recovery from myocardial infarction. Psychosom. Med. 1991, 53,
621–633. [CrossRef] [PubMed]

35. Courtin, E.; Knapp, M. Social isolation, loneliness and health in old age: A scoping review. Health Soc. Care Community 2017, 25,
799–812. [CrossRef]

36. Spanier, G. Measuring dyadic adjustment: New scales for assessing the quality of marriage and similar dyads. J. Marriage Fam.
1976, 38, 15–28. [CrossRef]

37. Miller, R.S.; Lefcourt, H.M. Miller Social Intimacy Scale. In Measures for Clinical Practice: A Sourcebook, 3rd ed.; Corcoran, K.,
Fischer, J., Eds.; Free Press: New York, NY, USA, 2000.

38. Pistrang, N.; Barker, C. Disclosure of concerns in breast cancer. Psycho-Oncology 1992, 1, 183–192. [CrossRef]
39. Christensen, A. Detection of conflict patterns in couples. In Understanding Major Mental Disorder: The Contribution of Family

Interaction Research; Hahlweg, K., Goldstein, M., Eds.; Family Process Press: New York, NY, USA, 1987; pp. 250–265.
40. Division of Cancer Control and Population Sciences, National Cancer Institute, Dietary Screener Questionnaire (DSQ) in the

NHANES 2009–2010. Available online: https://epi.grants.cancer.gov/nhanes/dietscreen/questionnaires.html (accessed on
24 July 2021).

41. Chaplin, A.; Parra, P.; Laraichi, S.; Serra, F.; Palou, A. Calcium supplementation modulates gut microbiota in a prebiotic manner
in dietary obese mice. Mol. Nutr. Food Res. 2016, 60, 468–480. [CrossRef]

http://doi.org/10.1016/0277-9536(92)90259-S
http://www.ncbi.nlm.nih.gov/pubmed/1604380
http://doi.org/10.1038/nature11550
http://www.ncbi.nlm.nih.gov/pubmed/22972295
http://doi.org/10.1111/imr.12567
http://doi.org/10.1084/jem.20180448
http://doi.org/10.1038/nature12506
http://doi.org/10.1186/s12866-019-1602-8
http://doi.org/10.1007/s00248-017-0938-6
http://doi.org/10.1093/icb/icx046
http://www.ncbi.nlm.nih.gov/pubmed/29048537
http://doi.org/10.1038/nature25973
http://www.ncbi.nlm.nih.gov/pubmed/29489753
http://doi.org/10.7554/eLife.05224
http://doi.org/10.7554/eLife.00458
http://doi.org/10.1126/science.1254529
http://www.ncbi.nlm.nih.gov/pubmed/25170151
http://doi.org/10.1038/s41598-018-37298-9
http://www.ncbi.nlm.nih.gov/pubmed/30679677
http://doi.org/10.1016/j.beth.2011.01.008
http://www.ncbi.nlm.nih.gov/pubmed/22304879
http://doi.org/10.1037/hea0000883
http://doi.org/10.1097/PSY.0000000000000647
http://doi.org/10.3389/fpsyg.2018.01843
http://www.ncbi.nlm.nih.gov/pubmed/30364167
http://doi.org/10.1097/00006842-199111000-00004
http://www.ncbi.nlm.nih.gov/pubmed/1758947
http://doi.org/10.1111/hsc.12311
http://doi.org/10.2307/350547
http://doi.org/10.1002/pon.2960010307
https://epi.grants.cancer.gov/nhanes/dietscreen/questionnaires.html
http://doi.org/10.1002/mnfr.201500480


Int. J. Environ. Res. Public Health 2023, 20, 5435 16 of 17

42. Di Rienzi, S.; Britton, R. Adaptation of the gut microbiota to modern dietary sugars and sweeteners. Adv. Nutr. 2020, 11, 616–629.
[CrossRef]

43. Makki, K.; Deehan, E.; Walter, J.; Backhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host
Microbe 2018, 23, 705–715. [CrossRef]

44. Oliver, A.; Chase, A.; Weihe, C.; Orchanian, S.; Riedel, S.; Hendrickson, C.; Lay, M.; Sewall, J.; Martiny, J.; Whiteson, K. High-fiber,
whole-food dietary intervention alters the human gut microbiome but not fecal short-chain fatty acids. mSystems 2021, 6, e00115-21.
[CrossRef]

45. Ramne, S.; Brunkwall, L.; Ericson, U.; Gray, N.; Kuhnle, G.; Nilsson, P.; Orho-Melander, M.; Sonestedt, E. Gut microbiota
composition in relation to intake of added sugar, sugar-sweetened beverages and artificially sweetened beverages in the Malmo
Offspring Study. Eur. J. Nutr. 2021, 60, 2087–2097. [CrossRef]

46. Charlson, M.; Pompei, P.; Ales, K.; MacKenzie, C. A new method of classifying prognostic comorbidity in longitudinal studies:
Development and validation. J. Chronic Dis. 1987, 40, 373–383. [CrossRef]

47. Caporaso, J.; Lauber, C.; Walters, W.; Berg-Lyons, D.; Lozupone, C.; Turnbaugh, P.; Fierer, N.; Knight, R. Global patterns of 16S
rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [CrossRef]
[PubMed]

48. Ilhan, Z.; DiBaise, J.; Dautel, S.; Isern, N.; Kim, Y.; Hoyt, D.; Schepmoes, A.; Brewer, H.; Weitz, K.; Metz, T.; et al. Temporospatial
shifts in the human gut microbiome and metabolome after gastric bypass surgery. NPJ Biofilms Microbiomes 2020, 6, 12. [CrossRef]
[PubMed]

49. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef] [PubMed]

50. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef]

51. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Cham, Switzerland, 2016.
52. Bisanz, J. qiime2R: Importing QIIME2 Artifacts and Associated Data into R Sessions; R Package Version 0.99.6. 2018. Available

online: https://github.com/jbisanz/qiime2R (accessed on 30 January 2023).
53. McMurdie, P.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data.

PLoS ONE 2013, 8, e61217. [CrossRef]
54. Magurran, A. Ecological Diversity and Its Measurement; Springer: Dordrecht, The Netherlands, 1988.
55. Lahti, L.; Shetty, S. microbiome; R Package Version 1.18.0; 2012-2019. Available online: http://microbiome.github.io (accessed on

30 January 2023).
56. Kembel, S. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [CrossRef]
57. Smith, D. rbiom: Read/Write, Transform, and Summarize ‘BIOM’ Data; R Package Version 1.0.3. 2021. Available online:

https://CRAN.R-project.org/package=rbiom (accessed on 30 January 2023).
58. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Aus-

tria, 2022.
59. Ara, T. brunnermunzel: (Permuted) Brunner-Munzel Test; R Package Version 2.0. 2022. Available online: https://CRAN.R-

project.org/package=brunnermunzel (accessed on 30 January 2023).
60. Neubert, K.; Brunner, E. A studentized permutation test for non-parametric Behrens-Fisher problem. Comput. Stat. Data Anal.

2007, 51, 5192–5204. [CrossRef]
61. Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al.

vegan: Community Ecology Package; R Package Version 2.6-2. 2022. Available online: https://CRAN.R-project.org/package=
vegan (accessed on 30 January 2023).

62. Revelle, W. psych: Procedures for Personality and Psychological Research; R Package Version 2.2.5. 2022. Available online:
https://CRAN.R-project.org/package=psych (accessed on 30 January 2023).

63. Chao, A. Non-parametric estimation of the classes in a population. Scand. J. Stat. 1984, 11, 265–270.
64. Shannon, C.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1949.
65. Faith, D. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [CrossRef]
66. Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. De La Soc. Vaud. Des Sci. Nat. 1908, 44, 223–270.
67. Sorensen, T.; I kommission hos, E. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of

Species Content and Its Application to Analyses of the Vegetation on Danish Commons; I kommission hos E. Munksgaard: København,
Denmark, 1948.

68. Blanchet, F.; Legendre, P.; Borcard, D. Forward selection of explanatory variables. Ecology 2008, 89, 2623–2632. [CrossRef]
[PubMed]

69. Raulo, A.; Allen, B.E.; Troitsky, T.; Husby, A.; Firth, J.A.; Coulson, T.; Knowles, S.C.L. Social networks strongly predict the gut
microbiota of wild mice. ISME J. 2021, 15, 2601–2613. [CrossRef] [PubMed]

70. Mosca, A.; Leclerc, M.; Hugot, J.P. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our
Ecosystem? Front. Microbiol. 2016, 7, 455. [CrossRef] [PubMed]

http://doi.org/10.1093/advances/nmz118
http://doi.org/10.1016/j.chom.2018.05.012
http://doi.org/10.1128/mSystems.00115-21
http://doi.org/10.1007/s00394-020-02392-0
http://doi.org/10.1016/0021-9681(87)90171-8
http://doi.org/10.1073/pnas.1000080107
http://www.ncbi.nlm.nih.gov/pubmed/20534432
http://doi.org/10.1038/s41522-020-0122-5
http://www.ncbi.nlm.nih.gov/pubmed/32170068
http://doi.org/10.1038/s41587-019-0209-9
http://www.ncbi.nlm.nih.gov/pubmed/31341288
http://doi.org/10.1038/nmeth.3869
https://github.com/jbisanz/qiime2R
http://doi.org/10.1371/journal.pone.0061217
http://microbiome.github.io
http://doi.org/10.1093/bioinformatics/btq166
https://CRAN.R-project.org/package=rbiom
https://CRAN.R-project.org/package=brunnermunzel
https://CRAN.R-project.org/package=brunnermunzel
http://doi.org/10.1016/j.csda.2006.05.024
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=psych
http://doi.org/10.1016/0006-3207(92)91201-3
http://doi.org/10.1890/07-0986.1
http://www.ncbi.nlm.nih.gov/pubmed/18831183
http://doi.org/10.1038/s41396-021-00949-3
http://www.ncbi.nlm.nih.gov/pubmed/33731838
http://doi.org/10.3389/fmicb.2016.00455
http://www.ncbi.nlm.nih.gov/pubmed/27065999


Int. J. Environ. Res. Public Health 2023, 20, 5435 17 of 17

71. Palmu, J.; Lahti, L.; Niiranen, T. Targeting gut microbiota to treat hypertension: A systematic review. Int. J. Environ. Res. Public
Health 2021, 18, 1248. [CrossRef]

72. Zafar, H.; Saier, M. Gut Bacteroides species in health and disease. Gut Microbes 2021, 13, e1848158. [CrossRef]
73. Holmstrom, K.; Collins, M.; Moller, T.; Falsen, E.; Lawson, P. Subdoligranulum variabile gen. nov., sp. nov. from human feces.

Anaerobe 2004, 10, 197–203. [CrossRef]
74. Van Hul, M.; Le Roy, T.; Prifti, E.; Dao, M.; Paquot, A.; Zucker, J.; Delzenne, N.; Muccioli, G.; Clement, K.; Cani, P. From correlation

to causality: The case of Subdoligranulum. Gut Microbes 2020, 12, e1849998. [CrossRef]
75. Adams, R.; Winger, J.; Mosher, C. A meta-analysis of the relationship between social constraints and distress in cancer patients. J.

Behav. Med. 2015, 38, 294–305. [CrossRef]
76. Hasson-Ohayon, I.; Goldzweig, G.; Braun, M.; Hagedoorn, M. Beyond “being open about it”: A systematic review on cancer

related communication within couples. Clin. Psychol. Rev. 2022, 96, 102176. [CrossRef]
77. Traa, M.; De Vries, J.; Bodenmann, G.; Den Oudsten, B. Dyadic coping and relationship functioning in couples coping with cancer:

A systematic review. Br. J. Health Psychol. 2015, 20, 85–114. [CrossRef] [PubMed]
78. Gross, J. Antecedent- and response-focused emotion regulation: Divergent consequences for experience, expression, and

physiology. J. Personal. Soc. Psychol. 1998, 74, 224–237. [CrossRef] [PubMed]
79. Butler, E.; Egloff, B.; Wilhelm, F.; Smith, N.; Erickson, E.; Gross, J. The social consequences of expressive suppression. Emotion

2003, 3, 48–67. [CrossRef] [PubMed]
80. Molina-Torres, G.; Rodriguez-Arrastia, M.; Roman, P.; Sanchez-Labraca, N.; Cardona, D. Stress and the gut microbiota-brain axis.

Behav. Pharmacol. 2019, 30, 187–200. [CrossRef]
81. Langer, S.; Romano, J.; Keefe, F.; Baucom, D.; Strauman, T.; Syrjala, K.; Bolger, N.; Burns, J.; Bricker, J.; Todd, M.; et al. Couple

communication in cancer: Protocol for a multi-method examination. Front. Psychol. 2022, 12, 769407. [CrossRef]
82. McBurney, M.; Davis, C.; Fraser, C.; Schneeman, B.; Huttenhower, C.; Verbeke, K.; Walter, J.; Latulippe, M. Establishing what

constitutes a healthy human gut microbiome: State of the science, regulatory considerations, and future directions. J. Nutr. 2019,
149, 1882–1895. [CrossRef]

83. Ragonnaud, E.; Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing 2021, 18,
1–11. [CrossRef]

84. Holt-Lunstad, J. Social connection as a public health issue: The evidence and a systemic framework for prioritizing the “social” in
social determinants of health. Annu. Rev. Public Health 2022, 43, 193–213. [CrossRef]

85. Somes, J. The loneliness of aging. J. Emerg. Nurs. 2021, 47, 469–475. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/ijerph18031248
http://doi.org/10.1080/19490976.2020.1848158
http://doi.org/10.1016/j.anaerobe.2004.01.004
http://doi.org/10.1080/19490976.2020.1849998
http://doi.org/10.1007/s10865-014-9601-6
http://doi.org/10.1016/j.cpr.2022.102176
http://doi.org/10.1111/bjhp.12094
http://www.ncbi.nlm.nih.gov/pubmed/24628822
http://doi.org/10.1037/0022-3514.74.1.224
http://www.ncbi.nlm.nih.gov/pubmed/9457784
http://doi.org/10.1037/1528-3542.3.1.48
http://www.ncbi.nlm.nih.gov/pubmed/12899316
http://doi.org/10.1097/FBP.0000000000000478
http://doi.org/10.3389/fpsyg.2021.769407
http://doi.org/10.1093/jn/nxz154
http://doi.org/10.1186/s12979-020-00213-w
http://doi.org/10.1146/annurev-publhealth-052020-110732
http://doi.org/10.1016/j.jen.2020.12.009

	Introduction 
	Materials and Methods 
	Self-Report Measures 
	Fecal Sample Collection, Sequencing, and Microbiota Analysis 
	Analytic Plan 

	Results 
	Remote Recruitment and Assessment of Older Adult Couples, including Collection of Fecal Samples, Is Feasible 
	Gut Microbiota of Couples Share More Similarity Than Those of Non-Couples 

	Discussion 
	Conclusions 
	References

