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Abstract: (1) Background: Quasi-experimental design has been widely used in causal inference for
health policy impact evaluation. However, due to the non-randomized treatment used, there is great
potential for bias in the assessment of the results, which can be reduced by using propensity score
(PS) methods. In this context, this article aims to map the literature concerning the use of machine
learning (ML) algorithms for propensity score estimation. (2) Methods: A scoping review was carried
out in the PubMed, EMBASE, ACM Digital Library, IEEE Explore, LILACS, Web of Science, Scopus,
Compendex, and gray literature (ProQuest and Google Scholar) databases, based on the PRISMA-ScR
guidelines. This scoping review aims to identify ML models and their accuracy and the characteristics
of studies on causal inference for health policy impacts, with a specific focus on PS estimation using
ML. (3) Results: Seven studies were included in the review from 3018 references searched. In general,
tree-based ML models were used for PS estimation. Most of the studies did not show or mention
the performance metrics of the selected models, focusing instead on discussing the treatment effects
under analysis. (4) Conclusions: Despite important aspects of model development and evaluation
being under-reported, this scoping review provides insights into the recent use of ML algorithms in
health policy impact evaluation.

Keywords: causality; artificial intelligence; health care economics and organizations

1. Introduction

Causal inference is a statistical method that aims to provide evidence about the impact
of an intervention on a system, and it has been widely employed in empirical research to
assess the evaluation of public health policies [1]. In the case of public health policy impact
evaluation, the core of causal inference is to provide a reliable answer to the following
question: “What would have happened in the absence of the policy?”. This question
represents the counterfactual scenario (contrary to the fact), which cannot be directly
observed [2]. Therefore, it is necessary to estimate the potential outcomes in the situation
where the policy had not been implemented, by comparing a group of individuals subject
to the policy (treatment group) with another group that is not subject to it (control group).
If the selected groups have similar characteristics, it is possible to estimate the policy impact
effect without bias [3–5].

Overall, researchers use data from quasi-experimental design research (ecological
studies) to investigate the causal effect of public health policies. One of the challenges of
causal inference in ecological studies is the presence of imbalances in covariates, which
affect both the treatment and the outcome, acting as confounders [6]. In this context, a
set of assumptions is required to obtain unbiased causal inference: stability (the potential
outcomes for any unit are not affected by other units’ treatment levels), consistency (the
observed outcome is equal to the potential outcome at any treatment level), exchangeability
(the potential outcomes are independent of the treatment for any treatment level), and
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positivity (subgroups with similar characteristics have a non-zero probability of being in
any intervention level) [7].

However, the large number of covariates and the non-randomized nature of subject
groups in quasi-experimental studies pose significant challenges to causal inference [8].
Confounding factors, selection bias, and measurement errors are typically bottlenecks in val-
idating causal inference models [9]. To overcome these issues, propensity score (PS)-based
methods are often used to reduce bias in causal effect estimation [4]. PS is a conditional
probability of receiving a specific treatment (or an intervention, e.g., the implementation of
a health policy) in a quasi-experimental design. Additionally, PS incorporates observed
covariables potentially related to the treatment under analysis and/or its outcomes in a
single score [10,11].

The PS approach results in a dimensionality reduction, since a single variable is
obtained from a given vector of observed covariables [12]. Thus, all covariates are incorpo-
rated into the PS, offering a way to achieve more balanced groups through the PS matching
of the treatment and control groups. Causal inference can then be made by balancing
on the PS rather than on all the covariates. Finally, given an exposed and an unexposed
individual with a similar PS, the assignment of treatment is independent of unobserved
confounders [8]. In the extended literature, logistic regression has been broadly employed
to estimate the PS [12–15]. However, logistic regression requires assumptions regarding
variable selection, the distributions of variables, and the specification of interactions [16].
In this context, machine learning (ML) algorithms are an alternative to logistic regression
in estimating the PS [17].

ML stands as a prominent application of artificial intelligence (AI) and has been used
to obtain insights in different fields. In public health, several ML algorithms have been
employed to predict clinical outcomes using data from medical imaging and electronic
health records (EHRs), for instance [18]. However, despite the widespread use of predictive
ML models in clinical medicine, the application of AI to assess the impact of public health
policies on population health and health inequalities has been less reported [2,6,19].

This scoping review aims to map the empirical literature concerning the use of ML
algorithms for PS estimation in the causal inference evaluation of public health policies.
Our goal is to identify ML algorithms that can be applied to estimate the PS, as well as
the modeling and evaluation strategies involved. The key contribution of this study is to
provide a comprehensive overview of the potential use of ML techniques in PS estimation
and their applicability to real-world public health data.

To our knowledge, few reviews have focused specifically on the use of ML in causal
inference related to public health policy, differing from this scoping review in terms of
their objectives and scope. The review conducted by Westreich et al. (2010) [12] explores
ML alternatives to logistic regression, primarily offering theoretical explanations of the
models. Mooney and Pejaver (2018) [9] address several key issues around big data in public
health, including a brief discussion on causal inference. Cheng et al. (2022) [17] focus on
reviewing causal theories and methodologies, and on benchmarking a fundamental task in
causal inference.

In this scoping review, we provide an analysis of the use of ML algorithms to estimate
the PS in health policy evaluation in empirical studies. Moreover, understanding how these
models have been developed, identifying knowledge gaps, and recognizing limitations
might guide future research in causal inference, providing important contributions towards
a better understanding of causal inference powered by ML algorithms.

2. Materials and Methods

This scoping review follows the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines [20], and the study
protocol was registered on the Open Science Framework (doi.org/10.17605/OSF.IO/WTMGX).

doi.org/10.17605/OSF.IO/WTMGX
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2.1. Research Question

The research question was developed using the PCC (Participants, Concept, and
Context) framework. The context involves the evaluation of public health policies, while
the concept focuses on the use of machine learning (ML) algorithms for propensity score
(PS) estimation. The participants are undefined and refer to the general population under
a specific health policy. Thus, the research question is as follows: “What machine learning
algorithms have been used to estimate propensity scores in the context of health policy impact
evaluation?”. Our goal is to comprehensively scope out all ML algorithms that have been
employed in causal inference for evaluating health policies worldwide.

2.2. Eligibility Criteria

The inclusion criteria covered all articles that use any ML algorithm to estimate the
PS in the context of health policy impact evaluation. There were no restrictions on the
publication year, language, or location. The exclusion criteria were as follows: (1) studies
outside the domain of public policy evaluation; (2) studies that did not employ any ML
algorithm to estimate PS; (3) studies focused on a specific clinical care or disease application;
(4) those with missing methodology or results; (5) studies comprising book chapters or
conference papers; and (6) studies where the full text was not available.

2.3. Information Sources and Search Strategy

The search strategy comprised peer-reviewed literature database, gray literature, and
reference searches. The following databases were selected: PubMed, EMBASE, ACM
Digital Library, IEEE Explore, LILACS, Web of Science, Scopus, and Compendex. Gray
literature search tools included ProQuest and Google Scholar. The Google Scholar search
was based on the first 100 most relevant studies. The search strategy was developed in
collaboration with an academic librarian and adapted for each database (Appendix A). The
search was conducted in 6 July 2023. Additionally, the reference lists of included articles
were screened to identify potential studies. The references obtained from the search strategy
were managed using EndNote Web, which automatically removed duplicate articles.

2.4. Study Selection Process

The study selection process and decision tracking were managed using the Rayyan
review tool. Two independent reviewers (LL and LW) conducted the screening in a double-
blinded process, following two sequential phases. In the first phase, the selection process
was based on reading the title, abstract, and author keywords. Studies which met the
eligibility criteria were selected and moved to the next phase. In the second phase, full-text
reading was undertaken, applying the inclusion and exclusion criteria to obtain the final
set of studies (phase 2). In both phases, disagreements were resolved through consensus,
and in cases of persisting discrepancies, a third reviewer (VR) was consulted.

2.5. Data Extraction and Synthesis

Data from each included study were extracted independently by two reviewers
(LL and LW). The extracted data included general study characteristics (country, health
policy or program under analysis, year, and data source), model development (features,
outcomes, and ML algorithms used) and evaluation aspects (performance metrics and
main conclusions). The data charting process was conducted manually. In order to mini-
mize potential errors, a calibration study was carried out as indicated in the PRISMA-ScR
guidelines [20]. Disagreements were resolved through consensus. The results were synthe-
sized through a narrative approach, reporting on the extent of different ML models for PS
estimation in causal impact of health policies, the methods employed, and whether bias
was identified.
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3. Results
3.1. Study Selection

The search retrieved 3018 studies from the selected database and 185 studies from
the gray literature. A total of 815 duplicated articles were automatically excluded, leaving
2203 documents remaining. After screening phase 1, based on reading the title, abstract,
and author keywords, 2141 studies were excluded. In screening phase 2, 55 articles were
excluded and 7 studies met the inclusion criteria after full-text reading. The screening
process is presented in Figure 1, and data extracted from all the included studies are
summarized in Table 1.
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Table 1. Data summary of included studies on machine learning used for propensity score estimation.

Author, Year,
Country

Health
Policy/Program Data SOURCE ML Algorithms Performance Metrics

Chen et al., 2021
China [21]

Urban and Rural
Resident Basic

Medical Insurance
(URRBMI)

China Family Panel
Studies (CFPS) Causal forest Not provided

Costello et al., 2021
Canada [22] 12-step groups Recovery

Journey Project (RJP)

Random forest;
Bayesian additive

regression trees (BARTs)
Not provided

Ladhania et al., 2021
USA [23] Medicaid

National Hospital
Ambulatory Medical

Care Survey
Boosted regression trees Not provided

Maciel and Duarte, 2022
USA [24]

Cash transfer
program Bolsa

Família

Brazilian Household
Budget Survey

Gradient boosting;
random forest;

neural networks;
SVM

Accuracy (%);
misclassification

rate (%)

Kreif et al., 2022
UK [25]

Jamima Kesehatan
National (JKN)

Indonesian
Family Life

Survey
Causal forest Not provided
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Table 1. Cont.

Author, Year,
Country

Health
Policy/Program Data SOURCE ML Algorithms Performance Metrics

Wink Junior et al., 2022
Brazil [26]

National Policy for
Emergency and

Urgent Care

DATASUS;
Brazilian Institute of

Geography and Statistics;
National Supplementary

Health Agency

Bayesian additive
regression trees (BARTs) Not provided

Garcia et al., 2023
Brazil [27]

Public expenditure
on health per capita World Bank database

SuperLearner
(generalized linear

model, neural network,
random forest, gradient

boosting machine,
Xgboost)

Not provided

3.2. Machine Learning Algorithms

The ML algorithms used in the screened studies included random forest [22,24,27],
causal forest [21,25], Bayesian additive regression trees [22,26], neural networks [24,27],
gradient boosting [24,27], generalized linear models [27], XGBoost [27], boosted regression
trees [23], and support vector machines [24]. In addition, three studies compared the results
of the machine learning algorithms with statistical logistic regression methods [22,24,25].

All the studies reviewed provided some discussion regarding the use of ML algorithms
for assessing the impact of health policies. The main advantages highlighted by the authors
included efficiency in handling high-dimensional data, the ability to capture the non-linear
relationships among the variables, improved covariate balance, and reduction in bias in
cases of model misspecification. The authors of most of the articles also discussed some of
the limitations of their studies.

3.3. Model Development

In general, sociodemographic variables such as age, gender, education level, and
household income, were frequently used. The number of features considered in each
study varied between 5 and 33, with 57% of the studies using less than 10 independent
variables. Fewer authors described how missing data were handled [22,27], reported how
overfitting was prevented [24], provided the algorithm’s hyperparameters [23,25], and
evaluated performance metrics [24,27]. Additionally, a sensitivity analysis was performed
and evaluated only in three selected studies [22,24,27]. Sensitivity analysis approaches are
recommended in causality studies to assess the robustness of causal effects in the presence
of potential unmeasured or uncontrolled confounders [28,29].

4. Discussion

This scoping review provides a comprehensive overview of the current use of ML
algorithms for PS estimation in health policy impact evaluation studies worldwide. A total
of seven studies were included in the review process, evidencing the incipient application
of ML for this purpose. Despite the growing presence of artificial intelligence in health
sciences [1,9], it is well known that statistical models are widely employed to estimate
propensity scores in causal inference studies. Among them, logistic regression is preferrable
due to its familiarity among researchers and ease of implementation, often being considered
the state-of-the-art model [12].

In their study, Garcia et al. (2023) [27] proposed the use of ML to estimate the impact
of national government expenditure on reducing infant mortality across several countries.
Although the study does not focus on a specific health policy, the authors sought to
investigate the decisions made by governments to improve public health in their countries.
The method employed was based on the use of the Super Learner algorithm to estimate
the generalized propensity score (GPS), guiding the results to a reduction in the coefficient
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of variation of the weights. The authors compared the results with other GPS estimation
methods and found that Super Learner had the highest coefficient of variation of weights.
Moreover, specific performance metrics of Super Learner were not provided, making it
impossible to assess the feasibility of this approach.

Bayesian additive regression trees (BARTs) and boosted regression trees were used
by Wink Junior et al. (2022) [26] and Ladhania et al. (2021) [23], respectively, to evaluate
the impact of health policies on emergency care units. Although both studies discussed
the potential advantages of ML in causal inference, the authors did not provide a detailed
evaluation of the selected models. Likewise, a causal forest was applied in two screened
studies [21,25]. However, both analyses did not show or mention any performance metrics
of the models, and also did not perform a sensitivity analysis.

ML applications can be particularly effective in modeling the association of outcomes
with covariates, especially when dealing with high-dimensional data [2]. In addition, ML
algorithms can implicitly address interactions and non-linearities, which might result in
improvements in PS estimation, as logistic regression assumes linearity between covariates
and the log odds of the outcome. When there are implicit non-linearities in the system,
the use of logistic regression might result in a poor model fit and, in turn, a biased effect
estimation [12,16]. In this context, Westreich et al. (2010) [12] discussed the use of ML for
PS estimation, highlighting boosting techniques and decision trees as alternatives to logistic
regression. However, the main drawback of these algorithms is their “black box” nature,
which can make the etiological interpretation difficult.

Lee, Lessler, and Stuart (2010) [16] explored the use of ML algorithms to estimate the
PS in a hypothetical study in order to evaluate the robustness of non-parametric techniques
compared to logistic regression. The authors evaluated the performance of basic off-the-
shelf versions of ML, reducing the complexity of implementation, across scenarios with
different degrees of non-linearity as well as using small, medium, and large-size datasets.
According to their findings, the classification and regression trees (CARTs), random forests,
and boosted CARTs outperformed logistic regression, regardless of the sample size or the
extent of the non-linearity. These results suggest that, despite ML algorithms usually being
used with larger datasets, they can also be satisfactorily used in smaller datasets and less
complex systems.

Two eligible studies analyzed different ML algorithms, providing comparison evalua-
tions among the selected models and logistic regressions. Maciel and Duarte (2022) [24]
compared the accuracy and sensitivity of gradient boosting, random forests, neural net-
works, support vector machines, and logistic regression models. According to their findings,
all the models had a similar accuracy, ranging from 74.2% to 76.5%. However, gradient
boosting had the highest sensitivity (93.5%), indicating a greater robustness to potential
unobserved confounders [30]. On the other hand, both logistic regression and support
vector machines had the lowest sensitivity (76.5%). Costello et al. (2021) [22] evaluated
random forests and Bayesian additive regression trees, as well as logistic regression, for
propensity score estimation. The authors support their results on the comparison of the
estimation effects and the sensitivity analysis, regardless of them not providing appropriate
ML performance metrics.

Overall, the findings suggest similar results among parametric and non-parametric
models, demonstrating a relative robustness to unmeasured confounders. The satisfactory
performance of logistic regression in both Maciel and Duarte’s (2022) [24] and Costello
et al.’s (2021) [22] studies may argue against the use of ML algorithms for PS estimation for
health policy evaluation. Considering the more demanding implementation of ML also
in terms of computational time, Cannas and Arpino (2019) [6] pointed out that the use of
ML over logistic regression may not be worthwhile if logistic regression is sufficient for
achieving a good covariate balance.

The results of the selected studies often fell short in terms of model evaluation. Many
studies did not report the hyperparameter selection process, strategies to avoid overfitting,
or any performance metric, which limits their critical appraisal or comparison with para-
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metric approaches. As a result, the discussion of the ML models is restricted to their use
and application as an alternative to logistic regression. Consequently, the discussions on
ML models were often restricted to their application as alternatives to logistic regression.
This limitation hinders the comprehensive comparison of different ML algorithms used for
PS estimation or the evaluation of different causal inference models across various studies.

Cheng et al. (2022) [17] highlighted the lack of benchmark resources for model evalua-
tion in causal inference studies. This gap makes it challenging to integrate both ML and
causal inference techniques. Moreover, tuning hyperparameters and validation processes
are crucial to ensure reliable results from ML algorithms. In the context of causal inference,
ML tuning is not straightforward, as optimality should refer to some measure of covariate
balance required for unbiased effect estimation, rather than to goodness-of-fit measures, as
is commonly performed [6]. Frequently, cross-validation techniques have been suggested
for this purpose and they are recommended for future studies.

5. Conclusions and Future Directions

This scoping review acknowledges that some studies may have been omitted due the
restrictions on the selected databases. In addition, the inclusion criteria were restricted to
studies that specifically focused on health policy evaluation. Consequently, this review does
not cover the broader use of machine learning in causal inference, potentially introducing
selection bias. Since many studies did not report the performance metrics of the algorithms,
this review primarily aimed to discuss the state of the art of the use of machine learning
for propensity score estimation, rather than providing a comprehensive evaluation of its
feasibility and advantages compared to parametric methods. Despite these challenges, the
results of this scoping review highlighted key directions for future research. When dealing
with high-dimensional covariates, a parametric approach such as logistic regression may
fail to address the interaction effects of all the predictors. In this case, ML algorithms
can offer an alternative to overcome this issue. However, if the system under analysis
involves few covariates, it is necessary to evaluate whether the use of ML algorithms over
logistic regression, for instance, brings significant benefits, due to the model complexity
and computational costs. In summary, while the application of ML algorithms remains
limited, there is clear potential for further exploration. More primary studies are needed
to better understand the precision of AI in health policy evaluation. Overall, ML offers
promising opportunities to enhance the evaluation of health policies by incorporating
high-dimensional data and non-linear effects, thus enriching our understanding of policy
interventions.
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Search query:
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(“Machine Learning” [MeSH Terms] OR “Machine Learning” [All Fields] OR “Transfer
Learning” [All Fields] OR “Artificial Intelligence” [MeSH Terms] OR “Artificial Intelligence”
[All Fields] OR “Deep Learning” [MeSH Terms] OR “Deep Learning” [All Fields] OR “cart”
[Title/Abstract] OR “classification and regression tree” [All Fields] OR “gradient boosting
machine” [All Fields] OR “xgboost” [All Fields] OR “neural networks, computer” [MeSH
Terms] OR “Computer Neural Network” [All Fields] OR “Computer Neural Networks” [All
Fields] OR “Neural Networks” [All Fields] OR “Neural Network” [All Fields] OR “Random
Forest” [MeSH Terms] OR “Random Forest” [All Fields] OR “Random Forests” [All Fields]
OR “logistic regression” [All Fields] OR “decision tree” [All Fields]) AND (“Health Policy”
[MeSH Terms] OR “Health Policy” [Title/Abstract] OR “Healthcare Policy” [All Fields]
OR “Healthcare Policies” [All Fields] OR “Health Policies” [All Fields] OR “Health Care
Policies” [All Fields] OR “Health Care Policy” [All Fields] OR “National Health Policy” [All
Fields] OR “National Health Policies” [All Fields] OR “public health” [Title/Abstract] OR
“Health Care Economics and Organizations” [MeSH Terms] OR “Healthcare Economics
and Organizations” [All Fields] OR “Health Care Economics” [All Fields] OR “Health Care
Economic” [All Fields] OR “Healthcare Economics” [All Fields] OR “Healthcare Economic”
[All Fields] OR “Health Economics” [All Fields] OR “Health Economic” [All Fields]) AND
(“Propensity Score” [MeSH Terms] OR “Propensity Score” [All Fields] OR “Propensity
Scores” [All Fields] OR “Inverse Propensity Weighting” [All Fields])

Database: Embase (Elsevier)
Search query:
(‘machine learning’/de OR ‘machine learning’ OR ‘transfer learning’/de OR ‘transfer

learning’ OR ‘artificial intelligence’/de OR ‘artificial intelligence’ OR ‘deep learning’/de
OR ‘deep learning’ OR ‘cart’ OR ‘classification and regression tree’/de OR ‘classification
and regression tree’ OR ‘gradient boosting machine’/de OR ‘gradient boosting machine’
OR ‘xgboost’/de OR ‘xgboost’ OR ‘computer neural network’/de OR ‘computer neural
network’ OR ‘computer neural networks’/de OR ‘computer neural networks’ OR ‘neural
networks’/de OR ‘neural networks’ OR ‘neural network’/de OR ‘neural network’ OR
‘random forest’/de OR ‘random forest’ OR ‘random forests’/de OR ‘random forests’ OR
‘logistic regression’/de OR ‘logistic regression’ OR ‘decision tree’/de OR ‘decision tree’)
AND (‘health policy’/de OR ‘health policy’ OR ‘healthcare policy’/de OR ‘healthcare
policy’ OR ‘healthcare policies’ OR ‘health policies’ OR ‘health care policies’ OR ‘health care
policy’/de OR ‘health care policy’ OR ‘national health policy’ OR ‘national health policies’
OR ‘public health’/de OR ‘public health’ OR ‘healthcare economics and organizations’
OR ‘health care economics’/de OR ‘health care economics’ OR ‘health care economic’
OR ‘healthcare economics’/de OR ‘healthcare economics’ OR ‘healthcare economic’ OR
‘health economics’/de OR ‘health economics’ OR ‘health economic’) AND (‘propensity
score’/de OR ‘propensity score’ OR ‘propensity scores’/de OR ‘propensity scores’ OR
‘inverse propensity weighting’)

Database: ACM
Search query:
(“Machine Learning” OR “Transfer Learning” OR “Artificial Intelligence” OR “Deep

Learning” OR “cart” OR “classification and regression tree” OR “gradient boosting ma-
chine” OR “xgboost” OR “Computer Neural Network” OR “Computer Neural Networks”
OR “Neural Networks” OR “Neural Network” OR “Random Forest” OR “Random Forests”
OR “logistic regression” OR “decision tree”) AND (“Health Policy” OR “Healthcare Policy”
OR “Healthcare Policies” OR “Health Policies” OR “Health Care Policies” OR “Health Care
Policy” OR “National Health Policy” OR “National Health Policies” OR “public health”
OR “Healthcare Economics and Organizations” OR “Health Care Economics” OR “Health
Care Economic” OR “Healthcare Economics” OR “Healthcare Economic” OR “Health
Economics” OR “Health Economic”) AND (“Propensity Score” OR “Propensity Scores” OR
“Inverse Propensity Weighting”)

Database: IEEE Xplore
Search query:
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(“All Metadata”:“Machine Learning” OR “All Metadata”:“Transfer Learning” OR “All
Metadata”:“Artificial Intelligence” OR “All Metadata”:“Deep Learning” OR “All Metadata”:
“cart” OR “All Metadata”:“classification and regression tree” OR “All Metadata”:“gradient
boosting machine” OR “All Metadata”:“xgboost” OR “All Metadata”:“Computer Neural
Network” OR “All Metadata”:“Computer Neural Networks” OR “All Metadata”:“Neural
Networks” OR “All Metadata”:“Neural Network” OR “All Metadata”:“Random Forest” OR
“All Metadata”:“Random Forests” OR “All Metadata”:“logistic regression” OR “All Meta-
data”:“decision tree”) AND (“All Metadata”:“Health Policy” OR “All Metadata”:“Healthcare
Policy” OR “All Metadata”:“Healthcare Policies” OR “All Metadata”:“Health Policies” OR
“All Metadata”:“Health Care Policies” OR “All Metadata”:“Health Care Policy” OR “All
Metadata”:“National Health Policy” OR “All Metadata”:“National Health Policies” OR “All
Metadata”:“public health” OR “All Metadata”:“Healthcare Economics and Organizations”
OR “All Metadata”:“Health Care Economics” OR “All Metadata”:“Health Care Economic”
OR “All Metadata”:“Healthcare Economics” OR “All Metadata”:“Healthcare Economic” OR
“All Metadata”:“Health Economics” OR “All Metadata”:“Health Economic”) AND (“All Meta-
data”:“Propensity Score” OR “All Metadata”:“Propensity Scores” OR “All Metadata”:“Inverse
Propensity Weighting”)

Database: Scopus (Elsevier)
Search query:
TITLE-ABS-KEY(“Machine Learning” OR “Transfer Learning” OR “Artificial Intelli-

gence” OR “Deep Learning” OR “cart” OR “classification and regression tree” OR “gra-
dient boosting machine” OR “xgboost” OR “Computer Neural Network” OR “Computer
Neural Networks” OR “Neural Networks” OR “Neural Network” OR “Random Forest”
OR “Random Forests” OR “logistic regression” OR “decision tree”) AND TITLE-ABS-
KEY(“Health Policy” OR “Healthcare Policy” OR “Healthcare Policies” OR “Health Poli-
cies” OR “Health Care Policies” OR “Health Care Policy” OR “National Health Policy”
OR “National Health Policies” OR “public health” OR “Healthcare Economics and Or-
ganizations” OR “Health Care Economics” OR “Health Care Economic” OR “Healthcare
Economics” OR “Healthcare Economic” OR “Health Economics” OR “Health Economic”)
AND TITLE-ABS-KEY(“Propensity Score” OR “Propensity Scores” OR “Inverse Propensity
Weighting”)

Database: Web of Science (Clarivate Analytics)
Search query:
TS = (“Machine Learning” OR “Transfer Learning” OR “Artificial Intelligence” OR

“Deep Learning” OR “cart” OR “classification and regression tree” OR “gradient boost-
ing machine” OR “xgboost” OR “Computer Neural Network” OR “Computer Neural
Networks” OR “Neural Networks” OR “Neural Network” OR “Random Forest” OR “Ran-
dom Forests” OR “logistic regression” OR “decision tree”) AND TS = (“Health Policy”
OR “Healthcare Policy” OR “Healthcare Policies” OR “Health Policies” OR “Health Care
Policies” OR “Health Care Policy” OR “National Health Policy” OR “National Health
Policies” OR “public health” OR “Healthcare Economics and Organizations” OR “Health
Care Economics” OR “Health Care Economic” OR “Healthcare Economics” OR “Healthcare
Economic” OR “Health Economics” OR “Health Economic”) AND TS = (“Propensity Score”
OR “Propensity Scores” OR “Inverse Propensity Weighting”)

Database: COMPENDEX
Search query:
(((“Machine Learning” OR “Transfer Learning” OR “Artificial Intelligence” OR “Deep

Learning” OR “cart” OR “classification and regression tree” OR “gradient boosting ma-
chine” OR “xgboost” OR “Computer Neural Network” OR “Computer Neural Networks”
OR “Neural Networks” OR “Neural Network” OR “Random Forest” OR “Random Forests”
OR “logistic regression” OR “decision tree”) WN KY) AND ((“Health Policy” OR “Health-
care Policy” OR “Healthcare Policies” OR “Health Policies” OR “Health Care Policies” OR
“Health Care Policy” OR “National Health Policy” OR “National Health Policies” OR “pub-
lic health” OR “Healthcare Economics and Organizations” OR “Health Care Economics”
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OR “Health Care Economic” OR “Healthcare Economics” OR “Healthcare Economic” OR
“Health Economics” OR “Health Economic”) WN KY)) AND ((“Propensity Score” OR
“Propensity Scores” OR “Inverse Propensity Weighting”) WN KY)

Database: LILACS
Search query:
(“Machine Learning” OR “Transfer Learning” OR “Artificial Intelligence” OR “Deep

Learning” OR “cart” OR “classification and regression tree” OR “gradient boosting ma-
chine” OR “xgboost” OR “Computer Neural Network” OR “Computer Neural Networks”
OR “Neural Networks” OR “Neural Network” OR “Random Forest” OR “Random Forests”
OR “logistic regression” OR “decision tree” OR “Aprendizado de Máquina” OR “Apren-
dizado Automático” OR “Aprendizado de Transferência” OR “Aprendizagem Automática”
OR “Aprendizagem de Máquina” OR “Aprendizagem de Transferência” OR “Apren-
dizaje Automático” OR “Aprendizaje por Transferencia” OR “Inteligencia Artificial” OR
“Aquisição de Conhecimento” OR “Aquisição de Conhecimentos” OR “IA” OR “Inteligência
Artificial” OR “Inteligencia de Máquina” OR “Raciocínio Automático” OR “Raciocínio
Computacional” OR “Representação de Conhecimento” OR “Representação do Conhec-
imento” OR “Sistemas de Visão Artificial” OR “Sistemas de Visão Computacional” OR
“Adquisición de Conocimientos” OR “Adquisición de Conocimientos” OR “Adquisición de
Conocimientosor” OR “Razonamiento Automático” OR “Razonamiento Computacional”
OR “Representación del Conocimiento” OR “Sistemas de Visión Artificial” OR “Sistemas
de Visión Computacional” OR “Sistemas de Visión por Computador” OR “Sistemas de
Visión por Computadora” OR “Sistemas de Visión por Ordenador” OR “Aprendizado
Profundo” OR “Aprendizado Estruturado Profundo” OR “Aprendizado Hierárquico” OR
“Aprendizaje Profundo” OR “Aprendizaje Jerarquizado” OR “aprendizaje jerárquico” OR
“Redes Neurais de Computação” OR “Modelos Conexionistas” OR “Modelos de Rede
Neural” OR “Modelos de Redes Neurais” OR perceptrons OR “Redes Neurais” OR “Redes
Neuronais em Informática” OR “Redes Neurales de la Computación” OR “Modelos de
Conexión” OR “Modelos de Redes Neurales” OR “Modelos de Redes Neuronales” OR
perceptrones OR “Redes Neurales” OR “Redes Neuronales Computacionales” OR “redes
neuronales informáticas” OR “Algoritmo Florestas Aleatórias” OR “Algoritmo Floresta
Aleatória” OR “Classificação de Floresta Aleatória” OR “Floresta Aleatória” OR “Bosques
Aleatorios”) AND (“Health Policy” OR “Healthcare Policy” OR “Healthcare Policies” OR
“Health Policies” OR “Health Care Policies” OR “Health Care Policy” OR “National Health
Policy” OR “National Health Policies” OR “public health” OR “Healthcare Economics and
Organizations” OR “Health Care Economics” OR “Health Care Economic” OR “Healthcare
Economics” OR “Healthcare Economic” OR “Health Economics” OR “Health Economic”
OR “Política de Saúde” OR “Diretrizes das Políticas” OR “Organização Governamental
e Políticas” OR “Organização e Políticas Governamentais” OR “PPS Políticas Públicas
em Saúde” OR “Plano Nacional de Saúde” OR “Política Nacional de Atenção à Saúde
do Homem” OR “Política Nacional de Promoção da Saúde” OR “Política Nacional de
Saúde” OR “Política Nacional de Saúde do Homem” OR “Política Nacional de Saúde do
Idoso” OR “Política Pública de Saúde” OR “Política Sanitária” OR “Política de Assistência
à Saúde” OR “Política de Atenção à Saúde” OR “Política de Saúde Pública” OR “Política
em Saúde Pública” OR “Políticas Públicas Saudáveis” OR “Políticas Públicas de Saúde”
OR “Políticas Públicas em Saúde” OR “Políticas Sanitárias” OR “Políticas de Cuidados
de Saúde” OR “Políticas de Cuidados em Saúde” OR “Políticas de Saúde” OR “Políticas
de Saúde Pública” OR “Políticas em Saúde Pública” OR “Política de Salud” OR “Organi-
zación Gubernamental y Políticas” OR “Organización y Políticas Gubernamentales” OR
“Política Nacional de Salud” OR “Política Pública de Salud” OR “Política Sanitaria” OR
“Política de Salud Pública Política en Salud Pública” OR “Políticas Públicas Saludables” OR
“Políticas Públicas de Salud” OR “Políticas Públicas en Salud” OR “Políticas Sanitarias” OR
“Políticas de Atención en Salud” OR “Políticas de Salud” OR “Políticas de Salud Pública”
OR “Políticas en Salud Pública” OR “Economia e Organizações de Saúde” OR “Aspectos
Econômicos da Prestação de Serviços de Saúde” OR “Economia da Assistência à Saúde” OR
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“Economia da Atenção à Saúde” OR “Economia da Saúde” OR “Economia dos Cuidados
de Saúde” OR “Economía y Organizaciones para la Atención de la Salud” OR “Economía y
Organizaciones para la Atención de la Salud” OR “Economía Sanitaria” OR “Economía de
la Atención Médica” OR “Economía de la Salud” OR “Economía en Atención de Salud y
Organizaciones”) AND (“Propensity Score” OR “Propensity Scores” OR “Inverse Propen-
sity Weighting” OR “Pontuação de Propensão” OR “Escore de Propensão” OR “Índice de
Propensão” OR “Puntaje de Propensión” OR “puntuación de propensión” OR “escala de
propensión” OR “puntuación de la propensión”) AND (db:(“LILACS”))

Database: ProQuest Dissertations & Theses Global (PQDT Global)
Search query:
noft(“Machine Learning” OR “Transfer Learning” OR “Artificial Intelligence” OR

“Deep Learning” OR “cart” OR “classification and regression tree” OR “gradient boost-
ing machine” OR “xgboost” OR “Computer Neural Network” OR “Computer Neural
Networks” OR “Neural Networks” OR “Neural Network” OR “Random Forest” OR “Ran-
dom Forests” OR “logistic regression” OR “decision tree”) AND noft(“Health Policy”
OR “Healthcare Policy” OR “Healthcare Policies” OR “Health Policies” OR “Health Care
Policies” OR “Health Care Policy” OR “National Health Policy” OR “National Health
Policies” OR “public health” OR “Healthcare Economics and Organizations” OR “Health
Care Economics” OR “Health Care Economic” OR “Healthcare Economics” OR “Healthcare
Economic” OR “Health Economics” OR “Health Economic”) AND noft(“Propensity Score”
OR “Propensity Scores” OR “Inverse Propensity Weighting”)

Database: Scholar Google
Search query:
(“Machine Learning” OR “Artificial Intelligence” OR “Neural Network” OR “Ran-

dom Forest” OR “logistic regression”) AND (“Health Policy” OR “Healthcare Policy” OR
“Health Economic”) AND (“Propensity Score” OR “Inverse Propensity Weighting”)
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