Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Chemical Absorption
4. Indirect Mineral Carbonation
5. Direct Mineral Carbonation
5.1. Ashes
5.2. Steel-Making Slag
Waste/Residue | Calcium Content | Maximum CO2 Removal | Reference |
---|---|---|---|
Ash bottom | 22–53% | 23.5 mL/g | [42] |
Palm oil ash | 9.65% | 53% reduction | [44] |
Wood ash | 24–46% | 200 g/kg 115 g/kg | [50] [48] |
Steel-making slag | 15–42% | 180 g/kg | [58] |
Basic oxygen furnace slag | 35–56% | 300 g/kg | [65] |
Air pollution control residues | 38% Ca(OH) 28% CaClOH | - | [29] |
Stabilized wastewater anaerobic sludge | 35.1% | 127.2 g/kg | [66] |
5.3. Air Pollution Control Residues
5.4. Wastewater Anaerobic Sludge
6. Types of Reactors Used for Biogas Upgrading
7. Conclusions and Perspectives on Alternative Upgrading Biogas Technologies Using Wastes
- the amount of waste that should be delivered for the biogas upgrading facility;
- the distance between the upgrading facility and the facility delivering the waste;
- the costs of treatment of the wastewater that is eventually produced;
- the possibility of the regeneration of the reagents used in the process;
- the characteristic of the carbonated waste and the possibility of its application.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rasi, S.; Veijanen, A.; Rintala, J. Trace compounds of biogas from different biogasproduction plants. Energy 2007, 32, 1375–1380. [Google Scholar] [CrossRef]
- Goswami, R.; Chattopadhyay, P.; Shome, A.; Banerjee, S.N.; Chakraborty, A.K.; Mathew, A.K.; Chaudhury, S. An Overview of Physico-Chemical Mechanisms of Biogas Production by Microbial Communities: A Step towards Sustainable Waste Management. 3 Biotech 2016, 6, 72. [Google Scholar] [CrossRef]
- Soreanu, G.; Béland, M.; Falletta, P.; Edmonson, K.; Svoboda, L.; Al-Jamal, M.; Seto, P. Approaches concerning siloxane removal from biogas—A review. Can. Biosyst. Eng. 2011, 53, 8.1–8.18. [Google Scholar]
- Persson, M.; Jönsson, O.; Wellinger, A. Biogas Upgrading to Vehicle Fuel Standards and Grid Injection. International Energy Agency IEA Bioenergy. 2006. Available online: http://www.iea-biogas.net/_download/publi-task37/upgrading_report_final.pdf (accessed on 18 March 2023).
- Nizami, A.S.; Murphy, J.D. What type of digester configurations should be employed to produce biomethane from grass silage? Renew. Sustain. Energy Rev. 2010, 14, 1558–1568. [Google Scholar] [CrossRef]
- Zhao, Q.; Leonhardt, E.; MacConnell, C.; Frear, C.; Chen, S. Purification technologies for biogas generated by anaerobic digestion. Climate friendly farming, compressed biomethane. In CSANR Research Report 2010-001 (Chapter 9); CSANR Center for Sustaining Agriculture and Natural Resources: Wenatchee, WA, USA, 2010; pp. 1–24. [Google Scholar]
- Karne, H.; Mahajan, U.; Ketkar, U.; Kohade, A.; Khadilkar, P.; Mishra, A. A Review on Biogas Upgradation Systems. Mater. Today Proc. 2023, 72, 775–786. [Google Scholar] [CrossRef]
- Feroskhan, M.; Ismail, S. A Review on the Purification and Use of Biogas in Compression Ignition Engines. Int. J. Automot. Mech. Eng. 2017, 14, 4383–4400. [Google Scholar] [CrossRef]
- Adnan, A.I.; Yin Ong, M.; Nomanbhay, S.; Chew, K.W.; Show, P.L. Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering 2019, 6, 92. [Google Scholar] [CrossRef]
- Muñoz, R.; Meier, L.; Diaz, I.; Jeison, D. A Review on the State-of-the-Art of Physical/Chemical and Biological Technologies for Biogas Upgrading. Rev. Environ. Sci. Biotechnol. 2015, 14, 727–759. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A Review of Mineral Carbonation Technologies to Sequester CO2. Chem. Soc. Rev. 2014, 43, 8049. [Google Scholar] [CrossRef]
- Wilcox, J.; Baciocchi, R.; Costa, G.; Polettini, A.; Pomi, R.; Stramazzo, A.; Zingaretti, D. Accelerated Carbonation of Steel Slags Using CO2 Diluted Sources: CO2 Uptakes and Energy Requirements. Front. Energy Res. 2016, 3, 56. [Google Scholar] [CrossRef]
- Fei, Z.; Bao, Q.; Zheng, X.; Zhang, L.; Wang, X.; Wei, Y.; Yan, S.; Ji, L. Glycinate-Looping Process for Efficient Biogas Upgrading and Phytotoxicity Reduction of Alkaline Ashes. J. Clean. Prod. 2022, 338, 130565. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Zheng, X.; Feng, L.; He, Q.; Wei, Y.; Yan, S. Simultaneous CO2 Absorption, Mineralisation and Carbonate Crystallisation Promoted by Amines in a Single Process. J. CO2 Util. 2021, 51, 101653. [Google Scholar] [CrossRef]
- Tippayawong, N.; Thanompongchart, P. Biogas Quality Upgrade by Simultaneous Removal of CO2 and H2S in a Packed Column Reactor. Energy 2010, 35, 4531–4535. [Google Scholar] [CrossRef]
- Mamun, M.R.; Karim, M.R.; Rahman, M.M.; Asiri, A.M.; Torii, S. Methane Enrichment of Biogas by Carbon Dioxide Fixation with Calcium Hydroxide and Activated Carbon. J. Taiwan Inst. Chem. Eng. 2016, 58, 476–481. [Google Scholar] [CrossRef]
- Katariya, H.G.; Patolia, H.P. Methane Enrichment in Biogas by Using Aqueous Solutions of Alkaline Salts. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Chinea, L.; Slopiecka, K.; Bartocci, P.; Alissa Park, A.H.; Wang, S.; Jiang, D.; Fantozzi, F. Methane Enrichment of Biogas Using Carbon Capture Materials. Fuel 2023, 334, 126428. [Google Scholar] [CrossRef]
- Rattanaya, T.; Manmeen, A.; Kongjan, P.; Bunyakan, C.; Reungsang, A.; Prasertsit, K.; Lombardi, L.; Jariyaboon, R. Upgrading Biogas to Biomethane Using Untreated Groundwater-NaOH Absorbent: Pilot-Scale Experiment and Scale-up Estimation for a Palm Oil Mill. J. Water Process Eng. 2021, 44, 102405. [Google Scholar] [CrossRef]
- Maile, O.I.; Tesfagiorgis, H.; Muzenda, E. Possible Absorbent Regeneration in Biogas Purification and Upgrading: A Review. In The Nexus: Energy, Environment and Climate Change. Green Energy and Technology; Filho, L.W., Surroop, D., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Sun, Y.; Cakstins, J.; Sun, C.; Snape, C.E. Parametric Study on the Regeneration Heat Requirement of an Amine-Based Solid Adsorbent Process for Post-Combustion Carbon Capture. Appl. Energy 2016, 168, 394–405. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Y. A Comprehensive Model for Regeneration Process of CO2 Capture Using Aqueous Ammonia Solution. Int. J. Greenh. Gas Control 2014, 29, 22–34. [Google Scholar] [CrossRef]
- Leonzio, G. Recovery of Metal Sulphates and Hydrochloric Acid from Spent Pickling Liquors. J. Clean. Prod. 2016, 129, 417–426. [Google Scholar] [CrossRef]
- Librandi, P.; Costa, G.; de Souza, A.C.B.; Stendardo, S.; Luna, A.S.; Baciocchi, R. Carbonation of Steel Slag: Testing of the Wet Route in a Pilot-Scale Reactor. Energy Procedia 2017, 114, 5381–5392. [Google Scholar] [CrossRef]
- Said, A.; Mattila, H.P.; Järvinen, M.; Zevenhoven, R. Production of Precipitated Calcium Carbonate (PCC) from Steelmaking Slag for Fixation of CO2. Appl. Energy 2013, 112, 765–771. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Gavasci, R.; Lombardi, L.; Zingaretti, D. Regeneration of a Spent Alkaline Solution from a Biogas Upgrading Unit by Carbonation of APC Residues. Chem. Eng. J. 2012, 179, 63–71. [Google Scholar] [CrossRef]
- Baciocchi, R.; Carnevale, E.; Costa, G.; Lombardi, L.; Olivieri, T.; Paradisi, A.; Zanchi, L.; Zingaretti, D. Pilot-Scale Investigation of an Innovative Process for Biogas Upgrading with CO2 Capture and Storage. Energy Procedia 2013, 37, 6026–6034. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Hu, X.; Chang, J.; Zhang, T.; Shi, C. Utilization of accelerated carbonation to enhance the application of steel slag: A review. J. Sustain. Cement-Based Mater. 2022, 12, 471–486. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Polettini, A.; Pomi, R.; Prigiobbe, V. Comparison of Different Reaction Routes for Carbonation of APC Residues. Energy Procedia 2009, 1, 4851–4858. [Google Scholar] [CrossRef]
- Lombardi, L.; Carnevale, E. Economic Evaluations of an Innovative Biogas Upgrading Method with CO2 Storage. Energy 2013, 62, 88–94. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Reina, T.R.; Zhang, Z.; Vilches, L.F.; Navarrete, B. Understanding the Effect of Ca and Mg Ions from Wastes in the Solvent Regeneration Stage of a Biogas Upgrading Unit. Sci. Total Environ. 2019, 691, 93–100. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Reina, T.R.; Rodríguez-Galán, M.; Navarrete, B.; Vilches, L.F. Synergizing Carbon Capture and Utilization in a Biogas Upgrading Plant Based on Calcium Chloride: Scaling-up and Profitability Analysis. Sci. Total Environ. 2021, 758, 143645. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Reina, T.R.; Vilches, L.F.; Navarrete, B. Synergizing Carbon Capture Storage and Utilization in a Biogas Upgrading Lab-Scale Plant Based on Calcium Chloride: Influence of Precipitation Parameters. Sci. Total Environ. 2019, 670, 59–66. [Google Scholar] [CrossRef]
- Arti, M.; Youn, M.H.; Park, K.T.; Kim, H.J.; Kim, Y.E.; Jeong, S.K. Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride. Energy Fuels 2017, 31, 763–769. [Google Scholar] [CrossRef]
- Galvez-Martos, J.L.; Elhoweris, A.; Morrison, J.; Al-Horr, Y. Conceptual design of a CO2 capture and utilisation process based on calcium and magnesium rich brines. J. CO2 Util. 2018, 27, 161–169. [Google Scholar] [CrossRef]
- Erdogan, N.; Eken, H.A. Precipitated calcium carbonate production, synthesis and properties. Phys. Probl. Min. Process 2017, 53, 57–68. [Google Scholar]
- Dong, C.; Song, X.; Li, Y.; Liu, C.; Chen, H.; Yu, J. Impurity ions effect on CO2 mineralization via coupled reaction-extraction-crystallization process of CaCl2 waste liquids. J. CO2 Util. 2018, 27, 115–128. [Google Scholar] [CrossRef]
- Wiles, C.C. Municipal Solid Waste Combustion Ash: State-of-the-Knowledge. J. Hazard. Mater. 1996, 47, 325–344. [Google Scholar] [CrossRef]
- Costa, G.; Baciocchi, R.; Polettini, A.; Pomi, R.; Hills, C.D.; Carey, P.J. Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Environ. Monit. Assess 2007, 135, 55–75. [Google Scholar] [CrossRef]
- Mostbauer, P.; Lenz, S.S.; Lechner, P. MSWI bottom ash for upgrading of biogas and landfill gas. Environ. Technol. 2008, 29, 757–764. [Google Scholar] [CrossRef]
- del Valle-Zermeño, R.; Romero-Güiza, M.S.; Chimenos, J.M.; Formosa, J.; Mata-Alvarez, J.; Astals, S. Biogas Upgrading Using MSWI Bottom Ash: An Integrated Municipal Solid Waste Management. Renew. Energy 2015, 80, 184–189. [Google Scholar] [CrossRef]
- Yao, Z.; Prabhakar, A.K.; Cadiam Mohan, B.; Wang, C.H. An Innovative Accelerated Carbonation Process for Treatment of Incineration Bottom Ash and Biogas Upgrading. Waste Manag. 2022, 144, 203–209. [Google Scholar] [CrossRef]
- Rendek, E.; Ducom, G.; Germain, P. Influence of Waste Input and Combustion Technology on MSWI Bottom Ash Quality. Waste Manag. 2007, 27, 1403–1407. [Google Scholar] [CrossRef]
- Rattanaya, T.; Kongjan, P.; Cheewasedtham, C.; Bunyakan, C.; Yuso, P.; Cheirsilp, B.; Jariyaboon, R. Application of Palm Oil Mill Waste to Enhance Biogas Upgrading and Hornwort Cultivation. J. Environ. Manag. 2022, 309, 114678. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Value-Added Utilization of Oil Palm Ash: A Superior Recycling of the Industrial Agricultural Waste. J. Hazard. Mater. 2009, 172, 523–531. [Google Scholar] [CrossRef]
- Chavez, R.-H.; Guadarrama, J.J. Biogas Treatment by Ashes from Incineration Processes. Clean Technol. Environ. Policy 2015, 17, 1291–1300. [Google Scholar] [CrossRef]
- Lombardi, L.; Costa, G.; Spagnuolo, R. Accelerated Carbonation of Wood Combustion Ash for CO2 Removal from Gaseous Streams and Storage in Solid Form. Environ. Sci. Pollut. Res. 2018, 25, 35855–35865. [Google Scholar] [CrossRef]
- Papurello, D.; Silvestri, S.; Biasioli, F.; Lombardi, L. Wood Ash Biomethane Upgrading System: A Case Study. Renew. Energy 2022, 182, 702–712. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Petrova, N.L. Mineral Carbonation of Biomass Ashes in Relation to Their CO2 Capture and Storage Potential. ACS Omega 2021, 6, 14598–14611. [Google Scholar] [CrossRef]
- Andersson, J.; Nordberg, A. Biogas Upgrading Using Ash from Combustion of Wood Fuels: Laboratory Experiments. Energy Environ. Res. 2017, 7, 38–47. [Google Scholar] [CrossRef]
- Mulu, E.; M’Arimi, M.M.; Ramkat, R.C.; Mecha, A.C. Potential of wood ash in purification of biogas. Energy Sustain. Dev. 2021, 65, 45–52. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Y.; Nie, Y. Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca. J. Hazard. Mater. 2010, 174, 334–343. [Google Scholar] [CrossRef]
- Koch, R.; Sailer, G.; Paczkowski, S.; Pelz, S.; Poetsch, J.; Müller, J.; Frusteri, F. Lab-Scale Carbonation of Wood Ash for CO2-Sequestration. Energies 2021, 14, 7371. [Google Scholar] [CrossRef]
- Doucet, F.J. Effective CO2-Specific Sequestration Capacity of Steel Slags and Variability in Their Leaching Behavior in View of Industrial Mineral Carbonation. Min. Eng. 2010, 23, 262–269. [Google Scholar] [CrossRef]
- Chen, B.; Yoon, S.; Zhang, Y.; Han, L.; Choi, Y. Reduction of Steel Slag Leachate PH via Humidification Using Water and Aqueous Reagents. Sci. Total Environ. 2019, 671, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Heiderscheidt, E.; Postila, H.; Leiviskä, T. Removal of Metals from Wastewaters by Mineral and Biomass-Based Sorbents Applied in Continuous-Flow Continuous Stirred Tank Reactors Followed by Sedimentation. Sci. Total Environ. 2020, 700, 135079. [Google Scholar] [CrossRef]
- Stolaroff, J.K.; Lowry, G.V.; Keith, D.W. Using CaO- and MgO-Rich Industrial Waste Streams for Carbon Sequestration. Energy Convers. Manag. 2005, 46, 687–699. [Google Scholar] [CrossRef]
- Truong, M.V.; Nguyen, L.N.; Li, K.; Fu, Q.; Johir, M.A.H.; Fontana, A.; Nghiem, L.D. Biomethane Production from Anaerobic Co-Digestion and Steel-Making Slag: A New Waste-to-Resource Pathway. Sci. Total Environ. 2020, 738, 139764. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Di Bartolomeo, E.; Polettini, A.; Pomi, R. Wet versus slurry carbonation of EAF steel slag. Greenh. Gas Sci. Technol. 2011, 1, 312–319. [Google Scholar] [CrossRef]
- Eloneva, S.; Teir, S.; Salminen, J.; Fogelholm, C.J.; Zevenhoven, R. Fixation of CO2 by Carbonating Calcium Derived from Blast Furnace Slag. Energy 2008, 33, 1461–1467. [Google Scholar] [CrossRef]
- Teir, S.; Eloneva, S.; Fogelholm, C.J.; Zevenhoven, R. Dissolution of Steelmaking Slags in Acetic Acid for Precipitated Calcium Carbonate Production. Energy 2007, 32, 528–539. [Google Scholar] [CrossRef]
- Chang, E.E.; Chen, C.H.; Chen, Y.H.; Pan, S.Y.; Chiang, P.C. Performance Evaluation for Carbonation of Steel-Making Slags in a Slurry Reactor. J. Hazard. Mater. 2011, 186, 558–564. [Google Scholar] [CrossRef]
- Proctor, D.M.; Fehling, K.A.; Shay, E.C.; Wittenborn, J.L.; Green, J.J.; Avent, C.; Bigham, R.D.; Connolly, M.; Lee, B.; Shepker, T.O.; et al. Physical and Chemical Characteristics of Blast Furnace, Basic Oxygen Furnace, and Electric Arc Furnace Steel Industry Slags. Environ. Sci. Technol. 2000, 34, 1576–1582. [Google Scholar] [CrossRef]
- Motz, H.; Geiseler, J. Products of Steel Slags an Opportunity to Save Natural Resources. Waste Manag. 2001, 21, 285–293. [Google Scholar] [CrossRef]
- Sarperi, L.; Surbrenat, A.; Kerihuel, A.; Chazarenc, F. The Use of an Industrial By-Product as a Sorbent to Remove CO2 and H2S from Biogas. J. Environ. Chem. Eng. 2014, 2, 1207–1213. [Google Scholar] [CrossRef]
- Chetri, J.K.; Reddy, K.R.; Grubb, D.G. Carbon-Dioxide and Hydrogen-Sulfide Removal from Simulated Landfill Gas Using Steel Slag. J. Environ. Eng. 2020, 146, 12. [Google Scholar] [CrossRef]
- Zieliński, M.; Karczmarczyk, A.; Kisielewska, M.; Dębowski, M. Possibilities of Biogas Upgrading on a Bio-Waste Sorbent Derived from Anaerobic Sewage Sludge. Energies 2022, 15, 6461. [Google Scholar] [CrossRef]
- Mostbauer, P.; Lombardi, L.; Olivieri, T.; Lenz, S. Pilot Scale Evaluation of the BABIU Process—Upgrading of Landfill Gas or Biogas with the Use of MSWI Bottom Ash. Waste Manag. 2014, 34, 125–133. [Google Scholar] [CrossRef]
- Madhania, S.; Kusdianto, K.; Machmudah, S.; Nurtono, T.; Widiyastuti, W.; Winardi, S. Biogas quality upgrading by carbon mineralization with calcium hydroxide solution in continuous bubble column reactor. AIP Conf. Proc. 2020, 2197, 120003. [Google Scholar] [CrossRef]
- Wang, W.; Hu, M.; Zheng, Y.; Wang, P.; Ma, C. CO2 fixation in Ca2/Mg-rich aqueous solutions through enhanced carbonate precipitation. Ind. Eng. Chem. Res. 2011, 50, 8333–8339. [Google Scholar] [CrossRef]
- Tran, L.; Le, T.; Nguyen, T.; Tran, Q.; Le, X.; Pham, M.; Lam, V.; Van Do, M. Simultaneous removal efficiency of H2S and CO2 by high-gravity rotating packed bed: Experiments and simulation. Open Chem. 2021, 19, 288–298. [Google Scholar] [CrossRef]
- Aghel, B.; Gouran, A.; Behaien, S.; Vaferi, B. Experimental and Modeling Analyzing the Biogas Upgrading in the Microchannel: Carbon Dioxide Capture by Seawater Enriched with Low-Cost Waste Materials. Environ. Technol. Innov. 2022, 27, 102770. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusanowska, P.; Zieliński, M.; Dębowski, M. Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials. Int. J. Environ. Res. Public Health 2023, 20, 5687. https://doi.org/10.3390/ijerph20095687
Rusanowska P, Zieliński M, Dębowski M. Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials. International Journal of Environmental Research and Public Health. 2023; 20(9):5687. https://doi.org/10.3390/ijerph20095687
Chicago/Turabian StyleRusanowska, Paulina, Marcin Zieliński, and Marcin Dębowski. 2023. "Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials" International Journal of Environmental Research and Public Health 20, no. 9: 5687. https://doi.org/10.3390/ijerph20095687
APA StyleRusanowska, P., Zieliński, M., & Dębowski, M. (2023). Removal of CO2 from Biogas during Mineral Carbonation with Waste Materials. International Journal of Environmental Research and Public Health, 20(9), 5687. https://doi.org/10.3390/ijerph20095687