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Abstract: Environmental chemical exposure has been rising over the past few decades but its
impact on fertility remains uncertain. We assessed exposures to 23 common chemicals across a
range of sociodemographic characteristics and their relationship with self-reported infertility. The
analytic sample was non-pregnant women aged 18–49 years without a history of hysterectomy or
oophorectomy (n = 2579) from the National Health and Nutrition Examination Survey (2013–2016).
Environmental chemical exposure was assessed with biospecimens and dichotomized as high and
low levels of exposure based on the median. Logistic regression models estimated the adjusted odds
ratio (aOR) and 95% confidence intervals (CIs) for the association between high levels of exposure
and infertility, adjusted for age, race, education level, family income, and smoking status. We
observed associations between infertility and cadmium [aOR: 1.88; 95% CI: 1.02–3.47] and arsenic
[aOR: 1.88 (1.05–3.36)]. Two pesticides hexachlorobenzene [OR: 2.04 (1.05–3.98)] and oxychlordane
[OR: 2.04 (1.12–3.69)] were also associated with infertility in unadjusted analyses. There were
negative associations with two Per- and polyfluoroalkyl substances with n-perfluorooctanoic acid
[aOR: 0.51: (0.30–0.86)] and n-perfluorooctane sulfonic acid [aOR: 0.51: (0.26–0.97). Specific chemicals
may contribute to infertility risk, highlighting the need for targeted public health strategies to
mitigate exposure.

Keywords: environmental pollutants; cadmium; hexachlorobenzene; oxychlordane; PBB-153; female
fertility; reproductive health

1. Introduction

Infertility is defined as the inability to achieve pregnancy after 12 months of regular
unprotected sex for women ≤35 years of age and six months for women >35 years [1].
Approximately 19% of heterosexual women aged 15–49 with no prior births are unable to
become pregnant after one year of trying in the United States (US) [1]. The rise in infertility
is partially reflected in the increased rates of assisted reproductive technology use, which
rose from 0.7% in 1998 to 2.3% in 2021 in the US [2,3]. Infertility has increased risk for
adverse health implications beyond a timely pregnancy, such as lower Apgar scores, low
umbilical vein pH, and neonatal intensive care requirements [4]. Infertility often results
in significant psychological and social burdens, including experiences of divorce, and en-
during social stigma that can lead to isolation and psychological distress [5]. Additionally,
infertility treatments can be financially burdensome, with median per-person costs ranging
from USD 1182 for medications alone to USD 24,373 for an infertility treatment service
such as in vitro fertilization [6]. Common individual risk factors for female infertility
include genetic disorders, chromosomal abnormalities, ovulatory disorders, tubal factors,
endometriosis, lifestyle choices, and advanced age [7–12]. Low fertility rates can also be
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attributed to factors such as delayed childbearing and smaller ideal family sizes [13,14].
It is also useful to distinguish between fertility, the actual production of offspring, and
fecundity, a primary determinant of fertility, which is defined as the biological capacity
to conceive or sustain a pregnancy to live birth [15]. Environmental exposures may con-
tribute to infertility primarily by impairing fecundity through mechanisms like hormonal
disruption, potentially reducing the body’s reproductive capacity [16–18]. By impacting
fecundity, environmental exposures indirectly affect fertility outcomes, as limitations in
biological capacity can ultimately influence the likelihood of achieving a successful preg-
nancy. Understanding this distinction allows us to explore how environmental exposures
might impact reproductive health both by limiting the body’s reproductive potential and
by influencing fertility-related outcomes.

While the link between the aforementioned risk factors and infertility are well-documented,
up to one third of infertility cases are unexplained [19]. A growing body of evidence sug-
gests that environmental chemical exposure may be a key factor in infertility [20–24].
Environmental chemicals refer to chemical compounds or elements that are present in
the air, water, food, soil, dust, or any other environmental medium, such as consumer
products [25]. The US, the second largest chemical producer, accounting for 13% of global
production, has registered over 80,000 chemicals through the National Toxicology Program,
with 2000 new chemicals introduced annually—most of which are not tested for health
effects [26,27]. Despite many being banned or restricted elsewhere due to reproductive
or carcinogenic toxicity, many remain in production and use in the US [28,29]. Mean-
while, increased industrial activities have increased exposure to toxic-heavy metals such
as cadmium and arsenic [30–32]. These chemicals may increase oxidative stress, systemic
inflammation, and alter hormonal activities in females [33]. Previous studies investigating
the link between environmental chemicals and fertility outcomes have reported incon-
sistent findings with both positive and null associations [17,34–36]. This inconsistency
necessitates more research to further investigate the association between environmental
chemicals and infertility.

Meanwhile, sociodemographic disparities in environmental chemical exposures are
evident [37]. These differences may be linked to cultural practices and/or retail redlin-
ing, which selectively serves or offers differential services/goods based on demograph-
ics, where access to safer alternatives is limited among people of color and low-income
communities [38–42]. In a study of women in New York City, African American and African
Caribbean women had the highest usage of hair products, and as indicated by ingredient
labels, were more likely to include endocrine-disrupting chemicals [43]. A California study
found that Latina women used makeup most frequently, averaging more days per week
compared to women of other races/ethnicities, potentially leading to elevated levels of
parabens in their blood [44]. Despite the increased population exposures and the potential
exposure disparities across demographic characteristics, our understanding of this pattern
is limited [45]. Furthermore, given the increasing diversity of our population and the com-
plexity of environmental threats, it is critical to identify potentially high-risk population(s).
Such knowledge allows for a more comprehensive understanding of how these chemicals
impact different groups and informs more inclusive and effective prevention strategies.

In this US representative cross-sectional study, we characterized environmental chemi-
cal exposures in US reproductive-aged women and explored whether exposures vary by
sociodemographic factors. Additionally, we assessed the relationship between exposure
to environmental chemicals and self-reported infertility. We hypothesize that exposures
to environmental chemicals vary by sociodemographic characteristics and are positively
associated with the odds of self-reported infertility in US reproductive-aged women.

2. Materials and Methods
2.1. Data and Participants

Conducted by the Centers for Disease Control and Prevention and the National Center
for Health Statistics, the National Health and Nutrition Examination Survey (NHANES)
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is a cross-sectional, nationally representative survey designed to assess the health and
nutritional status of adults and children in the US [46]. NHANES utilizes a complex,
multistage, probability sampling design to select participants representative of the civilian,
non-institutionalized US population. The study collects comprehensive data from self-
reports; medical, dental, and physiological assessments; as well as laboratory tests. For this
study, we utilized cycles 2013–2014 and 2015–2016 (N = 20,146) as they represent the most
recent data containing the chemicals of interest. After excluding males (n = 10,053); children
below 18 (n = 3894) and adults over 49 years of age (n = 2836); women who were pregnant
at the time of survey (n = 97) or had a history of hysterectomy (n = 157) or oophorectomy
(n = 1); and those who did not answer the infertility question (n = 529), the final analytic
sample includes 2579 women (Figure 1). Although the female reproductive age spans
from 15 to 49 years according to the World Health Organization, the reproductive health
questionnaire, which includes infertility information, was only administered to women
over 18 [47]. The study was exempted by our Institutional Review Board.
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2.2. Exposure Assessment

The primary exposures of interest were 23 ubiquitous environmental chemicals
belonging to 6 chemical classes assessed in the NHANES (Table S1). These chemical
classes—including brominated flame retardants, volatile organic compounds, cotinine
(a biomarker of tobacco smoke exposure), metals, pesticides, bisphenol A, and per- and
polyfluoroalkyl substances—were selected due to their widespread environmental presence
and established associations with adverse health outcomes, including endocrine disruption,
reproductive toxicity, and impacts on fertility [34,48–51]. Despite how ubiquitous most
of these chemicals are, they remain understudied. For example, studies have shown how
brominated flame retardants (BFRs) are frequently detected in the US general population;
however, few studies on the human health effects of BFRs on infertility exist [52–54].
Most chemicals were measured in randomly selected subsets of the overall sample, which
included about one-third of our sample [55]. The chemicals were assessed using urinary,
blood, or serum samples (Table S1). Details regarding the methods of data collection
for these chemicals have been previously published [55]. Briefly, blood plasma samples
were vortexed, diluted, and then were measured by inductively coupled plasma mass
spectrometry. Urinary samples (24 h) were analyzed using on-line solid-phase extraction
coupled with high-performance liquid chromatography and tandem mass spectrometry.
Blood serum samples were collected in non-anticoagulant-containing (red top) vacuum
tubes and prepared by a standard protocol. Regardless of specimen type, concentrations of
chemicals were available as continuous variables. Due to the non-normal distribution and
the low prevalence of infertility, we created a dichotomized variable (high/low) for each
chemical based upon the median, where high and low levels of exposure were defined as
above and at or below the chemical specific sample distribution, respectively.

Since the exposure definition cut-off at the median is arbitrary, we also considered
a different cut-off at the 75th percentile. Additionally, we constructed an exposure score,
where a score of 1 was assigned to each participant for each chemical they were considered
‘highly exposed’ [e.g., >50th (or 75th) percentile]. Each participant can have a score ranging
from 0, where they were not highly exposed to any of the 23 chemicals, to 23, where they
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were highly exposed to all 23 chemicals. This score was then analyzed as an independent
variable both continuously and in categories defined by quartiles for both the 50th and
75th percentile.

2.3. Outcome Assessment

The primary outcome was self-reported infertility and was assessed using the question
“Have you ever attempted to become pregnant over a period of at least a year without
becoming pregnant?” If a participant responded “Yes”, then they were categorized as
“infertile”; if a participant responded “No”, then they were categorized as “fertile.” The
questionnaire was conducted via computer-assisted personal interviews administered by
qualified interviewers in the participant’s residence. Participants who did not speak English
or Spanish had interpreters [56].

2.4. Sociodemographic and Other Characteristics

For sociodemographic characteristics, we included age (in years): 18–29, 30–39, 40–49;
race/ethnicity: Non-Hispanic (NH) White, NH Black, Hispanic, NH Asian, Other/Multiple
race; educational levels: less than high school, high school graduates, some college or
associates in arts (AA) degree, college graduate or more; annual family income: <USD 45k,
USD 45–USD 99k, ≥USD 100k. Other factors included health status: very good/excellent,
good, and fair/poor; body mass index (BMI): underweight, normal, overweight, obese;
smoking status: never smoker, former smoker, current smoker; had at least 12 alcohol
drinks in any one year: yes, no. These factors were all self-reported, except for BMI,
which was measured through physical examinations at the mobile examination center. We
identified confounders through a directed acyclic graph (DAG) (Figure S1).

2.5. Statistical Analysis

We combined data from two cycles using appropriate sampling weights determined
by the NHANES criteria and documentation [40]. In the chemical analyses, we used addi-
tional weights that accounted for the subset of participants with chemical data. Kruskal–
Wallis tests compared the difference in chemical exposures across the different sociodemo-
graphic variables. We used logistic regression models to estimate the odds ratios (OR) and
95% confidence intervals (CIs) for the associations between specific environmental chemi-
cals and self-reported infertility, comparing those in the high-exposed group to those in the
low-exposed group. We fit a series of regression models. Model 1 was an unadjusted model
that only accounts for complex probability weighting. Model 2 adjusted for complex sam-
pling and potential confounders identified by our DAG. Model 3 included covariates that
were associated with both the exposures and the outcome of interest based on exploratory
analyses. Alpha was set at 0.05 for statistical significance. We tested interaction terms
between each chemical and age, race, education, and family income to identify susceptible
groups, but did not detect any meaningful effect modification and only reported main
effects. Statistical analyses were conducted using SAS Version 9.2 (Cary, NC, USA).

3. Results

The estimated prevalence of self-reported infertility in the study population was
12.6% (95% CI: 11.0–14.2), which is similar to the rate of 12.5% that was reported in other
NHANES data for the same period [57]. The majority of study participants were 18–29 years
old, NH White, married, had at least some college education, had an annual family
income < USD 45,000, had at least 12 alcoholic drinks in any one year, reported having
an excellent/very good health status, were never smokers, and had a BMI < 25 (Table 1).
Compared to their counterparts, self-reported infertility was significantly more prevalent
among women who were aged 40 to 49 years (19.7% vs. 5.6% in women 18–29), had an
income of over USD 100,000 (16.6% vs. 9.9% among those who had <45K), who were
married or cohabiting (16.9% vs. 7.6% among single/divorced/widowed women), or were
obese (17.8% vs. 10% among those with normal weight) (Table 1).
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Table 1. Individual characteristics of reproductive-aged women from the 2013–2016 National Health
and Nutrition Examination Survey (NHANES) by infertility status (n = 2579).

Characteristics
All a Infertility a No Infertility a p-Value b

n = 2579 % and CI c n = 293 % and CI d n = 2286 % and CI d

Age (years) <0.0001
18–29 1049 39.1 (36.3–42.0) 64 5.6 (4.0–7.2) 985 94.3 (92.7–95.9)
30–39 751 30.1 (27.6–32.6) 98 14.5 (11.6–17.5) 653 85.4 (82.4–88.3)
40–49 779 30.6 (28.3–33.0) 131 19.7 (16.0–23.4) 648 80.2 (76.5–83.9)

Race/Ethnicity 0.22
NH White 842 57.3 (51.0–63.6) 111 13.8 (11.0–16.7) 731 86.1 (83.2–88.9)
NH Black 551 13.0 (9.5–16.5) 64 12.2 (9.3–15.0) 487 87.7 (84.9–90.6)
Hispanic 767 19.6 (15.0–24.3) 74 10.4 (8.2–12.5) 693 89.56 (87.4–91.7)

NH Asian 310 6.1 (4.5–7.5) 30 9.6 (6.7–12.6) 280 90.3 (87.3–93.2)
Other/Multi 109 3.7 (2.8–4.5) 14 11.8 (5.0–18.5) 95 88.1 (81.4–94.9)

Education Level 0.25
Less than High School 467 13.3 (10.9–15.6) 40 9.2 (5.6–12.7) 427 90.7 (87.2–94.3)

High School
graduate/GED 557 18.9 (16.2–21.6) 56 11.5 (8.2–14.7) 501 88.4 (85.2–91.7)

Some College/AA Degree 875 34.7 (32.0–37.5) 112 12.9 (10.5–15.4) 763 87.0 (84.5–89.4)
College Graduate or more 676 32.8 (28.6–37.0) 84 14.3 (10.9–17.6) 592 85.6 (82.3–89.0)

Missing 4 0.0 (0.0–0.1) 1 21.8 (0.0–63.3) 3 78.1 (36.6–100.0)
Marital Status <0.0001

Married/Cohabiting 1343 57.6 (54.1–61.1) 211 16.9 (14.2–19.7) 1132 83.0 (80.2–85.7)
Single/Divorced/

Widow 956 36.5 (33.0–39.9) 78 7.6 (5.9–9.4) 878 92.3 (90.5–94.0)

Missing 280 5.8 (4.7–6.9) 4 1.1 (0.0–2.4) 276 98.8 (97.5–100.0)
Annual Family Income 0.0003

<$45k 1242 40.9 (37.5–44.3) 127 9.9 (7.6–12.2) 1115 90.0 (87.7–92.3)
$45k–$100k 713 29.3 (26.8–31.9) 86 14.5 (11.1–17.8) 627 85.4 (82.1–88.8)
≥$100k 434 23.6 (19.7–27.6) 67 16.6 (11.8–21.4) 367 83.3 (78.5–88.1)
Missing 190 5.9 (4.5–7.3) 13 6.1 (3.2–9.0) 177 93.8 (90.9–96.7)

Alcohol Use 0.23
Yes 1595 70.5 (66.6–74.4) 204 13.2 (11.3–15.2) 1391 86.7 (84.7–88.6)
No 89 29.4 (25.5–33.3) 89 11.17 (8.2–14.0) 895 88.8 (85.9–91.7)

General Health Status 0.35
Excellent/Very Good 992 44.9 (41.5–48.3) 104 11.9 (9.1–14.8) 888 88.0 (85.1–90.8)

Good 1059 39.1 (36.4–41.8) 117 12.3 (9.8–14.8) 942 87.6 (85.1–90.1)
Fair/Poor 528 15.9 (13.6–18.2) 72 15.3 (11.2–19.3) 456 84.6 (80.6–88.7)

Smoking Status 0.69
Current 425 18.2 (16.3–20.0) 56 12.5 (8.9–16.1) 369 87.4 (83.8–91.0)
Former 261 13.0 (10.5–15.5) 41 14.5 (9.9–19.0) 220 85.4 (80.9–90.0)
Never 1893 68.7 (65.5–71.9) 196 12.3 (10.3–14.3) 1697 87.6 (85.6–89.6)

Body Mass Index (units) 0.0018
Underweight/Normal (<25 980 39.7 (36.4–42.9) 91 10.0 (7.8–12.2) 889 89.9 (87.7–92.1)
Overweight (25.0–29.99) 611 23.6 (21.5–25.8) 50 8.9 (5.6–12.2) 561 91.0 (87.7–94.3)

Obese (30.0+) 988 36.5 (34.1–39.0) 152 17.8 (14.0–21.7) 836 82.1 (78.2–85.9)
a The sample size (n) is unweighted but the percentage (%) accounted for the complex sampling design. b p-values
were obtained using Kruskal–Wallis tests and accounted for the complex sampling design. c Column percent.
d Row percent.

Tables S2–S11 describe the distribution of environmental chemical exposures by so-
ciodemographic characteristics including age, race/ethnicity, education, family household
income, marital status, general health status, BMI, smoking status, alcohol use, and infertil-
ity status, respectively. In general, we did not observe consistent patterns of differential
exposure across sociodemographic characteristics for many chemicals except in a few in-
stances. Particularly, median concentrations of many brominated flame retardants; metals
including cadmium lead, and mercury; and PFAs were generally higher among women
who were older (Table S2). Cotinine levels were higher among women who were younger,
NH Black, had less education or income, were not married/cohabiting, had more extreme
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BMIs, reported fair/poor health, were a current smoker, or alcohol consumer. Metal con-
centrations were higher among women who were older, a former/current smoker, alcohol
consumer, and those who reported infertility. BPA levels were higher among women who
were younger, NH Black, had less income, were not married/cohabiting, had a worse
health status, were obese, a current smoker, or an alcohol consumer. Furthermore, pesticide
exposures were also generally higher among women who were older, a former/current
smoker, alcohol consumer, and those who reported infertility.

Table 2 presents the association between environmental chemicals and the odds of
self-reported infertility. Model 1 (unadjusted) indicated that women who had high levels
of exposure to PBB-153, a common BFR, had 2.09 times the odds of reported infertility
[OR:2.09, 95% CI: 1.24–3.53] compared with low-exposed women. These associations were
not statistically significant after adjusting for covariates (aORModel2: 1.12; 95% CI: 0.54–2.33,
aORModel3: 1.44; 95% CI: 0.73–2.83). In addition, women with high levels of exposure to
the metal cadmium had 1.88 times the odds of self-reported infertility [aORModel2: 1.88,
95% CI: 1.02–3.47] compared with those with low levels of exposure.

Meanwhile, women with high levels of exposure to pesticides hexachlorobenzene
[ORModel1: 2.04, 95% CI: 1.05–3.98] and oxychlordane [ORModel1: 2.04, 95% CI: 1.12–3.69]
had about twice the odds of reporting infertility compared with those with low levels of
exposure. In adjusted models, these associations were not statistically significant, as demon-
strated by (aORModel2: 1.58, 95% CI: 0.55–4.50; and aORModel3: 1.48, 95% CI: 0.52–4.19) and
(aORModel2: 1.09, 95% CI: 0.49–2.41; and aORModel3: 1.29, 95% CI: 0.63–3.07), respectively,
for hexachlorobenzene and oxychlordane.

Table 2. Logistic regression analysis estimating the associations between environmental chemicals
and self-reported infertility, NHANES 2013–2016.

Environmental
Classes Environmental Chemicals N

Odds Ratio (95% CI) a

Model 1 b Model 2 c Model 3 d

Brominated Fire
Retardants (BFRs)

2,2’,4,4’,5,5’-Hexabromobiphenyl
(PBB-153) (pg/g) 798 2.09 (1.24–3.53) 1.12 (0.54–2.33) 1.44 (0.73–2.83)

2,4’-Tribromodiphenyl ether
(PBDE-28) (pg/g) 798 1.12 (0.71–1.77) 0.99 (0.61–1.61) 0.91 (0.58–1.43)

2,2’,4,4’-Tetrabromodiphenyl ether
(PBDE-47) (pg/g) 798 1.15 (0.64–2.05) 1.09 (0.57–2.05) 1.05 (0.56–1.94)

2,2’,4,4’,5-Pentabromodiphnyl ether
(PBDE-99) (pg/g) 798 1.02 (0.63–1.64) 0.90 (0.50–1.60) 0.92 (0.54–1.58)

2,2’,4,4’,6-Pentabromodiphyl ether
(PBDE-100) (pg/g) 798 0.94 (0.51–1.77) 1.02 (0.55–1.90) 0.94 (0.50–1.74)

2,2’,4,4’,5,5’-Hxbromodiphnyl ether
(PBDE-153) (pg/g) 798 1.16 (0.60–2.24) 0.74 (0.32–1.71) 1.03 (0.51–2.05)

Volatile Organic
Compounds (VOCs)

1,4-Dichlorobenzene (ng/mL) 1214 1.03 (0.68–1.54) 1.19 (0.85–1.67) 1.28 (0.86–1.90)
Benzene (ng/mL) 1192 0.92 (0.58–1.45) 1.10 (0.61–1.97) 1.00 (0.61–1.62)
Toluene (ng/mL) 1199 0.79 (0.51–1.23) 0.87 (0.50–1.51) 0.86 (0.53–1.38)

Methyl-tert-butyl ether
(MTBE) (ng/mL) 1153 0.73 (0.13–3.95) 0.71 (0.14–3.43) 0.73 (0.15–3.48)

Cotinine Cotinine (ng/mL) 2476 0.83 (0.60–1.13) 1.02 (0.71–1.47) 1.02 (0.77–1.34)

Metals

Arsenic, total (ug/L) 880 1.28 (0.73–2.23) 1.29 (0.71–2.33) 1.29 (0.73–2.29)
Cadmium (ug/L) 880 2.09 (1.20–3.61) 1.88 (1.02–3.47) 1.84 (1.06–3.20)

Lead (ug/dL) 1263 1.02 (0.68–1.54) 0.83 (0.50–1.36) 0.78 (0.49–1.24)
Mercury, total (ug/L) 1263 1.05 (0.67–1.65) 0.96 (0.56–1.65) 0.94 (0.59–1.49)

Pesticides

3-(Ethlycarbamoyl) benzoic acid
(DEET acid) (ng/mL) 806 1.15 (0.69–1.91) 1.38 (0.79–2.38) 1.31 (0.76–2.27)

Hexachlorobenzene (HCB) (pg/g) 798 2.04 (1.05–3.98) 1.58 (0.55–4.50) 1.48 (0.52–4.19)
Oxychlordane (OXYCHLOR) (pg/g) 798 2.04 (1.12–3.69) 1.09 (0.49–2.41) 1.29 (0.63–3.07)

Environmental
Phenols Bisphenol A (ng/mL) 789 0.82 (0.45–1.50) 1.10 (0.54–2.25) 1.06 (0.57–1.96)
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Table 2. Cont.

Environmental
Classes Environmental Chemicals N

Odds Ratio (95% CI) a

Model 1 b Model 2 c Model 3 d

Per- and
polyfluoroalkyl

substances (PFAs)

n-perfluorooctanoic acid
(n-PFOA) (ng/mL) 752 0.52 (0.31–0.86) 0.46 (0.26–0.81) 0.51 (0.30–0.86)

n-perfluorooctane sulfonic acid
(n-PFOS) (ng/mL) 752 0.51 (0.28–0.95) 0.46 (0.24–0.88) 0.51 (0.26–0.97)

Per- and
polyfluoroalkyl

substances (PFAs)

Perfluorohexane sulfonic acid
(PFHxS) (ng/mL) 795 0.93 (0.54–1.63) 1.01 (0.55–1.84) 1.10 (0.60–1.99)

Perfluorononanoic acid
(PFNA) (ng/mL) 795 0.63 (0.31–1.29) 0.51 (0.24–1.09) 0.53 (0.25–1.14)

a Cut-off at the 50th percentile. b Model 1 is an unadjusted model that accounts for complex probability weighting.
c Model 2 adjusted for confounders identified by the directed acyclic graph including age, race, education level,
annual family income, and smoking status. d Model 3 was fully adjusted for covariates that were associated with
both exposure and outcome in exploratory analyses, including age and annual family income. Boldface indicates
p-value < 0.05. Abbreviations: CI, confidence intervals.

We also observed inverse associations with two per- and polyfluoroalkyl substances
(PFAs). Women with high levels of exposure to n-perfluorooctanoic acid (n-PFOA) had
0.46 times the odds of reporting infertility [aORModel2: 0.46, 95% CI: 0.26–0.81] compared
to women with low levels of exposure. Similar results were found for n-perfluorooctane
sulfonic acid (n-PFOS) [aORModel2: 0.46, 95% CI: 0.24–0.88).

The results were generally consistent when the 75th percentile was used as the cut-off
(Table 3). After adjusting for confounders, arsenic was positively associated with infer-
tility [aORModel2: 1.88, 95% CI: 1.05–3.36]. The inverse associations with PFAs mostly
disappeared except for the associations with n-PFOS in Model 2 in Table 3 [aOR: 0.51,
95% CI: 0.28–0.92]. Meanwhile, analysis of the exposure scores suggested that those
with higher scores had higher odds of self-reported infertility, although none of the
estimates were statistically significant, potentially due to the moderate prevalence of
infertility (Table S12).

Table 3. Sensitivity analysis: logistic regression analysis estimating the associations between environ-
mental chemicals and infertility, NHANES 2013–2016.

Environmental
Classes Environmental Chemicals a N

Odds Ratio (95% CI) a

Model 1 b Model 2 c Model 3 d

Brominated Fire
Retardants (BFRs)

2,2’,4,4’,5,5’-Hexabromobiphenyl
(PBB-153) (pg/g) 798 1.82 (1.00–3.34) 1.08 (0.47–2.48) 1.25 (0.59–2.62)

2,4,4’-Tribromodiphenyl ether
(PBDE-28) (pg/g) 798 1.13 (0.64–2.01) 1.00 (0.54–1.87) 0.88 (0.48–1.59)

2,2’,4,4’-Tetrabromodiphenyl ether
(PBDE-47) (pg/g) 798 0.86 (0.42–1.72) 0.89 (0.41–1.90) 0.81 (0.40–1.64)

2,2’,4,4’,5-Pentabromodiphnyl ether
(PBDE-99) (pg/g) 798 0.90 (0.49–1.64) 0.79 (0.42–1.47) 0.79 (0.43–1.43)

2,2’,4,4’,6-Pentabromodiphyl ether
(PBDE-100) (pg/g) 798 0.99 (0.57–1.73) 0.95 (0.53–1.69) 0.90 (0.51–1.60)

2,2’,4,4’,5,5’-Hxbromodiphnyl ether
(PBDE-153) (pg/g) 798 1.36 (0.76–2.46) 0.86 (0.43–1.73) 1.20 (0.64–2.28)

Volatile Organic
Compounds (VOCs)

1,4-Dichlorobenzene (ng/mL) 1214 1.20 (0.76–1.89) 1.44 (0.85–2.46) 1.33 (0.84–2.10)
Benzene (ng/mL) 1192 0.76 (0.48–1.20) 0.78 (0.43–1.41) 0.76 (0.47–1.23)
Toluene (ng/mL) 1199 0.68 (0.42–1.08) 0.69 (0.36–1.33) 0.68 (0.40–1.14)

Methyl-tert-butyl ether
(MTBE) (ng/mL) 1153 0.73 (0.13–3.95) 0.71 (0.14–3.43) 0.70 (0.13–3.72)

Cotinine Cotinine (ng/mL) 2476 1.02 (0.74–1.40) 1.72 (0.99–2.99) 1.12 (0.82–1.54)
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Table 3. Cont.

Environmental
Classes Environmental Chemicals a N

Odds Ratio (95% CI) a

Model 1 b Model 2 c Model 3 d

Metals

Arsenic, total (ug/L) 880 1.83 (1.04–3.22) 1.88 (1.05–3.36) 1.67 (0.94–2.96)
Cadmium (ug/L) 880 1.43 (0.79–2.59) 1.03 (0.53–2.01) 1.02 (0.57–1.81)

Lead (ug/dL) 1263 0.83 (0.60–1.51) 0.79 (0.46–1.35) 0.72 (0.46–1.12)
Mercury, total (ug/L) 1263 1.05 (0.63–1.75) 0.93 (0.55–1.59) 0.91 (0.55–1.51)

Pesticides

3-(Ethlycarbamoyl) benzoic acid
(DEET acid) (ng/mL) 806 0.82 (0.40–1.69) 0.87 (0.40–1.90) 0.86 (0.41–1.81)

Hexachlorobenzene (HCB) (pg/g) 798 1.70 (1.00–2.90) 1.46 (0.57–3.72) 1.03 (0.50–2.09)
Oxychlordane (OXYCHLOR) (pg/g) 798 1.73 (1.05–2.85) 0.62 (0.19–2.02) 0.80 (0.33–1.88)

Environmental
Phenols Bisphenol A (ng/mL) 789 1.08 (0.55–2.12) 1.52 (0.68–3.42) 1.15 (0.56–2.36)

Per- and
Polyfluoroalkyl

substances (PFAs)

n-perfluorooctanoic acid
(n-PFOA) (ng/mL) 752 0.60 (0.31–1.17) 0.50 (0.22–1.10) 0.57 (0.29–1.14)

n-perfluorooctane sulfonic acid
(n-PFOS) (ng/mL) 752 0.57 (0.32–1.00) 0.51 (0.28–0.92) 0.52 (0.30–0.89)

Perfluorohexane sulfonic acid
(PFHxS) (ng/mL) 795 0.62 (0.32–1.22) 0.71 (0.34–1.48) 0.73 (0.36–1.46)

Perfluorononanoic acid
(PFNA) (ng/mL) 795 0.67 (0.29–1.53) 0.62 (0.25–1.54) 0.59 (0.25–1.40)

a Cut-off at the 75th percentile. b Model 1 accounts for complex probability weighting. c Model 2 adjusted for
confounder identified by the directed acyclic graph including age, race, education level, annual family income,
and smoking status. d Model 3 was fully adjusted for covariates including age and alcohol use. Boldface indicates
p-value < 0.05. Abbreviations: CI, confidence intervals.

4. Discussion

This study characterized sociodemographic variations in chemical exposures and their
association with self-reported infertility. In terms of sociodemographic associations, self-
reported infertility was more prevalent among older women, those with higher incomes,
married women, and those with higher BMI. These variations in risk may reflect underlying
physiological mechanisms affecting fertility, such as age-related declines in oocyte quantity
and quality, hormonal imbalances associated with obesity, and the tendency for individuals
with higher education and income to delay childbearing, which is linked to age-related
reductions in fertility [58,59]. While we observed no consistent patterns in exposures
across most sociodemographic characteristics, data suggested specific instances of potential
variation. Chemical burdens were generally higher among older women, those who were
non-White, and those with lower sociodemographic indicators, but in some cases, findings
were mixed. We also observed positive associations between self-reported infertility and
some BFRs, heavy metals, and pesticides.

Polybrominated diphenyl ether (PBDE) flame retardants and metals such as cad-
mium and lead were higher in older reproductive-aged women compared with their
younger counterparts. Another NHANES analysis shows that adults aged ≥ 60 had twice
the likelihood of having serum PBDE-47 levels > 95th percentile compared with those
aged 20–59 [52]. Other studies observed cadmium in higher concentrations among older
reproductive-aged women [60,61]. These trends may suggest age-related differences in the
exposure level, absorption, metabolism, and/or excretion of PBDEs and metal, as well as
their ability to accumulate [62]. PBDEs are used as flame retardants and are commonly
found in consumer products like electronics, textiles, and upholstered furniture. Although
certain US manufacturers have voluntarily stopped producing some PBDEs, these chem-
icals persist, and, with exposure, can accumulate in human adipose tissue [63,64]. For
cadmium, age-related slowing of elimination rate, coupled with the long half-life (up to
38 years in the kidneys), can cause more accumulation in older women [65]. Because
BFRs and metals have been linked to many health outcomes across the lifespan, including
thyroid disorders, diabetes, cardiovascular disease, and cancers, higher concentrations may
contribute to a higher health burden in older women [66–68].
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Higher pesticide concentrations were observed among NH Black and NH Asian
women, and elevated BFR levels among women of other and multi-race backgrounds.
These disparities can be explained by structural racism and classism identified as a system
shaped by historical, institutional, cultural, or behavioral societal behaviors that consistently
harm and oppress communities of color, which has resulted in notable disparities in
exposure to various environmental pollutants [69]. Studies suggested that communities
of color are more exposed to pesticides and other pollutants, potentially due to residing
near agricultural areas and indoor use of pesticides [69,70]. Similarly, Sjodin et al. noted
lower PBDE-47 and PBDE-99 in White populations compared to Mexican American and
Black populations [52]. Differences in PBDE exposure can be attributed to variations in
housing quality, furniture, and dietary habits, particularly the consumption of contaminated
animal fats [71,72].

Meanwhile, BPA levels were higher among women who were younger or had a lower
income, were NH Black, obese, were single/divorced/widow, or reported worse health
status. BPA, commonly found in shatterproof windows, eyewear, water bottles, epoxy
resins that cover metal cans, and many other sources, was detected in about 89% of US
women aged 16 to 49 in 2011–2012 [73]. Previous research has found that BPA levels have
been higher among Black females [74–76] and lower income groups [77], potentially due to
limited access to fresh food, leading to an increased reliance on processed food, which is
typically packaged in plastics or cans with elevated BPA levels [78].

In addition to exposure disparities, the positive associations between self-reported
infertility and BFRs, metals, and pesticides are concerning. BFRs are added to products
like foam, textiles, and plastics to prevent fires but are not chemically bound to these
materials [79]. They can enter the environment through volatilization, leaching, or product
degradation. PBDEs are long-lasting and can be found in aquatic sediments, house dust,
and various animals, especially fish, where they accumulate [79]. Our findings are con-
sistent with other studies that observed associations between BFR exposure and adverse
reproductive outcome exposure, such as longer time to pregnancy [80,81]. Meanwhile, a
study examined in utero exposure to PBB-153 from an industrial accident in 1973 Michigan
and infertility and observed no association [82]. This lack of observed association could
possibly be attributed to the young age of participants (23.3 years), which might not capture
the full scope of infertility as fertility issues often become more apparent with increasing
age. Also, the analysis of Michigan data was limited to married women, excluding a portion
of the population that could experience infertility.

Our main analysis showed an association between infertility and exposure to cadmium
and our sensitivity analyses revealed associations between infertility and arsenic. Both
metals are naturally occurring substances that can be found in air, water, and soil [83,84].
Research on the link between cadmium and arsenic and infertility remains limited [85–87].
A study of women in China found higher urinary cadmium levels in women who lived
closer to a zinc mine, which was associated with difficulties in becoming pregnant and
other pregnancy-related issues [85]. Another prospective study of 501 US couples reported
a significant connection between high blood cadmium levels in the female partner and
reduced fecundity [86]. Lastly, a study in Denmark examined occupational exposure to
lead, mercury, and cadmium and found that exposed females to all of these metals had a
higher likelihood of experiencing pregnancy-related issues, including conception delay
and idiopathic infertility [87]. Studies in Taiwan and India have linked arsenic exposure
to adverse reproductive outcomes [88,89]. In Taiwan, infertile women were found to have
significantly higher blood arsenic levels compared to pregnant women, while in India,
areas with arsenic exposure reported higher rates of stillbirth, recurrent miscarriage, and
infertility compared to non-exposed areas [88,89]. A separate study observed no significant
difference in blood arsenic concentration between women who became pregnant and those
who did not [90]. The emerging evidence suggests that exposure to cadmium and arsenic
may negatively impact female fertility. These findings highlight the potential reproductive
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risks of cadmium and arsenic, emphasizing the importance of reducing exposure to these
metals to improve fertility outcomes.

Although the association between hexachlorobenzene (HCB) and self-reported infer-
tility was not statistically significant after adjusting for confounders (likely due to the small
sample size), its widespread use for pest and fungus control warrants attention, as HCB
has been linked to reproductive health issues in other studies [91–95]. Although banned in
the US since 1966, HCB is still produced abroad and generated as a byproduct of organic
chemical production [96]. In the US, people are exposed to HCB primarily by consuming
contaminated foods, such as fatty fish [96]. HCB is a persistent chemical that accumulates in
adipose tissue, persisting for years [96]. A birth cohort study conducted in France showed
that elevated cord blood levels of HCB, collected at birth as a proxy for in utero exposure,
were associated with prolonged time to pregnancy [21]. Meanwhile, other studies suggest
similar findings pointing to the chemical’s adverse reproductive effects [97,98].

Despite chlordane’s 1988 ban, our study shows continued exposure to oxychlordane,
its metabolite and elevated odds of self-reported infertility in highly exposed individuals.
Exposure in the US may result from inhalation, dermal contact with soil from termite-
treated old homes, or consumption of chlordane-contaminated food or drinking water
that was potentially tainted before the ban [99]. In the US, an estimated 52 million people
live in chlordane-treated homes [99]. Additionally, HCB is a byproduct of manufacturing
processes and the combustion of municipal waste [100]. Like HCB, chlordane residues
accumulate in body fat, where it can be stored for a long time [99]. The limited research
suggests reduced fertility in rats exposed to chlordane in their diet [101]. Although human
studies on exposure to HCB and infertility are limited, some have observed decreased
fertility [21,102]. Therefore, epidemiological studies investigating the reproductive effects
of HCB and other pesticide compounds are warranted.

Oxidative stress, endocrine disruption, and systemic inflammation are likely mecha-
nisms through which environmental chemicals can interfere with infertility. Environmental
chemicals can trigger oxidative stress which can lead to ovarian aging, apoptosis in folli-
cles, reduced follicle reserve, impaired follicle formation, and growth, ultimately affecting
infertility [103–105]. Regulation of oxidative stress is an important factor in efforts to con-
ceive, as evident through the use of antioxidant supplements [106]. Endocrine disruption
plays a critical role in linking exposure to environmental chemicals and toxins to infertility
by interfering with hormone systems, leading to hormonal imbalances; these disruptions
can impair ovulation, menstrual cycles, and overall reproductive function, thereby in-
creasing the risk of infertility [107,108]. Systemic inflammation, induced by exposure to
environmental chemicals, can affect the reproductive tract leading to various impairments
in reproductive function and thereby contributing to infertility [109,110].

The inverse associations between exposure to some PFAs are unexpected given the
numerous studies suggesting positive associations [34,111]. One possible explanation
is through a non-linear relationship, but we tested this and did not detect non-linearity
in our analyses. Another possibility is that a sociodemographic variable or other third
variables might confound this relationship, as individuals with different characteristics
may have varying exposure levels and fertility outcomes. Additionally, potential exposure
misclassification and/or the small sample size that contributed to environmental samples.
Such findings should be further explored in future studies.

In general, the exposure disparities and associations with infertility for some chemicals
are important public health concerns. Despite reductions in the environmental concen-
tration of many hazardous chemicals due to various environmental health policies and
changes in industrial practices, human exposure persists due to the persistent nature of
these chemicals. This underscores the need for continuous monitoring and assessment of
health risks with special attention to the sociodemographic disparities of exposures. The
sociodemographic disparities in exposure to harmful chemicals also highlight the need for
more advocacy in environmental justice principles [112]. Additionally, infertility due to
environmental chemical exposure, which is often overlooked, can hinder the fundamental
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human right to have children if and when desired. Since 1948, international human rights
efforts have affirmed an individual’s right to build families and make personal, informed
choices about when and how many children to have [113]. Addressing chemicals’ impact
on fertility is vital for ensuring family-building opportunities. Given population diversity,
rising infertility rates, and complex environmental threats, equitable and sustainable expo-
sure reduction efforts are necessary. While awaiting more studies to further understand
the full extent of the health impacts of environmental chemicals, their negative health
consequences are undeniable [114–116]. Yet, many reproductive-aged women are unaware
of exposures and their impact on fertility [117]. Thus, it may be prudent that healthcare
providers—through trusted partnerships—inform and advocate for safer chemical policies,
as well as discuss potential health impacts with patients. Currently, healthcare providers
seldom warn expectant or aspiring mothers about environmental hazards due to limited
training, concerns about causing anxiety, and the perceived limited exposure-reduction
options [118]. Studies have highlighted a significant gap in environmental health education
within the US medical training curriculum and this deficiency raises concerns about the
preparedness of future physicians to effectively manage growing environmental concerns
and related illnesses [119–121].

At the personal level, approaches to reduce exposure include selecting fresh foods,
minimizing processed and canned foods with plastic liners, adopting home habits like
removing shoes indoors, and checking local air quality [122]. On the public health front,
multidisciplinary collaboration among policymakers, clinicians, industry partners, re-
searchers, governmental agencies, and community groups is crucial to developing effective
mitigation and prevention strategies against widespread environmental chemicals. Mean-
while, consistent education and communication efforts regarding the role of environmental
chemicals on health is needed [123]. People are inclined to act upon knowledge of risks but
may hesitate when faced with conflicting information [123–125].

This study has several limitations. The cross-sectional nature and the lack of informa-
tion on the timing of exposures and lack of infertility diagnosis limit our ability to infer the
temporality of such a relationship. Second, infertility was based on a single question that
was self-reported, leading to potential outcome misclassification. Although we defined
people as infertile if they had actively been trying for 12 months AND were not able to
conceive, this binary approach may unintentionally misclassify individuals. However,
there is no reason to expect differential misclassification by exposure status, as people are
typically unaware of their exposure level. Studies showed that self-reported infertility
is an appropriate and valid measure with high specificity at 95% and sensitivity at 70%
when compared against medical records [126]. Third, the way infertility is defined in
this study may underestimate infertility for women ≥35 as the definition is different for
this group. Fourth, we did not have data on male factors, although they contribute to
about one-third of infertility cases [19]. Fifth, excluding participants without a fertility
response reduced our sample by approximately 15%, which could impact generalizabil-
ity. Although this exclusion was necessary, as fertility response defined eligibility, it may
have excluded individuals potentially experiencing lower levels of fertility. In analyses
comparing characteristics between those in the sample and those excluded, we found that
those with a fertility response included a lower proportion of NH White individuals and a
higher proportion of NH Asian individuals compared to the analytical sample. However,
both groups were similar in terms of age, income and education. Sixth, since we classified
exposures by the median, individuals with levels below fertility-impacting thresholds may
have been included in the exposed group (and vice versa depending on the threshold). This
potential misclassification may have distorted our findings. However, we also conducted
sensitivity analyses using the 75th percentile as a threshold. This higher cut-off allows for a
more stringent classification of ‘high exposure’ and provides additional confidence that our
findings capture associations at levels more likely to impact fertility. Nevertheless, we note
that because there are no established health thresholds for these chemicals, our cut-offs are
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arbitrary and may not accurately capture fertility effects. Lastly, the limited sample size
hindered our ability to identify susceptible subgroups.

Despite the limitations, our study has notable strengths. First, the study is nation-
ally representative and provides an analysis of the relationship between environmental
chemicals and infertility in the US. Second, the use of biomarker data can help minimize
exposure misclassification. Lastly, the multiple sensitivity analyses with different exposure
metrics showed consistent findings, which was reassuring.

5. Conclusions

In a US nationally representative sample of reproductive-aged women, we found that
high levels of exposure to pesticides, metals, and potentially some BFRs were associated
with significantly higher odds of self-reported infertility. Furthermore, exposures to these
chemicals varied across sociodemographic characteristics where marginalized groups are
more burdened with exposure to environmental chemicals. Despite reductions in the
environmental concentration of many hazardous chemicals including BFRs, certain metals,
and pesticides, due to various environmental health policies and changes in industrial
practices, human exposure to these substances continues. This ongoing exposure is also
largely due to the persistent nature of these chemicals in the environment. This concern
underscores the need for continuous monitoring and assessment of health risks with
special attention to the sociodemographic disparities in exposures. The sociodemographic
disparities in exposure to harmful chemicals also highlight the need for more advocacy in
environmental justice principles, defined as equal protection in environmental and health
laws [112]. Continued precautionary measures are crucial to protect equal rights to good
health regardless of sociodemographic status. While awaiting larger studies to deepen our
understanding of the profound effects of environmental chemicals on infertility, it is critical
to continue and strengthen initiatives aimed at reducing exposure.
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