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Abstract: This research study investigates and predicts the obesity prevalence in Missouri, utilizing
deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By
applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of
census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes
Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual
features (DNVF). Obesity prevalence data, sourced from the CDC’s 2022 estimates, is analyzed at the
census tract level. The datasets were integrated to apply a machine learning model to predict the
obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations
between DNVF and obesity prevalence. The predictive models show moderate success in estimating
and predicting obesity rates in various census tracts within Missouri. The study emphasizes the
potential of using satellite imagery and advanced machine learning in public health research. It points
to environmental factors as significant determinants of obesity, suggesting the need for targeted
health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights
for public health strategies and calls for expanded research in diverse geographical contexts.

Keywords: DCNN; geospatial; machine learning; obesity rate; satellite imagery

1. Introduction

This research study addresses the escalating obesity epidemic in the United States and
globally, emphasizing its complex relationship among various factors. It highlights the
significant advancements in understanding this issue through deep learning and machine
learning techniques, particularly the analysis of large satellite imagery datasets (commonly
called Earth Observation). It also focuses on the discrepancies in previous studies and intro-
duces a novel methodology using deep convolutional neural networks (DCNN) to extract
features from satellite images, combined with an advanced machine learning regression
model to predict obesity prevalence from satellite images. This approach aims to provide a
comprehensive and scalable analysis of the correlation between deep neural visual features
(DNVFs) and obesity rates utilizing publicly accessible data.

Obesity has escalated to an epidemic level across the United States [1]. From 2001 to
2018, there has been a steady rise in obesity rates among adults over 20 years old [1]. The
Global Burden of Disease study reveals that over 603 million adults were obese globally in
2015 [2,3]. In the United States, over a third of adults are obese, with 46 states reporting an
adult obesity rate of at least 25% [2,4]. Obesity is a complex issue influenced by various
factors such as the higher risk of various non-communicable diseases [5,6], including cancer,
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mobility issues, heart disease, mental health problems, osteoarthritis, sleep apnea, stroke,
and Type 2 diabetes [1,2,7].

Additionally, obesity causes an estimated 300,000 deaths annually, just behind smoking-
related deaths [1,8]. Unhealthy eating habits and inactive lifestyles are often linked to
aspects of both the social and built environments, encompassing natural and modified
physical surroundings [7]. It impacts health by dictating the availability of resources like
housing, spaces for activities and recreation, and community design features [2,9–12].

The growing prevalence of obesity and related health issues in urban settings has led
researchers to delve into the complex relationship between public health and individu-
als’ surroundings, which makes using raw overhead satellite images to predict a health
metric an interesting approach [13–16]. This exploration has been significantly advanced
by the application of deep learning and machine learning techniques, which have en-
abled the analysis of large datasets from diverse sources such as satellite and street view
imagery [17–21].

Previous research indicates a connection between various aspects of the built envi-
ronment and their impact on obesity and physical activity throughout different phases
of life [7,22–24]. Previous studies also highlight a link between obesity and several envi-
ronmental variables such as the walkability of an area, its land use patterns, the extent
of urban sprawl, the type of residential area, availability of resources like recreational
facilities and food establishments, the degree of socio-economic deprivation, and the level
of perceived safety in an area [25–28]. Moreover, being close to and having access to natural
spaces and sidewalks is associated with higher and more consistent physical activity levels,
particularly in urban environments [29–31].

Although there is a recognized relationship between obesity and the built environment,
there have been noted discrepancies in the findings of different studies and across various
geographical areas regarding the impact of specific built environment features on obesity
rates [25,32–34]. These inconsistencies might stem from differences in the methods and tools
used for measurement in these studies, which complicates the evaluation and comparison
of the results [35–37]. Additionally, measuring these environmental features often involves
significant costs and time, and is prone to human error and bias [38–40]. There is a need for
methodologies that offer uniform measurement standards to facilitate comparisons across
different studies [36,41,42]. Accurately determining the influence of the built environment
on obesity is important for the development and execution of effective community-based
prevention and intervention strategies [38,43–45].

Herein, we present a novel methodology to thoroughly investigate the link between the
prevalence of adult obesity using solely overhead satellite images. This method utilizes a
deep learning technique, specifically a DCNN is used to analyze the physical characteristics
of neighborhoods from medium-resolution (10 m) satellite images. This approach builds on
the work of Maharana et al. [2] and Nguyen et al. [46], who employed DCNNs to categorize
images from Google Street View, examining the relationship between obesity and specific
elements like crosswalks, building types, and the presence of greenery or landscaping.
However, their research was constrained to these three preselected features and did not
fully leverage the potential of DCNNs to identify features correlated with obesity rates
autonomously. Our method, in contrast, offers a more comprehensive analysis of overhead
image features, pinpointing detailed correlations with obesity rates at the census tract level
in 1052 census tracts across the State of Missouri in the United States. Additionally, our
approach is scalable, utilizes publicly accessible data and computational resources, facilitates
comparison between studies, and can be applied to different geographic sites and regions.

The objective of this study is to employ deep convolutional neural networks (DCNNs)
to analyze medium-resolution satellite images and identify physical characteristics of
neighborhoods that correlate with obesity rates. By focusing on the 1052 census tracts in
Missouri, USA, the study offers a more comprehensive and scalable approach to assessing
the impact of deep neural visual features on obesity prevalence, enhancing the precision of
public health interventions and policy-making. The importance of predicting obesity using
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deep neural network features is underlined by our method’s ability to enhance the precision
of public health interventions and improve the granularity of epidemiological studies.

This paper is structured as follows. In Section 2, we provide an overview of the
related literature. Section 3 outlines the methods employed in this study, followed by a
discussion of the results in Section 4. In Section 5, we discuss the findings’ implications
and acknowledge our work’s limitations. Finally, Section 6 presents the overall conclusions
and key takeaways.

2. Related Work

Songhyeon SH et al. [47] and Lam TM et al. [48] showcase the diverse methodologies
employed in the field. They used a combination of multinomial logistic regression and Deep
Neural Network algorithms to analyze community health survey data from 2018 to 2020.
The study underscores integrating statistical methods with advanced machine learning
techniques in public health research. Lam TM et al. [48] conducted an umbrella review,
synthesizing evidence from 32 systematic reviews to evaluate the connection between the
built environment and obesity. This meta-analysis focused on the methodological aspects
of the reviewed studies, particularly assessing biases and thematic areas, thus providing a
comprehensive overview of research trends and methodological approaches in this domain.

The studies by Alkhalaf M et al. [49] and An R et al. [50] delve into the advanced
applications of machine learning and artificial intelligence in obesity research. Alkhalaf
M et al. conducted a comprehensive analysis of ML applications in adult obesity studies,
focusing on the evaluation of various algorithms, including regression models, neural
networks, and deep learning techniques [49]. R. An et al. assessed the technical aspects
of AI models, particularly ML and DL, in obesity research, analyzing 46 studies that
utilized a range of AI methodologies [50]. Zhou et al. [19,51] explored the use of machine
learning models in the context of obesity research, with a focus on biomarker detection
and intervention strategies. Their review categorized ML models into supervised and
unsupervised learning types and detailed 25 open-source ML algorithms, platforms, and
databases relevant to various aspects of obesity research.

DCNNs have seen emerging use in population health studies, across various image and
sensing modalities and tasks [52–54]. Maharana et al. study utilized the VGG-CNN-F model
to analyze approximately 150,000 high-resolution satellite images [2]. Newton et al. [55]
employed the Xception DCNN architecture, allowing for a more efficient process than
traditional DCNNs. Yue X et al. [56] and Phan L et al. [57] both emphasized the use of CNNs
for analyzing neighborhood characteristics, but with different approaches and scales. They
employed VGG19 [58] and ResNet18 [59] architectures to analyze a vast dataset of 164 mil-
lion Google Street View images. The study highlighted the effectiveness of using different
CNN architectures to manage and interpret large-scale image data. Phan L et al. [57], on
the other hand, focused on a dataset of 31,247,167 Google Street View images, utilizing the
VGG-16 model. Their objective was to evaluate built environment indicators at the state
level in the United States and explore their association with public health outcomes.

3. Materials and Methods

The study analysis consisted of three steps. First, we processed Sentinel-2 satellite
images to extract features of any environment using ResNet-50 [59]. Second, we merged the
census tract polygons from Tiger Line with the polygons from the CDC data to match each
census tract with its respective obesity rate [60]. Third, we used a machine learning model,
generalized linear model (GLM), random forest, and 10-fold-cross validation to build a
parsimonious model to predict the obesity rate for each census tract and to assess the
association between the built environment and obesity prevalence. The study was exempt
from institutional review board approval because this research used existing data and
records collected by external parties in such a manner that individuals cannot be identified.

Figure 1 summarizes the methodology of our research study, which leverages remote
sensing and machine learning to estimate regional obesity rates. Starting with medium-
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resolution images from Sentinel-2, the study utilizes the ResNet-50 to extract pertinent
DNVF from the satellite data. These features, encoded as a 2048-dimensional vector or
concepts embedding, contain critical visual information that reflects the environment’s
characteristics, potentially linked to obesity prevalence.

The extracted features then undergo regression analysis within a machine learning
framework to predict the estimated obesity rates for the study area. This statistical approach
models the relationship between the DNVF and the obesity rates, providing an innovative
angle to public health research.

Regression 
Analysis

Obesity 
Rate

Input Image

Machine Learning (ML)

Deep Learning (DL)

Deep Neural Visual 
Features (DNVF)

ResNet-50

Output

Sentinel-2

Deep
Convolutional 

Neural Network
(DCNN)

2048-d

Figure 1. Flowchart illustrating the estimation of obesity rates from satellite imagery using a combi-
nation of deep learning with ResNet-50 architecture and machine learning regression analysis.

3.1. Obesity Prevalence Data

We utilized 2022 estimates of annual crude obesity prevalence at the census tract
level, derived from the 500 Cities project (PLACES: Local Data for Better Health, accessed
on 17 March 2024). These estimates are based on data from the Behavioral Risk Factor
Surveillance System, which surveys individuals aged 18 and older. Obesity is identified
using a body mass index (BMI) threshold of 30, calculated as the individual’s weight
in kilograms divided by their height in meters squared [61]. Our study focused on the
Mid-Missouri region in the United States. The 1052 census tracts (Missouri State) covered
in this study have an aggregate area of 69,707 square miles (180,540 square km). They have
a total population of 6.2 million (based on 2020 census).

The CDC data lists 1387 census tracts, 4506 block groups, and 343,565 census blocks.
Given that the number of Tiger Line census tract shapefiles in the state was 1654, polygon
(census tract) IDs in the Tiger Line data had to be aligned to census tract IDs in the CDC
data. To fix the mismatching issue, census tracts with subdivisions (tract names with two
trailing digits different from zero) in both datasets were joined into larger polygons.

First, we joined the polygons in the Tiger Line dataset by removing all subdivisions.
Of the initial 1654 polygons, 914 had names following a naming convention of the type
“XXXX.YY”, where the “YY” corresponded to the subdivision within a particular tract.
The remaining 740 had no subdivisions and names containing two trailing zeros (e.g.,
“XXXX.00”). Setting the two trailing digits to zero in these 914 names resulted in repeated
names with 323 unique names. If a name was repeated, all repeated elements were joined
to become a single polygon, which resulted in a set of 1063 polygons.

Similarly, the IDs of the census tracts in the CDC data consisted of a string of digits,
with the last two digits corresponding to a set of subdivisions different from that of the
Tiger Line data. Of the 1387 tracts, 881 had IDs with two trailing zeros (no subdivisions),
while the remaining 506 had subdivisions. We set the initial 506 string IDs to a single
subdivision with repeated entries, which resulted in 178 unique IDs. Since each of these
new unique IDs had multiple obesity rates, an average obesity rate was calculated as a
proxy for the obesity rate of the newly joined area. The average obesity rate for these joint
areas, weighted by census tract population, was calculated as

w̄ =
∑n

i=1 wixi

∑n
i=1 wi

, (1)

https://www.cdc.gov/places/
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where w̄ is the new obesity rate for the joint area, n is the number of subdivisions (repeated
entries) within the original census tract, wi is the population in a subdivision i, and xi
is the obesity rate in i. The joined 1059 CDC entries were then matched to the joined
1063 Tiger Line tracts, for a final overlapping set of 1055 census tract polygons with their
corresponding obesity rates, which we used as the inputs to our models.

3.2. Acquiring Satellite Imagery

We determined our image inputs by selecting the Sentinel-2 products intersecting
our previously defined set of census tracts. These satellite products were downloaded
from ESA’s Copernicus Dataspace Ecosystem. Since ESA’s OpenSearch API uses HTTP
requests to search for products, we defined a shortened geometry string that could fit in
our search query. This was done by joining our previously defined census tract polygons
into a state boundary that was further simplified into a closed polygon of 54 vertices using
the implementation of the Douglas-Pecker algorithm included in GeoPandas.

Our search resulted in 187 intersecting Sentinel-2 products between 1 July 2022, and
31 August 2022. Overlapping images were removed in two steps. First, products with
completely overlapping geometries (corresponding to the same UTM zone tile) were filtered
by discarding all but the product with the largest area and the lowest cloud percentage.
Second, seven partially overlapping products (which also happened to have little state
coverage) were discarded after visual inspection. This resulted in a set of 33 Sentinel-2
images that were used to define our inputs to the neural network. These products were
downloaded from ESA’s Dataspace Ecosystem to Nautilus. All 33 Sentinel-2 image sizes
were 10,980 by 10,980 pixels. The images were then normalized to values between 0 and 1
and cropped into chips of 224 by 224 pixels. This created a total of 82,500 three-band (RGB)
image chips.

3.3. Image Processing

DCNNs (e.g., ResNet-50) have made significant strides in various computer vision
tasks such as object detection and image segmentation, especially when dealing with
extensive data sets [3,62]. These advances are not only crucial in general technology fields
but also have profound implications in healthcare, such as in the identification of skin
cancer, and social issues like poverty estimation [4,63]. Due to the absence of a substantial
labeled satellite dataset–with sufficient data to train a neural network–for categorizing
regions with high and low obesity rates, we used the DNVF from a pre-trained neural
network to obtain the built area features of the 82,500 satellite image chips. We intersected
our 82,500 chips with our Missouri census tracts which results in 63,592 chips that were
usable. Only chips that intersected census tracts and were fully within the joint polygon of
the state of Missouri were and everything else was discarded.

We used the ResNet-50 network, which is composed of 50 layers (48 convolution layers
along with one max pool and one average pool layer) and is trained on approximately
1.2 million images from the ImageNet database (a data set of >14 million images used
for large-scale visual recognition challenges) [64] for recognizing objects belonging to
1000 categories [64]. For each chip we passed through the network, we extracted the
2048 features from the last hidden layer of the network before the output layer [65]. Before
passing through, each image is standardized using the ImageNet per-band mean and
standard deviation. This resulted in a final dataset–used for our machine learning analysis
of 1051 rows and 2048 columns, with each row corresponding to the average feature vector
of a census tract. Since each census tract in our dataset could have more than one image
chip intersecting it, we calculated a corresponding weighted mean feature vector for a tract
with the features of the intersecting chips [66]. For a census tract t, its mean feature vector
Ft was calculated as:

Ft =
∑∀c∈C wcFc

∑∀c∈C wc
, (2)
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where C is the set of image chips intersecting the census tract, Fc is a ResNet-50 feature
vector obtained from chip c, and wc is the (scalar) number of pixels in c intersecting the
census tract.

To include the obesity rate of a given chip in our analysis, the inverse case was
considered. When a chip intersected with more than one census tract, we calculated the
obesity rate in such a chip as the average obesity rate of all the intersecting census tracts [66].
So, for a chip c the weighted obesity rate is similarly calculated as:

oc =
∑∀t∈T wtot

∑∀t∈T wt
, (3)

where T is the non-empty set of tracts intersecting a chip c, ot is the obesity rate in a census
tract, and wt is the number of pixels in c corresponding to the t census tract. We do not link
these features to specific elements in the built environment or the obesity prevalence. Rather,
these DNVFs collectively represent an indicator to help predict the obesity prevalence for
each census tract.

The image chips were cropped for a size of 224 pixels by 224 pixels or 2240 m (2.24 km)
by 2240 m (2.24 km). The GPU-accelerated processing speed was approximately 77.51 tiles
per second, for a total of 17.73 min. This translates to a rate of 0.0129 s per tile.

Figure 2 shows our geospatial data analysis using 33 Sentinel-2 satellite imagery
within the state of Missouri for the year 2022. Figure 2A on the left of the figure illustrates a
map of Missouri, demarcated by latitude and longitude, overlaid with 33 distinct green
rectangles signifying the spatial coverage of Sentinel-2 images. These images encapsulate
notable geographic demarcations including county boundaries and principal urban areas.
The central portion of the figure describes the process undertaken to standardize the raw
satellite data, which entails normalizing the images to ensure homogeneity in terms of
color and scale across all datasets. After this normalization, the images are methodically
cropped and the size of each image chip is equal to 224 pixels by 224 pixels or 2.24 km by
2.24 km. These chips are superimposed on blue outlines that delineate 1052 census tracts of
our study, suggesting a systematic intersection of medium-resolution satellite data with
granular demographic units.

33 Sentinel-2 Images (A) 82,500 Image Chips (B)

Normalize and Crop into 
Chips (224x224 Pixels)

Figure 2. Data processing workflow for Sentinel-2 satellite imagery within Missouri in 2022. (A) Dis-
plays the geographic coverage of 33 Sentinel-2 images across Missouri, with county boundaries. The
central diagram outlines the normalization process and the cropping of images into 224 × 224 pixel
chips. (B) Illustrates the distribution of 82,500 resultant image chips. The red box represents Mid-
Missouri area and Boone County.

Figure 2B on the right provides a detailed view of the Sentinel-2 image coverage as it
intersects with the state-designated census tracts. It presents the state of Missouri as a green
plane, superimposed with an array of green squares, each representing the 82,500 image
chips generated post-normalization. The distribution of these image chips across the state
varies, with a higher density in certain regions, potentially reflecting areas of research study.
This meticulous preprocessing routine is essential to prepare the data for the subsequent
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analytical procedures, ensuring precision and reliability in the results of the spatial analysis
conducted within this research study.

3.4. Regression Analysis of Predictive Capability

We used the 10-fold cross-validation which is a widely used method for evaluating
the performance of a model. It involves dividing the dataset into ten equal parts, or “folds”.
The model is trained on nine folds and tested on the remaining one. This process is repeated
ten times, with each fold serving as the test set once. The results from all ten iterations are
averaged to provide an overall assessment of the model’s performance. This approach helps
to minimize bias and variance in the evaluation, ensuring a more reliable and generalizable
estimate of the model’s effectiveness [67–69].

In the evaluation of the 10-fold cross-validation fit we utilized three key metrics: Mean
Squared Error (MSE), R2, and Adjusted R2. MSE is a measure of the average squared
difference between the actual observed outcomes and the outcomes predicted by the
model, providing a clear quantification of the model’s prediction error [70]. Lower MSE
values indicate better model accuracy. R2, also known as the coefficient of determination,
assesses the proportion of the variance in the dependent variable that is predictable from
the independent variables [71]. It offers an insight into the goodness of fit of the model,
with values closer to 1.0 suggesting a better fit [71]. Adjusted R2 adjusts for the number of
predictors in the model, providing a more accurate measure of the goodness of fit, especially
important in models with a high number of predictors [72]. These metrics collectively offer
a comprehensive evaluation of 10-folds cross-validation model performance.

4. Results

Figure 3 shows a choropleth map of obesity prevalence among the various census
tracts within the state of Missouri for the year 2022. In the map, lighter shades of red
are lower obesity rates, and darker hues correspond to higher obesity rates. The scale
itself delineates a range starting at 25%, represented by a light red, and progresses to 50%,
indicated by a dark red color. Notably, the map reveals a significant variation in obesity
rates across different regions, with some census tracts exhibiting markedly higher rates and
others reflect lower obesity rates.
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y 
R
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)

Census Tract-wise Obesity Rates in 
Missouri - 2022 

L
at

it
u

d
e

Longitude

Figure 3. Choropleth map displaying the distribution of obesity rates percentage for individuals
across Missouri census tracts in 2022. The variations in the color intensity reflect the range of obesity
prevalence, with darker red indicating higher obesity rates. The color scale to the right quantifies the
obesity rates corresponding to each color shade.
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Table 1 presents a detailed summary of key metrics across various regions such as
population, area (in square Km), obesity crude prevalence (%), and number of chips. The
data in the table includes the minimum, median, and maximum values for each metric,
providing a clear understanding of the range and central tendencies within the dataset. For
population, the minimum value recorded is 102, the median is 4058, and the maximum
reaches 75,569, reflecting the diversity in population sizes across different areas. The area of
the regions varies significantly, with the smallest being just 0.49 square Km, the median at
20.19 square Km, and the largest extending to 1787.47 square Km. In terms of obesity rates,
the lowest rate observed is 23%, the median stands at 39.20%, and the highest rate is 53.7%,
indicating varied health metrics across the regions. Finally, the number of chips ranges
from a minimum of 1 to a maximum of 442, with a median of 14, highlighting different
levels of chip distribution or consumption.

Table 1. A summary of key regional metrics, covering total population, area (square Km), obesity
crude prevalence, and number of chips intersected with each tract.

Population Area (Sqr. Km) Obesity Prevalence (%) Number of Chips

Min 102 0.49 23.00 1
Median 4058 20.19 39.20 14

Max 75,569 1787.47 53.70 442

In Figure 4, highlights the spatial relation between our 63,592 image chips and the
1052 census tracts within the state of Missouri. Figure 4A provides an overview of the
state of Missouri along with two examples of the chip and census tract spatial relationship
complexity, marked by a blue boundary indicative of regional limits such as census tracts
boundary. The green grid lines (squares/tiles) represent the image chips, which serve as
discrete units of spatial data collection or observation points. Figure 4B Zoomed-in view
around the Boone county area, narrows the focus to a smaller region, providing a more
detailed look at the grid alignment of the image chips with respect to Boone County’s
geography. A red square highlights a specific area within Boone County, presumably to
denote an area of special interest or higher detail study. This zoomed-in perspective allows
for an appreciation of the granularity of the image chip distribution within the context of
finer geographical boundaries.

A. Image Chips Intersecting
with 1,052 Census Tracts

B. Zoomed-in View 
around the Boone County 

Area

C. Image Chip Intersecting
with 7 Census Tracts

D. Census Tract 0608 
Intersecting with 150 

Chips

L
at

it
u

d
e

LongitudeLongitudeLongitude Longitude

Figure 4. Multiscale analysis of satellite image chips and census tracts in Missouri. (A) exhibits a
statewide view with image chips overlaying 1052 census tracts, indicating extensive data coverage.
(B) zooms into the Boone County area, detailing the alignment of image chips to local geography.
(C) details individual image chips boundaries, illustrating their overlap with seven distinct census
tracts (numbered for reference). (D) further narrows down to Census Tract 0608, demonstrating the
intersection with 150 specific image chips for granular analysis. The figure highlights the granularity
and density of data distribution within the geographic study area.
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Figure 4C shows individual image chip that intersects seven distinct census tracts.
This visualization captures the specific overlap between the selected image chip and seven
distinct census tracts, allowing for a focused examination of these interactions. This image
chip intersects with one of the highest number of census tracts (0002, 0003, 0005, 0009,
0010, 0021 and 0022) and it is located in Boone County. Figure 4D is a single census tract,
specifically “Census Tract 0608”, with 150 intersecting image chips. This census tract is
among the areas with one of the highest number of image chips. This level of granularity
reveals a concentrated cluster of data points, potentially signifying a region of particular
interest or higher measurement intensity.

Overall, the progression from a broad overview to a detailed view in the four fig-
ures systematically demonstrates the methodological approach of correlating medium-
resolution satellite imagery with detailed census tract data. Such a multi-scale visual
representation aids in understanding the spatial analysis techniques used in our research
study, highlighting how local demographic characteristics may be inferred or validated
through the meticulous overlay of image chips onto census tract maps. This meticu-
lous approach underscores our research’s emphasis on precision and spatial specificity in
its analysis.

Figure 5 presents a series of scatter plots, each corresponding to one of ten folds from
a 10-fold cross-validation procedure, used to assess the performance of a predictive model
for obesity rates. Cross-validation is a machine learning method used to evaluate predictive
models by partitioning the original sample into a training set to train the model, and a test
set to evaluate it.

Actual vs. Predicted Obesity Rates (%)

Fold 2Fold 1 Fold 3 Fold 4 Fold 5

Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

P
re

d
ic

te
d

 O
b

es
it

y 
R

at
es

Actual Obesity Rates 

Figure 5. Scatter plots show the relationship between actual and predicted obesity rates using a GLM
machine learning model across 10 distinct cross-validation folds. The red dashed line represents
perfect prediction accuracy.

In every individual plot, the horizontal axis represents the actual obesity rates (%)
and the vertical axis represents the obesity rates as predicted by the model (%). Each
plot is labeled as “Fold 1” through “Fold 10”, indicating the sequential partitioning of
the dataset used for validation. In all plots, the red dashed line represents the theoretical
perfect prediction.

A visual inspection across all ten folds shows that the model’s predictions are rea-
sonably well aligned with the actual data, as indicated by the cluster of dots around the
linear trend line. However, there is variability among the folds, with some showing tighter
clustering around the line (indicating more accurate predictions) and others showing more
spread (indicating less accurate predictions). This is expected in cross-validation due to
the random partitioning of data into different folds, and it allows for the assessment of the
model’s robustness and generalizability.
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The uniformity in the distribution of points across the ten folds indicates that the
model is consistently making predictions with a similar degree of accuracy. There is no
single fold that appears to be an outlier in terms of prediction quality, which suggests that
the model is stable and performs equally well across different subsets of the data.

4.1. Generalized Linear Model Regressor (GLM)

Figure 6 shows the actual obesity rates against those predicted by the GLM. The
horizontal axis denotes the actual obesity rates derived from empirical observations, while
the vertical axis corresponds to the predicted obesity rates yielded by the machine learning
model. Each point on the plot represents a single census tract, with its position reflecting the
actual rate on the x-axis against the model’s prediction on the y-axis. The red dashed line
runs through the data points, indicating the linear regression model’s line of best fit. This
line encapsulates the general direction that the model attributes to the relationship between
the actual and predicted values of obesity rates. In an ideal scenario where predictions
perfectly match the actual rates, all data points would align precisely along this line.
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Generalized Linear Model (GLM)

18.64Mean Squared Error (MSE):
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Figure 6. Scatter plot displaying the relationship between actual and predicted obesity rates using
Generalized Linear Regression (GLM), illustrating a moderate degree of correlation with an R2 value
of 0.44 and an adjusted R2 of 0.43. The close fit is further evidenced by a moderate Mean Squared
Error (MSE) of 18.64. These metrics are provided to assess the accuracy of the model predictions.

In the process of evaluating the predictive performance of GLM for obesity rates,
the dataset was partitioned into two subsets; 80% of the data was used for training the
model, ensuring it could learn the underlying patterns and relationships effectively. The
remaining 20% (selected at random) constituted the testing set, which provided a separate
and unbiased evaluation of the model’s predictive accuracy. This approach is critical for
validating the model’s ability to generalize to new, unseen data and for minimizing the risk
of overfitting. Figure 6 is annotated with key statistical metrics that quantify the model’s
predictive performance. The model is able to moderately predict the obesity rate from
the satellite imagery with a mean squared error (MSE) of 18.64, an R2 equal to 0.44, and
an adjusted R2 value equal to 0.43. The plot and the metrics together provide a concise
summary of the model’s performance and highlight areas where further model refinement
or additional data collection might be necessary to improve the accuracy of the obesity
rate predictions.
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4.2. Random Forest (RF)

Figure 7 presents a scatter plot visualizing the comparison between actual and pre-
dicted obesity rates using a Random Forest regression model. The horizontal axis represents
the actual obesity rates expressed as a percentage, while the vertical axis represents the
predicted obesity rates, also in percentage terms. Each blue dot on the plot represents a
data point where the actual and predicted obesity rates for a given observation are plotted
against each other.
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Figure 7. Scatter plot of the relationship between actual and predicted obesity rates using random
forest, illustrating a moderate correlation with an R2 value of 0.48 and an adjusted R2 of 0.47. The
close fit is further evidenced by a moderate Mean Squared Error (MSE) of 17.35.

The red dashed line represents the line of best fit, illustrating the relationship between
the actual and predicted values. Ideally, if the predictions were perfect, all dots would
fall on this line, which would indicate a 1:1 correspondence between actual and predicted
rates. However, the spread of the dots around this line suggests variability in the model’s
accuracy, with some predictions being more accurate than others.

In our study, we utilized a Random Forest algorithm to forecast obesity rates across
various census tracts. To ensure a robust assessment of the model’s predictive power,
we divided our dataset into two distinct portions; 80% was allocated for training the
model, allowing it to learn from a substantial majority of the data, while the remaining 20%
(selected at random) was set aside for testing purposes. This testing set served as a crucial
benchmark for evaluating the model’s efficacy in accurately predicting obesity rates on
new, unseen data, thereby safeguarding against overfitting.

The inset box at the bottom of the plot provides key statistical metrics evaluating the
performance of the model. The Mean Squared Error (MSE) is reported as 17.35, which gives
the average of the squares of the errors that is, the average squared difference between the
estimated values and the actual value. The R2 value is 0.48, suggesting that approximately
48% of the variability in the actual obesity rates can be explained by the model. The
Adjusted R2 is 0.47, slightly lower than the R2, which takes into account the number of
predictors in the model and provides a more adjusted estimation of the goodness of fit.

The positioning of the dots in relation to the line of best fit and the reported R2 values
suggest that while the model has a moderate predictive power, there is a significant portion
of the variance in obesity rates that is not captured by the model. This could be due to the
complexity of factors affecting obesity rates that are not included in the model or due to the
inherent limitations of the Random Forest algorithm when applied to this particular dataset.
As we mentioned previously for GLM, the RF plot and metrics together also provide a
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concise summary of the model’s performance and highlight areas where further model
refinement or additional data collection might be necessary to improve the accuracy of the
obesity rate predictions.

4.3. Features Importance

Table 2 provides a breakdown of the top ten features in terms of their importance
percentages, derived from the 10-fold-cross validation model aiming to predict the obesity
rates using Deep Neural Visual Features (DNVFs). Feature 1112th is the most significant,
holding an importance of 15.01%, indicating its strong influence on the model’s predictions
regarding obesity rates. The subsequent features, although less important than Feature
1112th, still contribute notably to the model’s prediction and include Features 0095th and
1314th, with importance percentages of 3.23% and 2.47%, respectively.

Table 2. Lists the top ten visual features ranked by their importance in our obesity rate prediction
model. The percentages indicate the relative importance of each feature in influencing the model’s
predictions, with higher values signifying greater influence. The values of the correlation coefficient,
highlighting the magnitude of each feature’s impact.

Feature # Importance (%) Correlation Coefficient

1112 15.01 −0.6061
0095 3.23 −0.2196
1314 2.47 −0.2079
0767 2.07 0.1542
0239 2.05 −0.1526
1253 1.05 0.1140
0895 1.04 0.0932
1126 0.87 −0.0536
0338 0.84 −0.0434
0668 0.75 −0.0061

The coefficients in the third column indicate the strength and direction of the rela-
tionship between the identified features and obesity prevalence. Positive values suggest
a direct correlation, where higher values of the feature are associated with higher obesity
rates; whereas negative values indicate an inverse relationship, suggesting that higher
feature values are associated with lower obesity rates. For example, Feature 1112th shows
a strong negative correlation of −0.6061, implying that higher values of this feature are
associated with lower obesity rates.

In Figure 8, Feature 1112th is identified as the most significant predictor of obesity rates
among the 2048 features, marking its top rank in importance. A comparative analysis of
the heat maps for Feature 1112th and obesity rates reveals a strong correlation between the
two, as evidenced by Table 2 data where Feature 1112th has an importance of 15.01% and
a predicted obesity correlation coefficient of −0.6061. This negative correlation suggests
that higher values of Feature 1112th are associated with lower obesity rates. Feature
1112th exhibits high values in densely populated urban areas and frequently visited tourist
destinations. The cities of Kansas City (population: 510,704), St. Louis (population: 281,754),
Springfield (population: 170,188), and Columbia (population: 129,330) are the top four
most populated cities in Missouri, according to the 2023 Population Estimates Program and
the 2022 American Community Survey. All these cities are prominently highlighted on the
heat map for Feature 1112th, aligning with their lower obesity rates due to the negative
correlation indicated in the Table 2. Interestingly, the area around Branson, Missouri,
despite having a relatively low full-time resident population of 12,897, also shows high
values for Feature 1112th. Branson’s high feature values can be attributed to its status
as a major tourist destination, which attracts millions of visitors annually. This suggests
that Feature 1112th captures geospatial aspects related to urban development and human
activity, such as:
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1. High Building Density and Commercial Structures: Frequent clustering of buildings
and commercial areas.

2. Extensive Transportation Networks: Well-developed roads, highways, and parking facilities.
3. Presence of Recreational Areas: Parks, theaters, and other recreational facilities indi-

cating significant human activity.
4. Impervious Surfaces: High proportion of concrete and asphalt surfaces.
5. Shadow Patterns: Distinct patterns cast by tall structures.

Longitude Longitude
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it
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Missouri State Feature 1112 Actual Obesity Rate (%)

Figure 8. The left map shows spatial distribution of Feature 1112 across Missouri, with red circles
highlighting areas of high values (urban areas). The right map depicts actual obesity rates (%) across
the state, with blue circles indicating regions with lower obesity prevalence. Notable discrepancies
between feature values and obesity rates can be observed in several regions.

The correlation between the heat maps of Feature 1112th and obesity rates, along
with the feature’s association with densely populated and highly visited areas, indicates
that Feature 1112th likely reflects critical geospatial aspects of urban environments. These
aspects include building density, transportation networks, commercial and recreational
infrastructure, and other indicators of human activity and development. Further research is
necessary to decompose this feature and understand the specific attributes it encompasses,
which could inform targeted public health interventions and urban planning policies.

4.4. Additional Top-5 Features

Figure 9, illustrates the geospatial distribution of two significant features across Mis-
souri, identified as Feature 0095th and Feature 1314th, which are ranked as the second and
third most important features relative to obesity rates. It is noteworthy that higher values
of these features, particularly concentrated in urban centers such as Kansas City and St.
Louis, are associated with lower obesity rates. This suggests that these features, which
could represent factors such as access to recreational facilities or health services, play a
crucial role in mitigating obesity rates in these areas.

Figure 10, presents two heat maps illustrating the spatial distribution of important
features across Missouri, identified as Feature 0767th and Feature 0239th. Higher values of
these features are associated with lower obesity rates across Missouri’s various regions. The
visual patterns suggest areas where targeted interventions might be beneficial in reducing
obesity prevalence.

Table 3 provides a numerical summary of the performance metrics for a 10-fold cross-
validation of a regression model predicting obesity rates. Each row in the table corresponds
to one of the ten folds used in the cross-validation process. The columns present the MSE,
R2, and Adjusted R2 for each fold. The MSE is a measure of the average squared difference
between the observed actual outcomes and the outcomes predicted by the model. The R2

value indicates the proportion of the variance for the dependent variable that’s explained
by the independent variables in the model, while the adjusted R2 accounts for the number
of predictors in the model and provides a more adjusted measure of the goodness of fit.
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Figure 9. The spatial distribution of the 2nd and 3rd most important features across Missouri,
(left) Feature 0095th and (right) Feature 1314. Urban areas, particularly around Kansas City for
Feature 0095 and St. Louis for Feature 1314, show significant concentrations of these features.
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Figure 10. Spatial distribution of the 4th and 5th most important features across Missouri, (left) Fea-
ture 0767 and (right) Feature 0239.

Table 3. Provides a numerical summary of the performance metrics for a 10-fold cross-validation of a
regression model predicting obesity rates.

Fold # MSE R2 Adjusted R2

1 18.54 0.406 0.400
2 22.06 0.011 0.001
3 12.56 0.538 0.534
4 13.07 0.546 0.541
5 13.58 0.559 0.555
6 10.22 0.661 0.657
7 12.81 0.537 0.533
8 16.68 0.485 0.480
9 11.06 0.567 0.563
10 16.36 0.456 0.451

Mean 14.69 0.477 0.471

4.5. DCNN Model Explainability

Figure 11 showcases four distinct heatmaps analyzing obesity rates and prediction
accuracy across the state of Missouri. Figure 11A is a heatmap which displays the actual
obesity rates, where color intensities represent the percentage of the population affected by
obesity, ranging from 25% to 55%. Darker shades correspond to areas with higher obesity
rates, allowing for the identification of regions where obesity is more prevalent.
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Figure 11. Geospatial analysis of obesity rates and prediction accuracy in Missouri. (A) displays the
actual obesity rates, while (B) shows the predicted rates, both using a color gradient to represent
percentages. (C) highlights areas with significant predictive errors by filtering out RMSE values below
4, focusing on regions where the model’s accuracy is lower. (D) refines this analysis by presenting a
broader error distribution, including RMSE values of 2.5 and above, using the same color gradient
for consistency. (E) Curve illustrating the signed error distribution of predicted obesity rates across
census tracts. Negative signed errors indicate underpredictions (shown in red) and positive errors
indicate overpredictions (shown in green). The census tracts are ranked by the magnitude of error,
highlighting the asymmetry in predictive accuracy and potential systematic bias in the model.

Figure 11B illustrates the obesity rates as predicted by a statistical model. The visual
similarity between Figure 11A,B suggests a close alignment between predicted and ac-
tual rates, indicating the model’s effectiveness in mirroring the geographical distribution
of obesity.

Figure 11C applies a filter to the absolute RMSE values, excluding any areas where
the RMSE is lower than 4. This effectively removes more accurately predicted regions,
highlighting only those areas where the predictive model’s errors are above this threshold.
The resulting map is a patchwork of colors where only the highest errors in prediction are
shown, offering a focused view on the model’s limitations.

Figure 11D refines the approach in Figure 11C by adjusting the RMSE filter to include
areas with RMSE values of 2.5 and above. The same color ratio is maintained to ensure
consistency in visual interpretation across Figure 11C,D. As a result, this figure shows a
broader range of prediction errors compared to Figure 11C, providing a more nuanced
understanding of the model’s performance across the region.

The progression from Figure 11A,B to Figure 11C,D demonstrates a methodical ap-
proach to analyzing model accuracy. The initial heatmaps set the stage by presenting actual
and predicted rates, while the latter heatmaps critically evaluate the model by highlighting
regions with the most significant prediction errors. This step-by-step visualization em-
phasizes areas where the predictive model could be improved, guiding researchers and
policymakers in directing their efforts to refine predictive analytics and address obesity
more effectively in regions with higher prediction errors.

Figure 11E features a curve that represents the signed error between predicted and
actual values across different census tracts. The horizontal axis is labeled “Signed Error
(%)” and indicates the percentage error of prediction, with negative values on the left
side representing under-predictions and positive values on the right side indicating over-
predictions. The vertical axis is labeled “Census Tract Ranked by Error”, suggesting that
each census tract has been ranked based on the magnitude of the prediction error.
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The curve starts on the left with a steep incline in the red zone, indicating a significant
under-prediction of obesity rates in some census tracts (those with a high negative signed
error). As the curve moves to the right, the color transitions to green, and the slope
decreases until the error approaches zero. The zero point on the horizontal axis likely
represents the point at which the prediction exactly matches the actual obesity rate.

Beyond the zero point, the curve extends into the “Over Predict” zone, where the
signed error becomes positive, indicating census tracts where the model has overestimated
the obesity rate. The curve in this region is relatively flat and continues in green, suggesting
fewer tracts with over-prediction compared to under-prediction.

The shape of the curve indicates that the distribution of errors is skewed; there are
more census tracts with substantial under-predictions than over-predictions. This could
imply that the model used for prediction has a systematic bias or that certain factors
leading to higher obesity rates are not being adequately captured in those tracts with higher
negative errors.

Table 4 is the data extracted from the larger dataset, and is related to our study on
obesity prevalence within various census tracts. Each row corresponds to a specific census
tract as indicated by the “GEOID” column, which contains unique numerical identifiers.
The “County” column lists the location of each census tract, with multiple entries for
the urban counties of St. Louis and Jackson, and only one entry for the rural counties of
Stoddard and Pemiscot.

Table 4. The table lists the GEOID, County, Population, and actual versus predicted obesity per-
centages for selected census tracts, along with the signed error indicating the discrepancy between
predicted and observed values.

GEOID County Population Actual
Obesity (%)

Predicted
Obesity (%)

Signed Error
(%)

29510124600 St. Louis 1845 46.00 37.63 8.37
29207470600 Stoddard 4968 39.80 48.32 −8.52
29095005100 Jackson 1651 34.00 42.76 −8.76
29095016100 Jackson 2046 49.80 40.42 9.38
29095008200 Jackson 2765 30.50 40.14 −9.64
29510119300 St. Louis 5454 26.90 37.82 −10.92
29095015400 Jackson 3826 52.80 41.61 11.19
29155470200 Pemiscot 3613 50.80 39.31 11.49
29095006100 Jackson 2542 48.30 61.83 −13.53
29189213400 St. Louis 6669 37.40 52.07 −14.67

The “Population” column lists the number of people residing in each census tract.
These populations range from as low as 1651 to as high as 6669, suggesting a diverse set of
tracts in terms of population size.

In the “Actual Obesity (%)” column, we see the actual percentage of the population
within each tract that has been classified as obese. These percentages range from 26.90% to
52.80%, indicating a significant variation in obesity rates across different areas.

The “Predicted Obesity (%)” column shows the predicted obesity rates as for the same
census tracts. The predicted percentages exhibit a similar range to the actual percentages
but do not always align exactly, which is to be expected in predictive modeling.

The final column, “Signed Error (%)”, represents the difference between the predicted
and actual obesity rates, expressed as a percentage. A positive signed error indicates
that the model has over-predicted the obesity rate, while a negative signed error suggests
under-prediction. For instance, the first row shows an over-prediction of 8.37% for the
census tract with GEOID 29510124600, meaning the model estimated the obesity rate to be
8.37 percentage points lower than the actual rate. Conversely, the second row, with GEOID
29207470600, shows an under-prediction of 8.52%, where the model’s estimate was higher
than the actual rate.
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5. Discussion

The visual contrasts in Figure 3 underscore the presence of geographical health dis-
parities that may warrant targeted public health interventions and resource allocation.
However, the map also highlights the challenge of representing densely populated areas
where census tracts are smaller, and thus, the corresponding data may be less discernible.
In all, the study shows that in both over-sampled (large) census tracts and under-sampled
(very small) census tracts the model performs well.

The MSE for each fold is a measure of the average squared difference between the
observed actual outcomes and the outcomes predicted by the model. The values range
from a low of 10.22 in Fold 6 to a high of 22.06 in Fold 2, indicating variability in the model’s
predictive accuracy across different subsets of data [73–75]. This is a common phenomena
referred to as finite sample effects [76], which indicates that with limited data, the specific
examples in each fold can have a disproportionate influence on model training. Some folds
might, by chance, contain more challenging or unusual examples.

The R2 values range from as low as 0.011 in Fold 2 to as high as 0.661 in Fold 6. The
R2 metric provides a measure of how well the variation in the dependent variable (obesity
rates) is explained by the model. In this context, Fold 6’s model explains 66.1% of the
variance, which is quite high, whereas the model in Fold 2 explains only 1.1%, which is
extremely low.

Adjusted R2 is a modified version of R2 [77] that adjusts for the number of predictors
in the model. It is generally lower than R2 as it penalizes excessive use of predictors. The
Adjusted R2 values closely follow the R2 values, with the highest being 0.657 in Fold 6 and
the lowest being 0.001 in Fold 2.

The last row provides the mean of the MSE, R2, and Adjusted R2 across all folds. The
mean MSE of 14.69 suggests that on average, the model has a moderate level of prediction
error. The mean R2 of 0.477 indicates that, on average, the model explains about 47.7%
of the variability in the actual data, which suggests a moderate fit. Similarly, the mean
Adjusted R2 of 0.471 is in line with the mean R2, indicating a reasonable fit after adjusting
for the number of predictors.

Table 3 highlights that the performance of the model varies significantly across the
different folds, as evidenced by the range of values in MSE and R2 metrics. This variation
can arise due to the inherent differences in the data subsets or may indicate an underlying
issue with the model’s stability. Table 3 underscores the importance of cross-validation to
understand how the model might perform in general, rather than relying on the metrics
from a single partition of the data. Overall, Table 3 provides a detailed breakdown of
the model’s performance across different segments of the data, highlighting variations in
model accuracy and fit.

Figure 11E provides a visual representation of the prediction errors across census
tracts, with the curve’s profile offering insight into the model’s predictive performance
and potential biases. The clear demarcation of under-prediction and over-prediction
zones also helps in identifying the direction of the errors for subsequent analysis and
model refinement.

Table 4 is likely used to analyze the accuracy of the obesity rate predictions by the
model, providing insight into where the model tends to overestimate or underestimate obe-
sity prevalence. This information could be valuable for refining the model or for directing
public health resources to areas where obesity is more prevalent than initially predicted.

Despite the promising results, our study has some limitations. First, the estimates
of obesity prevalence from the Behavioral Risk Factor Surveillance System rely on self-
reported measurements of height and weight, which are subject to bias and often result
in an underestimation of the true rate of obesity [37,39]. Variations in the timing between
when the obesity data and the satellite images are collected can also introduce biases into
our analysis. One of the primary limitations of our study pertains to the dataset’s size and
geographical coverage. The research was confined to 1052 census tracts within the state of
Missouri, limiting the generalizability of the findings.
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Although these tracts were selected to represent a diverse range of urban and rural
areas, they do not encompass the neighboring states and their varied demographic and
geographic profiles. Furthermore, the limited number of census tracts might not provide a
sufficiently robust dataset for more complex machine learning models [78]. The pre-trained
ResNet-50 [59] is not fully optimized for the specific nuances of satellite image analysis
related to obesity rate prediction. Our study’s findings must therefore be interpreted with
caution, acknowledging that the employed models, although advanced, might not capture
the complete range of factors influencing obesity rates as discernible from satellite imagery.
Additionally, training the model to adjust its weights to satellite data and the chosen census
tracts should yield significantly better results.

6. Conclusions

In summary, the main findings of our research study are to emphasize the novel
methodology using DNVF to analyze and predict the obesity prevalence for different
census tracts in Missouri. In conclusion, the methodology employed in this research holds
great promise for enhancing our understanding and predicting obesity. It has the potential
to inform more effective community-level and policy-driven strategies to combat this
complex health issue.

Although the study is innovative in its approach. The reliance on self-reported data
could introduce biases, and the focus solely on Missouri limits the generalizability of the
findings. These aspects, however, present valuable opportunities for future research. In
the future, it will be important to expand the geographical scope of this study to include
diverse regions, enhancing the generalizability of our findings. We also plan to integrate
additional data sources, like socio-economic and health-related factors, to provide a more
comprehensive analysis. The refinement of machine learning techniques, particularly
advanced models and deep learning, will be pivotal in improving prediction accuracy.
Longitudinal and geospatial studies are envisioned to observe temporal changes in obesity
rates and other population health diseases.
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Abbreviations
The following abbreviations are used in this manuscript:

DCNN Deep Convolutional Neural Networks
DNVF Deep Neural Visual Features
MSE Mean Squared Error
BRFSS Behavioral Risk Factor Surveillance System
BMI Body Mass Index
CDC Centers for Disease Control and Prevention
CT Census Tract
ML Machine Learning
DL Deep Learning

Appendix A

In Figure A1, feature 1112th is the most significant, contributing over 15% to the
model’s outcomes. The other features vary in importance from just under 3.5% to approxi-
mately 1%, with feature numbers 0095th, 1314th, 0767th, 0239th, 1253th, 0895th, 1126th,
0338th, and 0668th following in descending order of importance. The bar chart highlights
the dominant influence of feature 1112th compared to the other visual features.

Figure A1. Bar chart displays the top 10 visual features ranked by their importance as used in our obe-
sity rates prediction model. The x-axis represents the feature numbers, which are specific identifiers
for each visual feature. The y-axis indicates the importance of each feature in percentage terms.

Appendix B

Table A1 provides a breakdown of the top ten features in terms of their importance
percentages, derived from the 10-fold-cross validation model aiming to predict the obesity
rates using Deep Neural Visual Features (DNVFs). Feature 1112th is the most significant,
holding an importance of 15.01%, indicating its strong influence on the model’s predictions
regarding obesity rates. The subsequent features, although less important than Feature
1112th, still contribute notably to the model’s prediction and include Features 0095th and
1314th, with importance percentages of 3.23% and 2.47%, respectively.
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Table A1. This table lists the top ten visual features ranked by their importance in our obesity rate
prediction model. The percentages indicate the relative importance of each feature in influencing
the model’s predictions, with higher values signifying greater influence. The 1112th is the most
important, with a corresponding importance of 15.01%.

Feature # Importance (%)

1112 15.01
0095 3.23
1314 2.47
0767 2.07
0239 2.05
1253 1.05
0895 1.04
1126 0.87
0338 0.84
0668 0.75
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