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Abstract: African American women in the United States have a high risk of adverse pregnancy
outcomes. DNA methylation is a potential mechanism by which exposure to BTEX (benzene, toluene,
ethylbenzene, and xylenes) may cause adverse pregnancy outcomes. Data are from the Maternal
Stress Study, which recruited African American women in the second trimester of pregnancy from
February 2009 to June 2010. DNA methylation was measured in archived DNA from venous blood
collected in the second trimester. Trimester-specific exposure to airshed BTEX was estimated using
maternal self-reported addresses and geospatial models of ambient air pollution developed as part of
the Geospatial Determinants of Health Outcomes Consortium. Among the 64 women with exposure
and outcome data available, 46 differentially methylated regions (DMRs) were associated with BTEX
exposure (FDR adjusted p-value < 0.05) using a DMR-based epigenome-wide association study
approach. Overall, 89% of DMRs consistently exhibited hypomethylation with increasing BTEX
exposure. Biological pathway analysis identified 11 enriched pathways, with the top 3 involving
gamma-aminobutyric acid receptor signaling, oxytocin in brain signaling, and the gustation pathway.
These findings highlight the potential impact of BTEX on DNA methylation in pregnant women.

Keywords: DNA methylation; pregnancy; BTEX; epidemiology; volatile organic compounds

1. Introduction

Increasingly, studies are linking air pollution to an increased risk of adverse preg-
nancy outcomes such as preterm birth (PTB) [1]. Among these pollutants, volatile organic
compounds such as BTEX (benzene, toluene, ethylbenzene, and xylenes) are of concern
as they are widespread in urban areas [2]. BTEX, commonly released from petroleum
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products and vehicle exhaust, has been found in soil and groundwater at both commercial
and residential properties [3–5]. We have previously shown that BTEX in the airshed is
associated with an increased risk of PTB in Detroit [1]. Given the widespread distribution
of BTEX and its potential effects on pregnancy outcomes, it is important to explore potential
biomarkers and pathways by which BTEX might influence maternal prenatal health and
pregnancy outcomes.

Epigenetic changes, namely DNA methylation, has emerged as a potential mechanism
by which volatile organic compound exposure may exert adverse health effects [6–8]. Most
of these studies have focused on exposure to a single component of BTEX (e.g., benzene [9])
or occupationally exposed individuals, and none have studied the association of these
compounds with DNA methylation in pregnancy [10]. For example, exposure to BTEX
as a consequence of being a gas station worker was associated with hypermethylation
in the promoter region of two tumor suppressor genes and one detoxification gene [11].
Additionally, one study found that even lower levels of benzene exposure (<1 part per
million) was associated with alterations in genes involved in the innate immune response
and energy homeostasis [12]. To our knowledge, the impact of BTEX exposure on genome-
wide methylation changes in DNA from maternal blood has not been examined. Given this
evidence demonstrating that even lower exposure levels may impact epigenetic changes,
it is important to examine BTEX exposure and DNA methylation among more generally
exposed groups of individuals, including non-occupationally exposed pregnant women.

This study sought to examine the association of airshed BTEX with genome-wide
methylation changes in DNA from maternal prenatal blood specimens from a cohort of
African American women residing in an urban area. In the United States as a whole
and in Detroit, MI, African American women bear a disproportionate burden of both
environmental toxicant exposures and adverse health outcomes such as PTB [13]. As such,
there is an immediate need to include minorized groups in research. By focusing on African
American women in this analysis, we may reveal potentially meaningful biomarkers or
pathways or areas for intervention to decrease racial disparities in key health outcomes.

2. Materials and Methods
2.1. Study Population

This study used questionnaires, medical record data, and venous-blood-derived DNA
from the Maternal Stress Study (MSS), which recruited African American women, aged
18–44 years, in the second trimester of pregnancy between February 2009 and June 2010 [14].
All women were seeking prenatal care at Henry Ford Health System in Detroit, Michigan.
In total, 203 women participated in the MSS. A subset of women in the MSS resided in
the study area that was included in the Geospatial Determinants of Health Outcomes
Consortium (GeoDHOC) study and had BTEX exposure data available from the GeoDHOC
(n = 142) study as described below. After further restricting to women who had archived
DNA that was previously extracted from a second-trimester blood specimen, the final
analytic sample included 64 women who had both exposure and outcome data available.
This study was approved by the institutional review board at Henry Ford Health System
#5316 from 28 October 2008 to present and #7777 from 9 August 2013 to present. Written
informed consent was obtained for all study participants as part of #5316.

2.2. BTEX Exposure Assignment

BTEX exposure was estimated through high-resolution spatial monitoring of air pol-
lution by the GeoDHOC, which has been described in detail elsewhere [1,15,16]. The
GeoDHOC study collected air pollution measurements at 100 sites in 2008 and 133 sites in
2009 in Detroit and Windsor during 2 separate 2-week campaigns (September 2008 and
May–June 2009) [1,15,16]. GeoDHOC geospatial models of Detroit air pollution [15] were
coupled with pollution data collected by the State of Michigan Air Sampling Network in
Detroit to develop a model that estimates ambient Detroit air pollution at a spatial density
of 300 square meters [17]. Kriging was used to model individual air pollutant content
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across Detroit based on maternal address. The MSS recruitment partially overlapped with
the GeoDHOC sampling frame, facilitating exposure estimation in a subset of the MSS
cohort. Trimester-specific exposure to airshed BTEX was estimated using the GeoDHOC
data described previously [14]. In brief, maternal address at the time of a second trimester
blood draw was self-reported and was the address used to assign BTEX exposure for that
trimester. The date of a participant’s last menstrual period was used to define each trimester
of pregnancy which was then used to assign exposure periods. For this study, we focused
on exposures during the second trimester of pregnancy. Exposure estimates for pregnancies
with a last menstrual period date on or before the 15th of each month were considered to
begin in that month while exposures for pregnancies with a last menstrual period date
after the 15th of a month were considered to begin the following month [1]. The average
exposure estimates during the months corresponding to the second trimester were then
calculated. For the primary analysis, BTEX was dichotomized into low versus high second
trimester BTEX exposure using the median BTEX level in the sample (median = 7.42 µg/m3;
range = 6.02–11.32 µg/m3).

2.3. DNA Isolation and Measurement of DNA Methylation

Maternal DNA was isolated from a venous blood draw during the second trimester of
pregnancy and has been stored at −80 ◦C since the time of extraction. Bisulfite conversion
was performed with the EZ-96 Methylation Kit (Zymo Research, Irvine, CA, USA) using the
standard methods. The Illumina Infinium MethylationEPIC BeadChip (EPIC; San Diego,
CA, USA) was then used to measure genome-wide DNA methylation at the Wayne State
University Genome Sciences Core Laboratory.

2.4. Methylome-Wide Assessment and Quality Control

Illumina EPIC Array DNA methylation data were generated for 64 unique pregnant
mothers with archived DNA. The R package “SeSAMe” was used to initially process the
over-850,000 CpG probes on the array by performing background adjustment, dye bias
correction, and masking of low-intensity probes, as well as probes with design issues (e.g.,
overlap with single-nucleotide polymorphisms) [18]. CpG sites with all patient probes
masked were excluded, leaving 749,000 probes for the maternal blood data analysis. A
Beta-Mixture Quantile approach was used to normalize the type II CpG probes to the type
I CpG probes, removing bias associated with technical variation [19]. Remaining CpG
site missing values were imputed using a sliding logistic regression in which probes with
complete data within 1 Mb in either direction of a given CpG site were used for model
construction [20]. A logit transformation was used to convert methylation Beta values to
M-values, which were used for association analysis.

Additionally, maternal blood methylation data were deconvoluted to their estimated
constituent cell types using the Houseman method [21] as part of the “minfi” package [22].
Specifically, immune-cell-specific proportions were estimated for each participant, and
these estimates were utilized as covariates in the methylation analyses to account for
potential confounding by differential distributions of cell types.

2.5. Covariate Assessment

MSS participants self-reported date of birth (used to calculate maternal age at time of
blood draw), marital status, education, cigarette smoking (self and environmental tobacco
exposure), and pre-pregnancy height and weight. Pre-pregnancy body mass index (BMI)
was calculated as weight (kg)/height (m2). Gestational age at delivery, parity, offspring
birth weight, and sex were abstracted from the medical record.

2.6. Statistical Analysis

The primary analysis for this investigation was a differentially methylated region
(DMR)-based epigenome-wide association study of second-trimester BTEX exposure. This
analysis involved 2 stages, with the first stage composed of single-CpG-site association
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testing and the second stage combining the single-site association results to perform the
region-based analysis. Specifically, the first stage was performed using linear regression
to test the association between each CpG site M-value and second-trimester BTEX (high
vs. low), while adjusting for the following potential confounding variables: maternal age,
maternal pre-pregnancy BMI, and methylation-based estimates of blood cellular composi-
tion proportions (described above). A p-value threshold of <0.01 was used as the cutoff
to advance individual CpG sites to the region testing in stage 2. The stage 2 identification
of DMRs associated with BTEX exposure was performed using the comb-p method as
implemented in the R package “ENmix” [23,24]. Specifically, comb-p computes a region-
based test of association by combining the single CpG site association p-values from stage
1 where the CpG sites reside within a 1 kb range of one another. An epigenome-wide
permutation-based approach was then applied to determine the p-value for each region.
For this analysis, the resulting region-based p-values were then adjusted for multiple testing
using the Benjamini and Hochberg false discovery rate (FDR) approach [25], and DMRs
with an FDR adjusted p-value < 0.05 were considered statistically significant. Significant
regions were annotated to genes using the ChIPseeker R package with default parameters
and the UCSC hg38 knownGene Track as reference [26]. All CPG sites that were statisti-
cally significant (FDR adjusted p-value < 0.05) and an absolute log-fold change >1 were
subsequently used to test for biological pathway enrichment using QIAGEN Ingenuity
Pathway Analysis (Hilden, Germany) [27].

3. Results

Sociodemographic and reproductive characteristics of the 64 women overall and by
low/high BTEX exposure are presented in Table 1. The mothers had an average age of
approximately 26 years, the majority (56%) had a prior pregnancy resulting in a live birth,
36% had more than a high school education, and 19% were married. Higher BTEX levels
were associated with a lower pre-pregnancy BMI (p = 0.047) and younger maternal age
(p = 0.009).

Table 1. Maternal and infant demographic and clinical characteristics overall and stratified by median
BTEX exposure (median = 7.42 µg/m3).

Combined Population
(N = 64)

Low BTEX
(N = 32)

High BTEX
(N = 32) p-Value

Maternal education (≥ college), n (%) 20 (36.4) 7 (28.0) 13 (43.3) 0.370
Maternal age at blood draw, mean (SD) 25.84 (5.89) 27.72 (6.49) 23.95 (4.59) 0.009
Pre-pregnancy BMI (kg/m2), mean (SD) 28.13 (6.66) 29.77 (6.24) 26.48 (6.76) 0.047

Married, n (%) 12 (18.8) 8 (25.0) 4(12.5) 0.337
Prenatal smoking, n (%) 7 (10.9) 3 (9.4) 4 (12.5) 1.000

ETS exposed, n (%) 21 (70.0) 13(76.5) 8 (61.5) 0.630
Parity, mean (SD) 1.05 (1.43) 1.09 (1.12) 1.00 (1.70) 0.796

Methylation-based predicted immune cell %, mean (SD)
CD8+ T-cell 8.97 (3.77) 8.39 (2.90) 9.55 (4.44) 0.219
CD4+ T-cell 7.11 (3.38) 7.68 (3.35) 6.54 (3.36) 0.181

NK-cell 1.69 (2.37) 1.57 (1.46) 1.82 (3.05) 0.681
B-cell 3.10 (1.69) 3.19 (1.84) 3.02 (1.54) 0.696

Monocytes 9.64 (2.27) 9.59 (2.12) 9.69 (2.45) 0.870
Granulocytes 69.48 (7.00) 69.59 (6.13) 69.38 (7.87) 0.909

Infant sex (male), n (%) 33 (52.4) 18 (56.2) 15 (48.4) 0.710
Birthweight (grams), mean (SD) 3151.29 (610.96) 3182.22 (605.63) 3119.35 (624.76) 0.687

Gestational age at delivery (weeks), mean (SD) 38.73 (2.47) 38.81 (1.99) 38.64 (2.90) 0.780

BMI, body mass index; BTEX, benzene, toluene, ethylbenzene, and xylenes; ETS, environmental tobacco smoke; SD,
standard deviation. p-value from t-test for continuous variables and from chi-square test for categorical variables.

A total of 46 DMRs (FDR adjusted p < 0.05) were associated with BTEX exposure
(Table 2), and these DMRs included a total of 201 independent CpG sites. On average,
DMRs spanned 236 base pairs (minimum/maximum base pair width 4/911), and while
they were spread throughout the genome, chromosome 11 contained the highest number
of DMRs (n = 6). The distribution of the functional annotation categories of the DMRs are



Int. J. Environ. Res. Public Health 2024, 21, 256 5 of 10

presented in Figure 1, and these data show that 63.08% of the DMRs were in genic regions
(exon, introns, or promoters) of the genome, while the remaining 36.92% were considered
distal intergenic. Further, based on the nominally significant (single CpG site p-value < 0.05)
CpGs within each of the DMRs, there was a general trend towards consistent association
directions with increasing BTEX exposure for the DMRs. Specifically, 41 of the DMRs
(89%) had nominally significant CpGs where a higher BTEX exposure was associated with
hypomethylation, while a higher BTEX was associated with hypermethylation only at a
single region on chromosome 10 (annotated as distal intergenic, with the nearest gene being
a long non-coding RNA, LINC02681). The remaining four regions (9% of DMRs) were
composed of a similar number of both BTEX-associated hyper- and hypo-methylated CpGs.

Table 2. Significant differentially methylated regions (DMRs) in second-trimester maternal blood
specimens comparing high vs. low BTEX exposure. DMRs are arranged by increasing FDR p-value.

CpG Sites *

Chromosome BP
Start

BP
Width

Functional
Annotation

Gene
Symbol FDR Total Hyper Hypo

4 184,908,253 766 Distal intergenic LINC01093 1.67 × 10−9 11 0 10
6 291,686 911 Promoter (≤1 kb) DUSP22 1.76 × 10−9 8 0 8

11 6,291,624 888 Distal intergenic CCKBR 1.76 × 10−9 7 0 7
17 40,274,523 289 Promoter (≤1 kb) WIPF2 1.02 × 10−7 7 0 6

1 42,384,283 365 Intron RIMKLA 2.23 × 10−7 8 0 8
7 69,064,092 87 Distal intergenic CT66 3.26 × 10−7 4 0 4
2 48,132,739 315 Intron FOXN2 3.26 × 10−7 7 0 7

17 80,408,535 394 Intron RNF213-AS1 3.30 × 10−7 8 0 6
21 47,532,059 275 Distal intergenic PRMT2 6.89 × 10−7 5 0 4
12 123,319,893 165 Exon SBNO1 8.02 × 10−7 5 0 4
14 93,698,773 172 Intron UNC79 8.02 × 10−7 3 0 3
11 123,430,574 376 Promoter (≤1 kb) GRAMD1B 8.67 × 10−7 6 0 6

1 161,008,461 366 Intron F11R 8.90 × 10−7 8 3 3
12 123,750,781 84 Promoter (≤1 kb) ATP6V0A2 9.13 × 10−7 3 0 3

5 170,814,528 309 Distal intergenic GABRP 9.13 × 10−7 8 0 8
19 2,163,592 241 Promoter (≤1 kb) DOT1L 1.01 × 10−6 4 0 4
11 9,697,192 238 Intron SWAP70 1.03 × 10−6 2 1 1
17 53,828,262 254 Intron KIF2B 1.03 × 10−6 6 0 4
19 35,645,555 158 Promoter (1–2 kb) ETV2 1.03 × 10−6 8 0 6
16 56,228,384 361 Promoter (2–3 kb) GNAO1 1.87 × 10−6 9 0 7

3 9,932,179 145 Promoter (1–2 kb) IL17RC 1.93 × 10−6 6 0 4
2 48,844,762 307 Intron STON1-GTF2A1L 2.31 × 10−6 6 0 5

22 44,422,011 189 Distal intergenic LINC01656 2.46 × 10−6 5 3 2
16 10,837,596 110 Distal intergenic TVP23A 2.71 × 10−6 8 0 6

6 85,823,948 269 Distal intergenic SNHG5 4.21 × 10−6 4 0 4
11 117,352,729 211 Promoter (≤1 kb) CEP164 5.14 × 10−6 4 0 4
14 105,287,325 103 Intron BRF1 5.46 × 10−6 3 0 3
19 37,825,319 254 Promoter (2–3 kb) LOC644554 6.11 × 10−6 6 0 6
10 133,938,603 291 Distal intergenic FRG2B 6.18 × 10−6 5 0 3

3 15,469,026 292 Intron COLQ 8.95 × 10−6 6 0 4
19 49,222,966 288 Distal intergenic TRPM4 1.16 × 10−5 4 0 3
11 116,658,839 232 Distal intergenic LINC02702 3.16 × 10−5 5 0 5

7 95,064,396 79 Intron PPP1R9A 3.97 × 10−5 5 0 4
16 1,199,498 27 Intron CACNA1H 4.70 × 10−5 2 0 2

9 130,533,824 27 Distal intergenic FUBP3 6.41 × 10−5 4 0 2
16 1,031,442 17 Distal intergenic SSTR5-AS1 7.07 × 10−5 2 0 2
16 66,638,395 205 Promoter (1–2 kb) CMTM4 1.27 × 10−4 6 0 4
16 12,070,415 274 Intron SNX29 1.42 × 10−4 5 0 4
19 44,259,187 10 Promoter (≤1 kb) ZNF233 1.44 × 10−4 2 0 2
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Table 2. Cont.

CpG Sites *

Chromosome BP
Start

BP
Width

Functional
Annotation

Gene
Symbol FDR Total Hyper Hypo

10 101,282,815 69 Distal intergenic LINC02681 2.29 × 10−4 2 2 0
12 111,126,997 143 Intron CUX2 6.16 × 10−4 4 1 1

1 166,958,580 4 Intron ILDR2 0.001 2 0 2
3 88,198,600 152 Distal intergenic C3orf38 0.002 4 0 1

11 368,564 75 Promoter (≤1 kb) B4GALNT4 0.003 5 0 2
2 8,597,158 31 Distal intergenic LINC01814 0.003 3 0 2
2 1846836 18 Intron MYT1L 0.004 2 0 2

BP, base pair; BTEX, benzene, toluene, ethylbenzene, and xylenes; FDR, false discovery rate. BP Start denotes
the 5’ most base pair position within each region based on genome build hg38. BP Width is the number of base
pairs over which each region spans. Functional Annotation corresponds to the annotation category assigned to
each region by CHiPseeker. Gene Symbol is the official gene symbol for the gene nearest to the region identified
by CHiPseeker. False discovery rate is the adjusted p-value for the region as determined by comb-p. * The total
number of CpG sites within each DMR, and the subset with single CpG site nominal p-values < 0.05, where
increasing BTEX exposure was associated with hyper- and hypo-methylation.
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Figure 1. Distribution of the functional annotation categories of the DMRs associated with
BTEX exposure.

In Table 2, the top 5 most significant regions mapped to genes on chromosome 4 (long
intergenic non-protein coding RNA 1093, FDR = 1.67 × 10−9), chromosome 6 (dual speci-
ficity phosphatase 22, FDR = 1.76 × 10−9), chromosome 11 (cholecystokinin B receptor,
FDR = 1.76 × 10−9), chromosome 17 (WAS/WASL interacting protein family member 2,
FDR = 1.02 × 10−7), and chromosome 1 (ribosomal modification protein rimK like family
member A, FDR = 2.23 × 10−7). Higher BTEX levels were associated with hypomethylation
within all of these regions. Also, biological pathway analysis was performed on the set of
genes annotated to each of the significant DMRs using Ingenuity Pathway Analysis. Inge-
nuity Pathway Analysis identified 11 canonical pathways that were nominally (p < 0.05)
enriched for these genes. These pathways are included in Table 3. The top 3 canonical
pathways included functions in gamma-aminobutyric acid (GABA) receptor signaling
(p = 0.002), oxytocin in brain signaling pathway (p = 0.006), and the gustation pathway
(p = 0.007).

Table 3. Significant canonical pathways from Ingenuity Pathway Analysis based on significant genes
from region-based analysis, associated with high vs. low BTEX exposure.

Ingenuity Canonical Pathways p-Value Proportion Genes

GABA Receptor Signaling 0.00219 0.023 CACNA1H, GABRP, GNAO1
Oxytocin In Brain Signaling Pathway 0.00646 0.015 CACNA1H, GNAO1, NLRP5
Gustation Pathway 0.00708 0.015 CACNA1H, GABRP, TRPM4
Assembly of RNA Polymerase III Complex 0.02510 0.077 BRF1
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Table 3. Cont.

Ingenuity Canonical Pathways p-Value Proportion Genes

Role of Macrophages, Fibroblasts and Endothelial
Cells in Rheumatoid Arthritis 0.02570 0.009 GNAO1, IL17RC, RIPK1

G Beta Gamma Signaling 0.02570 0.016 CACNA1H, GNAO1
Role of IL-17A in Psoriasis 0.02690 0.071 IL17RC
Endocannabinoid Neuronal Synapse Pathway 0.03390 0.013 CACNA1H, GNAO1
Corticotropin Releasing Hormone Signaling 0.03470 0.013 CACNA1H, GNAO1
Androgen Signaling 0.04270 0.012 CACNA1H, GNAO1
IL-17A Signaling in Gastric Cells 0.04900 0.039 IL17RC

BTEX, benzene, toluene, ethylbenzene, and xylenes; GABA, gamma-aminobutyric acid; IL, interleukin. The
proportion column is the proportion of genes that were identified as significant that were present in the pathway.

4. Discussion

This study found that African American women residing in an urban area with higher
second-trimester airshed BTEX exposure had altered DNA methylation in 46 DMRs in
blood from the second trimester. In addition, results suggest that increasing BTEX exposure
tended to be associated with hypomethylation in these DMRs. Several biologic pathways
with plausible relevance to pregnant women and the risk of adverse pregnancy outcomes
were identified.

Our study adds to the growing body of research demonstrating that exposure to
volatile organic compounds, such as BTEX, alters DNA methylation [11,28]. Exposure
to BTEX, assigned based on occupation as a gas station worker (exposed), compared to
other work was associated with hypermethylation in the promoter region of p14ARF and
p16INK4A [11]. p14ARF and p16INK4A are both located in the CDKN2A gene and are
involved in cellular senescence and aging [29]. Our study did not a priori examine methyla-
tion at these sites and focused on pregnant women where exposure was defined using their
residential address. Compared to occupational exposure, airshed BTEX exposure is likely
lower, which may explain why these sites were not identified as statistically significant
DMRs in the present analysis.

Other studies that examined components of BTEX, but not the entire mixture, also
reported associations with DNA methylation. Toluene, ethylbenzene, and xylene exposure
was associated with significant downregulation of the expression of genes involved in cell-
mediated immune and inflammatory responses [30]. In this same study, exposure-related
changes in gene expression were also associated with changes in DNA methylation [30].
Schiffman et al. found that lower benzene exposure (<1 part per million) was associated
with alterations in genes involved in the innate immune response and energy homeosta-
sis [12]. Similarly, trichloroethylene exposure is associated with methylation changes in
genes related to cell–matrix adhesion and interferon expression [31]. Importantly, the
aforementioned studies were in non-pregnant populations and we focus here on pregnant
African American women.

Our study is unique in that it examined changes in DNA methylation in a cohort
of pregnant women; thus, the changes observed here may be important for pregnancy
maintenance and parturition. We previously showed that higher ambient BTEX exposure in
pregnancy is associated with an elevated risk of PTB in Detroit [1]. That study together with
the results presented here suggest pathways and potential biomarkers to explore in future
studies. Of note, 2 of the top 3 canonical pathways identified as significant in this analysis
are associated with labor and preterm labor. GABA receptor signaling and oxytocin in
brain signaling pathways were both previously identified to be associated with labor and
pregnancy, and dysregulation or changes in these pathways may contribute to the early
onset of labor or parturition [32–34]. Pregnancy maintenance is a well-orchestrated series
of integrated events, and disruption of this fine-tuned process can result in spontaneous
abortion, PTB, or other adverse outcomes. As such, the findings here might represent
pathways by which BTEX and related exposures might contribute to suboptimal pregnancy
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outcomes like PTB, which is significantly higher among African American women. Studies
with a larger sample size are needed to test whether the associations between BTEX and
PTB are mediated by DNA methylation changes. Interestingly, previous studies have found
an association between volatile organic compounds and some of the same pathways that
were significant in this study. For example, toluene, a BTEX component, is associated
with GABA signaling in other systems (brain) [35]. In addition, exposure to polycyclic
aromatic hydrocarbon (a semi-volatile organic compound) was found to be associated
with the hypomethylation of DUSP22 [36]. Together, these previous studies support our
current findings.

This study has several strengths including detailed estimates of maternal exposure
to ambient BTEX. In addition, the inclusion of African American women in this study is
particularly poignant as African American women in the United States have some of the
highest rates of adverse pregnancy outcomes [13,37]. Despite this, several limitations merit
mention. First, this study had a relatively small sample size. In addition, our analyses only
considered maternal residential addresses reported at the time of biospecimen collection
(second trimester). We could not consider the length of time spent at other addresses (e.g.,
places of employment) or relocation during pregnancy, both of which could have resulted
in the misclassification of BTEX exposure. Similarly, we did not have information on indoor
BTEX exposures, which can be higher than outdoor ambient levels. As such, the true
BTEX exposure level might be different from the estimated exposure used in this study.
Additional studies that consider total BTEX exposure (exposures from all sources), such as
through measurement of BTEX metabolites in urine, are needed to further understand the
health effects of BTEX exposure, including non-occupational exposures. We recognize that
DNA methylation in the blood may not be the target tissue for BTEX exposure; thus, future
studies could consider studying DNA methylation in placental tissue which may have a
direct impact on pregnancy outcomes. It is also possible that these findings were impacted
by cell type distribution as peripheral blood DNA represents a composite of cell types, but
we used a deconvolution method to account for potential bias [21].

5. Conclusions

This analysis demonstrates that BTEX exposure is associated with changes in DNA
methylation and that there is a general trend of higher BTEX exposure being associated
with hypomethylation. From a functional perspective, several of the identified sites are
important for pregnancy and labor. Considered together, these findings suggest a mecha-
nism by which BTEX exposure may increase the risk of PTB and may present an important
avenue for future research and prevention of PTB.
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