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Abstract: Human travel plays a crucial role in the spread of infectious disease between regions.
Travel of infected individuals from one region to another can transport a virus to places that were
previously unaffected or may accelerate the spread of disease in places where the disease is not yet
well established. We develop and apply models and metrics to analyze the role of inter-regional
travel relative to the spread of disease, drawing from data on COVID-19 in the United States. To
better understand how transportation affects disease transmission, we established a multi-regional
time-varying compartmental disease model with spatial interaction. The compartmental model was
integrated with statistical estimates of travel between regions. From the integrated model, we derived
a transmission import index to assess the risk of COVID-19 transmission between states. Based on
the index, we determined states with high risk for disease spreading to other states at the scale of
months, and we analyzed how the index changed over time during 2020. Our model provides a
tool for policymakers to evaluate the influence of travel between regions on disease transmission in
support of strategies for epidemic control.

Keywords: interregional travel; disease transport; healthcare policy; compartmental model; COVID-19

1. Introduction

Travel plays a crucial role in the spread of infectious disease between regions. COVID-
19, for example, can be spread through respiratory droplets that are released when an
infected person talks, coughs, or sneezes. These droplets can then be inhaled by other
individuals in proximity to the infected person. Transportation modes such as buses, trains,
and airplanes are high-risk areas for the transmission of the virus, as they often involve
large numbers of people in enclosed spaces for extended periods of time [1]. In addition,
long-distance travel can significantly impact the spread of diseases to new areas. When
people travel long distances, they can bring infectious agents with them. These agents can
then spread to new populations and new areas, potentially causing outbreaks of disease.

Whereas COVID-19 originated in a specific location in China in late 2019, human travel
provided a vector through which it spread from region to region. As illustrated in Figure 1,
regions may export the disease to adjacent regions through travel of infected individuals
from adjacent regions or from long-distance travel of infected individuals from far away.
Once the disease has been imported to a region, it may subsequently be transmitted among
individuals within the region via “community spread” and may also be exported elsewhere
through travel of infected individuals, either to places where the disease is not yet present
or back to places where the disease is already present (second phase of Figure 1). In the
third phase of Figure 1, community spread can become the dominant form of infection and
all regions, now experiencing infections, will both import and export disease. Over time,
the relative risk of contracting the disease via travel of infected individuals from elsewhere
versus community spread will change within regions. On the other hand, if a region has,
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through public health measures, greatly reduced the prevalence of disease, the risk from
importation may become the dominant—or perhaps the only—risk for developing new
infections. If the region aims to maintain low risk of disease, it may need to prohibit travel
into the region, or impose quarantines on incoming travelers, as occurred in China.
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Figure 1. Three phases of disease spreading among regions (blue shading reflects prevalence of
disease in regions, with darker shade showing greater prevalence).

In sum, travel restrictions may be effective at disease control, but their effectiveness
depends on the prevalence of disease within the region, the prevalence of disease elsewhere,
and the volume of travel between regions. Therefore, studying the impact of travel on the
transmission of diseases is crucial for understanding how infectious diseases can spread
across different regions and populations. Studying the impact of travel on disease transmis-
sion can also inform broader discussions about global health and the interconnectedness
of populations around the world. As travel has become common and widespread, it is
increasingly important to understand how diseases can be transmitted between regions
and how to prevent the spread of infectious agents.

This paper aims to investigate the transmission of diseases through spatial interaction,
with a specific focus on state-level travel in the United States. We develop and apply a
transmission import index related to transportation to assess the impact of long-distance
travel on disease transmission. By gaining a better understanding of the effects of travel on
disease transmission, we can analyze historical disease outbreaks and develop effective
strategies for preventing and controlling future outbreaks and pandemics.

2. Literature Review

Traveler behavior underlies the spread of infectious diseases between regions. Various
modes of transportation, such as air [2–4], rail [5], and water [2], can facilitate the spread
of infectious diseases. In epidemiology, understanding the impact of human mobility on
transmission dynamics is needed for disease modeling and investigation. Spatial interaction
models of human mobility have been employed to study epidemics using two approaches:
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modeling spatial interactions between distinct population groups and integrating spatial
interaction into epidemic models.

2.1. Spatial Interaction Models in Epidemics

The gravity model [6] and radiation model [7] are widely used spatial interaction
models for analyzing travel between regions as well as the spread of infectious diseases.
The gravity model is widely used in transportation modeling due to its simplicity and
ability to predict transportation flows between regions. The gravity model has been applied
in a wide range of transportation contexts, including freight transportation, passenger
transportation, and tourism. The model has also been applied to various transportation
modes, including air, sea, and land transportation. Additionally, the gravity model can
be adapted to include other variables that may influence transportation flows, such as
population density, income, or trade barriers.

The gravity model postulates that travel between regions is positively correlated
with the product of region sizes (such as populations or gross domestic products, GDP)
and inversely proportional to the square [6] or non-quadratic of the inter-region distance.
Because each person traveling from one region to another is potentially infectious, the rate
at which new infections occur due to travel is proportionate to the predicted number of trips.
The gravity model has been used to examine the transmission of influenza between regions
in Bangladesh [8], population centers in England and Wales [9], Mexico and major global
cities [10], and states in America [6,11]. Additionally, the gravity model has been applied to
other infectious diseases transmission. Xia et al. embedded a metapopulation-based gravity
coupling model in a time series susceptible–infected–recovered (TSIR) model to simulate
measles dynamics in England and Wales [12]. Barrios et al. used the gravity model to study
the spatial spread of vector-borne diseases, including nephropathia epidemica and lyme
borreliosis between the physical habitat of pathogens and urban areas in Belgium [13]. A
limitation of the gravity model is that it may not accurately depict regions characterized by
significant heterogeneity and uncertainty [14]. It also requires a tuning process to estimate
the model parameter based on real observations.

As an alternative, Simini proposed the radiation model to describe mobility patterns
only using the population data between regions [7]. Kraemer et al. introduced a versatile
transmission model to assess the effectiveness of generalized human movement models, in-
cluding the radiation model, in estimating cases of Ebola virus disease (EVD) and mapping
the spatial progression of the outbreak [15]. Tizzoni et al. utilized the radiation model to
investigate the spread of influenza-like-illness (ILI) epidemics between a set of European
countries [16]. Kraemer et al. used a logistic formula incorporating parameters from the
gravity model and the radiation model to simulate the yellow fever virus outbreak in
Angola and the Democratic Republic of the Congo [17].

Compared to the gravity model, Kang et al. and Masucci et al. found that the
radiation model was more accurate for long-distance travel [18,19]. However, the radiation
model only takes into account large-scale parameters. Thus, the radiation model has
relatively poor accuracy on short-distance travel [19]. The gravity model and radiation
model both involve detailed data regarding inter-regional travel for parameter estimation,
which is a challenge due to the complexities associated with collecting mobility data with
precision. Furthermore, privacy regulations regarding highly detailed mobile data pose
an obstacle [16], impeding the establishment and application of spatial interaction models
utilizing different datasets [8].

2.2. Epidemic Models with Spatial Interaction

Besides direct modeling of spatial interaction, another approach for modeling inter-
regional disease transmission is epidemic models incorporating spatial interaction terms.
In the 1980s, geographers first proposed a spatial framework for epidemiological models
that explicitly considers the spatial dispersion of infectious diseases. A simple form of these
spatial models is the three waves model projecting the infectious, susceptible, and recovery
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populations in a two-dimensional grid [20,21]. The population-based wave model has been
applied to pandemic waves in a large space, such as the 1918–1920 Spanish flu [22].

Instead of assuming the whole population as an identical model unit with three
waves, spatially structured models can divide the population into a substantial number of
subpopulations that are homogeneous within each group and heterogeneous from each
other [21,23,24]. Spatially structured models can be derived with epidemiological compart-
ment models [25], which divides the population in one region into three categories: suscep-
tible, infectious, and recovered phases, combining with the spatial interactions between
several investigated regions. Such compartment models provide insights for understanding
infectious disease dynamics. Vrabac et al. proposed a transportation network embedded
Susceptible–Exposed–Infectious–Recovered (SEIR) model and applied the model to simu-
late COVID-19 transmission between 110 counties in the United States [26]. Kuzdeuov et al.
developed a network-based simulator to account for the effect of transportation of COVID-
19 spreading among 17 administrative regions in Kazakhstan [27]. Levin et al. investigated
the patterns of COVID-19 transmission, including short-term travel between counties in
Minnesota with a modified SEIR model [28]. Hatami et al. studied the spatio-temporal
dynamics of COVID-19 in 10 counties in the Charlotte–Concord–Gastonia Metropolitan
Statistical Area [29]. The spatially structured model is also effective when implemented
in mobile and high-density populations, such as military or refugee camps [30,31]. As a
further exploration of the spatial structured model, individual-based spatial models di-
vide the subpopulation into individual compartments [22]. Eames and Keeling developed
pair-wise network equations utilizing the essential characteristics of the mixing network
to estimate the effectiveness of various control strategies towards sexually transmitted
diseases. However, individual-based models require a great amount of detailed informa-
tion about individuals, which is generally not available, especially at the early stage of an
epidemic when inter-regional spread is particularly important to predict.

2.3. Time-Varying Models

Simulating infectious disease transmission with the SEIR model deepens the under-
standing of disease dynamics. Compartment models have been useful in modeling cases of
H1N1 [32], COVID-19 [29,33], and measles [34] in the United States. Prior studies gener-
ally applied a standard SEIR model, which adopts a constant basic reproduction number.
However, the transmissibility of each virus evolves with time, leading to the change in
reproduction number [35]. Constant parameters in the standard SEIR model fail to capture
the evolving nature of infectious viruses, such as influenza. Moreover, various government
interventions like social distancing, masking, and vaccine administration can also affect
the transmission of diseases. Compared to the standard SEIR model, a time-varying SEIR
model is more accurate in depicting infectious disease transmission. Wang et al. proposed
a constrained time-varying SEIR model to explore optimal vaccine allocation strategies and
achieve a superior result compared to the standard model [36]. Feng et al. developed an
algorithm combining deep learning and the SEIR model with time-varying parameters to
predict COVID-19 cases in the United States [37]. Despite the complexity of time-varying
parameters, incorporating spatial interaction into epidemiological models is essential for
capturing disease dynamics, particularly in the early phases of a pandemic [38]. Neverthe-
less, prior studies have not used a time-varying SEIR model to investigate inter-regional
COVID-19 transmission at the state level in the United States. Such a model could be
important for vaccine allocation [39] or state-level travel restrictions, given the importance
of states as governance units in the United States. Additionally, quantitative evaluation of
the impact of transportation on infectious disease transmission poses challenges for state
governments due to the absence of appropriate indices.

In the following sections, we both define our model for disease transmission between
regions and define an index to assess the importance of inter-regional travel for the spread
of disease. We then apply the model to the United States, using the 50 states as regions,
covering the time period from March 2020 to September 2020. Last, we assess the extent to
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which interstate interactions affected disease spread by date and assess which states played
the biggest role in exporting disease to other states as a function of time.

3. Sources and Methodology

We describe the data source and the proposed compartment model in this section.
Based on the traditional SEIRD compartment model and a time-varying modification in
the parameters, we introduce the transportation impact into the mathematical model for
our analysis. We utilize a combination of two data sources to estimate the regional travel
volumes on a daily scale and then calibrate the model with COVID-19 case and mortality
data. We interpret the fitting results with our index for assessing the relative importance of
disease import from other states versus community spread from within the states. We did
not analyze the import and export of disease among nations.

3.1. Data Sources

This section introduces our primary data sources for estimating human travel between
regions: the “Trips by Distance” data from the Bureau of Transportation Statistics and
the COVID-19 Impact Analysis Platform by the Maryland Transportation Institute (MTI)
and Center for Advanced Transportation Technology Laboratory (CATT Lab). By com-
bining these sources, we collect and calculate the daily out-of-state trips for each state for
model input.

3.1.1. Trips by Distance Data

The Bureau of Transportation Statistics (BTS) collected and curated data on the number
of trips taken in the United States by distance, mode of transportation, and purpose of
trip [40]. The data are available for the years 2019 to 2022, and the daily travel estimates are
based on a merged mobile device data panel that addresses issues with geographic and
temporal variation.

Trips are defined as movements that include a stay of longer than 10 min at an
anonymized location away from home, and the data capture travel by all modes of trans-
portation. A movement is considered to consist of multiple trips when it includes multiple
stops, each lasting more than 10 min. The data are presented by the BTS at the national,
state, and county levels, and a weighting procedure is used to ensure the sample of mobile
devices is representative of the entire population in each area. To protect confidentiality
and support data quality, the source does not include data for a county if there are fewer
than 50 devices in the sample on any given day. The dataset is combined with the follow-
ing dataset provided by the COVID-19 Impact Analysis Platform to generate the spatial
interaction flow.

3.1.2. COVID-19 Impact Analysis Platform

The COVID-19 Impact Analysis Platform [41] was developed by the Maryland Trans-
portation Institute (MTI) and Center for Advanced Transportation Technology Laboratory
(CATT Lab). The platform provides a range of data and analytical tools, including interac-
tive maps, visualizations, and dashboards, to help users better understand the spread of
the virus and its impact on various social and economic indicators.

The platform integrates multiple data sources, including public health data, mobility
data, and socioeconomic data, to provide a more comprehensive picture of the pandemic’s
impact. Specifically, the mobility data track daily visits to different types of locations, such
as retail and recreation areas, transit stations, workplaces, and grocery stores, and compares
them to those of pre-pandemic levels. The mobility data are derived from anonymized and
aggregated data from mobile devices, such as smartphones and tablets, that have opted into
location tracking services. The data are aggregated at the county level in the United States.
For the analysis of spatial interactions, the platform specifically provides the state/county
level percentage of out-of-state/out-of-county trips per day from 1st January 2020 to 30
April 2021.
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We combined the mobility data provided by the COVID-19 Impact Analysis Platform
and the daily trips from the BTS to fit our model. However, it is important to note that the
mobility datasets are based on a sample of mobile devices and may not be representative
of the entire population and that the datasets are anonymized and aggregated to protect
user privacy.

3.1.3. Disease Data

Daily cases and deaths by state were utilized in our compartmental disease model, as
described in Section 3.3. Data were obtained from the COVID-19 tracking project led by
The Atlantic (derived from the Centers for Disease Control), for each 30-day period between
15 March 2020 and 15 October 2020.

3.2. Estimation of Travel between Regions

Our source data, discussed in Section 3.1, provide estimates of total daily out-of-state
trips for each state, but do not estimate trips by destination state. In this section, we
apply the gravity model to estimate the distribution of trips among states on a daily basis
throughout the investigated period.

We utilized the following form of the gravity model [9], where region size is defined
by GDP [42]:

Mij = Mi ∗

Gα
j

Dγ
ij

∑k
Gα

k
Dγ

ik

(1)

where Mij represents the flow of trips from region i to region j, Mi is the total flow of
trips out of region i, Gk is the GDP of region k, Dik represents the distance between the
region i and region k, and α and γ are exponents that determine the relative influence

of the variables.
Gα

j

Dγ
ij

represents the attraction index of region j calculated by the gravity

model. For distance, we calculated centroid-to-centroid distances for all pairs of regions,

excluding pairing each region to itself. The ratio

Gα
j

Dγ
ij

∑k
Gα

k
Dγ

ik

shows the proportion of the total

trips from region i to region j. Because real trip flow data from region i to region j were
not available, we could not statistically estimate the GDP power-law parameter α and the
distance power-law parameter γ. We have instead analyzed the scenarios of setting α at
values of 0.5, 1, 1.5, and 2, respectively, while keeping γ fixed at 2, as well as assigning γ to
be 0.5, 1, 1.5, and 2 with α fixed at 1.

In general, movement of people between regions makes it possible for infected people
to transmit the disease to susceptible people residing at their destinations. Thus, it creates
the potential for the disease to spread between regions. As predicted by the gravity model,
states that are adjacent or otherwise geographically close to each other tend to have more
spatial interaction compared to states that are far apart. Larger states also produce more
travel, creating more potential to spread the disease to other states.

3.3. Disease Transmission Model

In this section, we introduce our compartmental model for disease transmission, which
represents both community spread of disease from infectious people residing in a particular
region and importation of disease from infectious people traveling from other regions. Our
estimates of daily trips between regions were used as a model input. The model is defined
as follows:
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∂Si(t)
∂t = −βi(t)·Ii(t)·

Si(t)
Ni

+ ∑
j ̸=i

µj(t) ∑
j ̸=i

Mij(t)Sj
Nj−Ij

− µi(t) ∑
j ̸=i

Mji(t)Si
Ni−Ii

∂Ei(t)
∂t = βi(t)·Ii(t)·

Si(t)
Ni

− σ·Ei(t) + ∑
j ̸=i

µj(t) ∑
j ̸=i

Mij(t)Ej
Nj−Ij

− µi(t) ∑
j ̸=i

Mji(t)Ei
Ni−Ii

∂Ii(t)
∂t = σ·Ei(t)− (1 − αi(t))·γ·Ii(t)− αi(t)·ρ·Ii(t)

∂Ri(t)
∂t = (1 − αi(t))·γ·Ii(t)

∂Di(t)
∂t = αi(t)·ρ·Ii(t)

(2)

where Si(t), Ei(t), Ii(t), Ri(t), Di(t) and Ni are the susceptible, exposed, infected, recovered,
dead, and total population in region i at time t. Mij(t)/Mji(t) represents the flow of trips
from region j/i to region i/j at given time t. The transformation rates in an epidemiological
model are denoted as σ, γ, and ρ, where σ is the rate from exposed to infectious, equiva-
lent to the reciprocal of the incubation period; γ is the rate from infectious to recovered,
corresponding to the reciprocal of the recovery time; and ρ is the rate from infectious to
dead. The values of γ, σ, and ρ are set to 1/6.5 [43], 1/3.0 [43], and 1/7.5, respectively [44].
βi(t) and αi(t) are time-varying parameters following a Sigmoid function-based form [45]
representing the reproduction number and fatality rate, respectively, at time t in region i.
Spatial interaction between regions is represented by the daily number of people traveling
from region j to region i and an adjustable factor µi(t) denoting rate at which an infectious
traveler from region i transmits disease to individuals in other regions per day, at time t.

We use the Standard Federal Regions [46] to aggregate the 50 states into 10 parts.
The Standard Federal Regions are based on geographic, economic, and cultural factors.
They were designed to promote efficient and effective delivery of federal programs and
services by bringing together federal agencies, state and local governments, and private
organizations to work collaboratively and address regional issues and concerns. The states
within the same region have proven to be able to share resources, expertise, and best
practices across state lines and jurisdictions.

To reduce model complexity, we assume that states in the same region share similar
traits of geographic, economic, and cultural factors. For instance, potential travelers
in the same region may have similar destinations and purposes of traveling. Thus, a
common µ value, which represents potential infection spread by an infectious traveler
from region i, was assigned to states under the same division. We employ the Levenberg–
Marquardt algorithm (LMA) within Python 3.10.0 to fit the model using both pandemic
and transportation data.

3.4. Transmission Import Index

From Equation (2), the term ∑j ̸=i µj(t)∑j ̸=i
Mij(t)Ej

Nj−Ij
represents the rate at which people

become newly exposed in region i at time t due to the import of disease from other regions.
Meanwhile, the term βi(t)·Ii(t)·

Si(t)
Ni

is the rate at which people become newly exposed in
region i due to local transmission. The total rate at which people become newly exposed in
region i at time t is the sum of these two rates.

To evaluate the relative risk of disease transmission due to import from other regions,
we introduce the transmission import index:

Transmission Import Index =
∑j ̸=i µj(t)∑j ̸=i

Mij(t)Ej
Nj−Ij

βi(t)·Ii(t)·
Si(t)

Ni
+ ∑j ̸=i µj(t)∑j ̸=i

Mij(t)Ej
Nj−Ij

(3)

The numerator is the rate of newly exposed people due to travel from other regions
into region i at time t. The denominator is the total rate of newly exposed people in region i
at time t. The transmission import index quantifies the impact of travel into region i relative
to the total rate of new exposures. If the number of travelers from all other regions is equal
to 0, the numerator will be 0, resulting in the index also being 0. This signifies that import
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has no impact on the spread of the disease in region i at time t. On the other hand, if there
are currently no people exposed to disease in region i, then the import index either equals 1
(if there is travel of exposed people into the region) or is undefined (if there is no travel of
exposed people into the region).

The transmission import index offers insights into the degree to which a region’s
disease transmission is impacted by travel from other regions. A higher transmission
import index for region i indicates a greater influence of incoming individuals on infec-
tious conditions in that region. Consequently, policymakers in such regions might opt to
enforce stringent regulations limiting travelers from other areas or implement quarantine
measures to mitigate the heightened risks of disease spread. Conversely, if the index is low,
restrictions on incoming travelers may not yield significant benefits, as the greater risks
stem from community spread within the region.

The transmission import index is an important metric for assessing the potential risk of
disease transmission that one region experiences through multi-regional spatial interaction.
By considering the effect of travel from other regions, this index serves as a valuable guide
for healthcare policymakers. Furthermore, the change in the transmission import index
over time could indicate the trend of disease transmission and help policymakers assess
the impact of interventions.

4. Analysis and Results

The results of our application of the compartment model to the United States are
illustrated in this section. We analyzed domestic transmission of disease among states and
not international transmission between nations. In Section 4.1, we provide fitting results,
showing root-mean-squared errors. We provide the transmission import index results in
Section 4.2 to quantify the impact of travel on disease transmission, by location and date.

4.1. Fitting Results

We fit the model with the dataset of 7-day moving average cases and deaths for the
50 states, provided by the COVID-19 tracking project lead by The Atlantic (derived from
the Center for Disease Control), for each period of 30 days from 15 March 2020 to 15
October 2020. The fitting accuracy across all states with γ set to be two and α to be one is
presented in Figure 2, measured by the relative root mean square error (RRMSE) defined as

RRMSE =
[∑N

i=1(ŷi−yi)
2/N]

1/2

yN
.
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The average RRMSE of the reported cases over 7 months ranges from 0.54% to 3.78%
and of the reported deaths ranges over 7 months from 0.24% to 2.49%. The average
and median RRMSEs for cases are 1.54% and 1.48%; for deaths, the average and median
values are 1.20% and 1.14%. Figure 2 shows the average RRMSE for cases and deaths over
7 months across 50 states of the dynamic model with multi-regional spatial interaction.
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Figures 3 and 4 display the fitted results for COVID-19 cases and deaths in example
states (Georgia, New Jersey, Florida, and Maryland, USA), during the period from 15
October 2020 to 15 November 2020.

Int. J. Environ. Res. Public Health 2024, 21, 643 9 of 20 
 

 

 
Figure 2. Average RRMSE for cases and deaths over 7 months among 50 states (α = 1, γ = 2). 

Figures 3 and 4 display the fitted results for COVID-19 cases and deaths in example 
states (Georgia, New Jersey, Florida, and Maryland, USA), during the period from 15 Oc-
tober 2020 to 15 November 2020. 

In summary, the dynamic modeling with multiregional spatial interaction demon-
strates a high degree of accuracy in capturing the historical transmission dynamics of in-
fectious diseases. This method effectively accounts for the complexities and interactions 
between various regions, leading to a more comprehensive understanding of the factors 
influencing disease spread and the effectiveness of control measures. 

  

  
Figure 3. Fitting for cases in Georgia, New Jersey, Florida, and Maryland (α = 1, γ = 2). Figure 3. Fitting for cases in Georgia, New Jersey, Florida, and Maryland (α = 1, γ = 2).

Int. J. Environ. Res. Public Health 2024, 21, 643 10 of 20 
 

 

  

  
Figure 4. Fitting results for deaths in Georgia, New Jersey, Florida, and Maryland (α = 1, γ = 2). 

4.2. Transmission Import Index 
Figure 5 shows the fluctuation of the transmission import index in five states from 

mid-March to mid-September 2020. Each time period ends on the 15th of a month. For 
example, we refer to the April time period as the period ending on April 15. From March 
to June, the average index among the states experienced a decline, potentially attributable 
to both a decline in domestic travel and the wider prevalence of the disease throughout 
the nation (as a consequence of prior importation). Throughout the investigation period, 
Illinois consistently exhibited indices higher than the national average, whereas Texas con-
sistently maintained lower indices compared to the US average. We note that Illinois has 
traditionally been a hub for domestic travel in the US, offering greater potential for disease 
import. On the other hand, Texas is surrounded by low population states, reducing inter-
state travel.  

New York�s index exhibited two surges, from April to May and later from July to 
August. In contrast, the California index declined from March to April but increased from 
August to September, remaining stable in the interim. Florida initially saw a decrease in 
the index during the first month under investigation, stabilizing in the subsequent five 
months. The magnitude and variation of the transmission import index within a state may 
be connected to the state�s characteristics, including size and proximity to other states, and 
social events that can cause interstate travel. Given that the outbreak�s first wave included 
many infections in New York State, local transmission dominated import from other states 
in the first time period. As the disease spread to surrounding states, New York become 
more susceptible to disease import. 

In contrast, California experienced a high import index in April, as local spread was 
initially minimal. By May, as interstate travel declined and local spread increased, the im-
portant index became very small. After the initial outbreak, the transmission import index 
for Illinois and New York remained consistently higher than the United States average. 
For California, Florida, and Texas, the transmission import index remained consistently 
lower than the United States average. This trend may be attributed in part to the vast and 
varied geographic landscapes of California, Florida, and Texas, which include both 
densely populated urban areas and sparsely populated rural regions around state bound-
aries, mitigating the effects of travel on the disease transmission. In contrast, New York 

Figure 4. Fitting results for deaths in Georgia, New Jersey, Florida, and Maryland (α = 1, γ = 2).

In summary, the dynamic modeling with multiregional spatial interaction demon-
strates a high degree of accuracy in capturing the historical transmission dynamics of
infectious diseases. This method effectively accounts for the complexities and interactions
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between various regions, leading to a more comprehensive understanding of the factors
influencing disease spread and the effectiveness of control measures.

4.2. Transmission Import Index

Figure 5 shows the fluctuation of the transmission import index in five states from
mid-March to mid-September 2020. Each time period ends on the 15th of a month. For
example, we refer to the April time period as the period ending on April 15. From March
to June, the average index among the states experienced a decline, potentially attributable
to both a decline in domestic travel and the wider prevalence of the disease throughout
the nation (as a consequence of prior importation). Throughout the investigation period,
Illinois consistently exhibited indices higher than the national average, whereas Texas
consistently maintained lower indices compared to the US average. We note that Illinois
has traditionally been a hub for domestic travel in the US, offering greater potential for
disease import. On the other hand, Texas is surrounded by low population states, reducing
interstate travel.
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New York’s index exhibited two surges, from April to May and later from July to
August. In contrast, the California index declined from March to April but increased from
August to September, remaining stable in the interim. Florida initially saw a decrease in
the index during the first month under investigation, stabilizing in the subsequent five
months. The magnitude and variation of the transmission import index within a state may
be connected to the state’s characteristics, including size and proximity to other states, and
social events that can cause interstate travel. Given that the outbreak’s first wave included
many infections in New York State, local transmission dominated import from other states
in the first time period. As the disease spread to surrounding states, New York become
more susceptible to disease import.

In contrast, California experienced a high import index in April, as local spread was
initially minimal. By May, as interstate travel declined and local spread increased, the
important index became very small. After the initial outbreak, the transmission import
index for Illinois and New York remained consistently higher than the United States
average. For California, Florida, and Texas, the transmission import index remained
consistently lower than the United States average. This trend may be attributed in part to
the vast and varied geographic landscapes of California, Florida, and Texas, which include
both densely populated urban areas and sparsely populated rural regions around state
boundaries, mitigating the effects of travel on the disease transmission. In contrast, New
York City, the major population center in New York State, is adjacent to two other states
(New Jersey and Connecticut) and less than 100 miles from Pennsylvania. Fluctuations in
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the transmission import index may be affected by events that attract visitors from adjacent
states. Between July and August, the transmission import index exhibited an upward trend
for New York and Illinois, indicating a growing impact of travelers on disease transmission.
This trend may be connected to the quarantine policy implemented in New York City in
early August [47] and the quarantine order for 15 states issued in Chicago in July [48],
which affected local transmission.

Figure 6 summarizes the trend of average transmission import indices in the top ten
population states and the bottom forty population states from March to September 2020.
States with larger populations consistently exhibited higher index values than both the US
average and the remaining lower-population states. More populous states are typically
developed regions, naturally attracting a higher number of travelers passing through their
boundaries. These individuals could potentially act as carriers of diseases, increasing the
risk of disease transmission. Overall, the average transmission import index decreased
from March 20th to July 15th and increased from July 15th to September 15th for the top ten,
bottom forty states, and all fifty states in the US. The initial outbreak is reflected in the high
index for April 2020. From March 20th to July 15th, the average transmission import index
decreased for all groups. This decline may be linked to the initial impact of public health
measures restricting travel after the pandemic’s onset and the increased occurrence of
local transmission. From July to August, the index increased as travel resumed, spreading
disease to areas that had previously seen a decline in rates of new cases. Subsequently, from
August to September, the average transmission import index decreased again, including
both the top ten highest-populated and the bottom forty least-populated states. The decline
in the index may be linked to a resurgence of local transmission of the disease [49].
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Figure 6. Average transmission import index for top 10 populated states and bottom 40 populated
states in the US from 20 March 2020 to 15 September 2020 (α = 1, γ = 2).

Figures 7 and 8 display heat maps for the normalized transmission import index,
which ranges from zero to one. In this context, zero signifies the state with the lowest
import index, while one indicates the state with the highest import index. All other states
are proportionately assigned to values between 0 and 1; Figure 7 depicts the normalized
import index at the time of the initial outbreak for the April period. The northeast region,
encompassing states such as Vermont and Massachusetts displayed notably high trans-
mission import indices, signifying a heightened risk of travel from other states, such as
New York. The heat map aligns with early introduction of COVID-19 in early 2020 when
northeast states experienced an acute outbreak. While the overall trend in the transmission
index was downward between April and September (as shown in Figure 6), the normalized
distribution of the index among states was similar, as shown in Figure 8. For instance,
Illinois continued to have a high index relative to other states.
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4.3. Sensitivity Analysis

This section evaluates the model under scenarios with different trip flows as the input
for our SEIRD compartmental model. Since the trip between two states is estimated by
a ratio of out-of-state flow based on the gravity model, the variation of the power-law
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region i to region j, could affect the trip distribution from one state to all other states.
Because real trip flow data from region i to region j was not available, statistical estimation
is unavailable to fit the parameters α and γ. We have instead analyzed the scenarios of
setting α at values of 0.5, 1, 1.5, and 2, respectively, while keeping γ fixed at 2, as well as
assigning γ to be 0.5, 1, 1.5, and 2 with α fixed at 1 to investigate the model output and the
state with the most substantial change in the transmission import index. The number of
trips leaving a state is fixed in all cases and defined by our input data, as mentioned earlier.

4.3.1. Varying the GDP Power Parameter

The change in the power-law parameter for the GDP affects the distribution of trips
among destinations and thus affects our model output. Since a distance power parame-
ter around two has been widely used in previous research on infectious disease model-
ing [10,11,13,50,51], we fixed γ to be 2 while changing the GDP power-law parameter from
0.5 to 2 with increments of 0.5, creating four scenarios based on our model. The heat map
of the transmission import index for the three example periods, March to April, May to
June, and August to September, is shown in Figure 9.
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When the power-law parameter on the distance term is fixed, increasing the power-law
parameter for the GDP terms increases the marginal effect of the GDP as the GDP increases.
Vermont consistently shows a high import index, which can be attributed to low reported
cases in all periods. With few cases, local transmission is very limited, making the state
most vulnerable to infected travelers coming from elsewhere. Table 1 summarizes the mean
value and standard deviation of the transmission import index among all the states as
the GDP power law parameter varies. We note that the standard deviation is generally
larger than the mean, indicating the distribution of transmission indexes among all the
states is a long-tailed distribution. The impact of human travel on disease transmission
varied widely among states due to the vast geographic expanse of the United States. Some
states, such as New York, California, Illinois, and typical travel destination states, would be
more impacted by human travel in disease transmission, resulting in a higher transmission
import index for these states. Meanwhile, some states with fewer travelers from other states
might exhibit a local transmission pattern with fewer disease cases occurring due to human
travel. The relatively large standard deviation reflects the different levels of engagement of
each state in transportation and human travel in the United States.

Table 1. Average and standard deviation of transmission import index among all states with
varying alpha.

α = 0.5, γ = 2 α = 1, γ = 2 α = 1.5, γ = 2 α = 2, γ = 2

20 March 2020–
15 April 2020 (0.0924, 0.0784) (0.0842, 0.0868) (0.0746, 0.0952) (0.0678, 0.103)

15 May 2020–
15 June 2020 (0.0384, 0.0410) (0.0457, 0.0688) (0.0318, 0.0552) (0.0239, 0.0813)

15 August 2020–
15 September 2020 (0.107, 0.100) (0.0459, 0.0506) (0.0729, 0.104) (0.0520, 0.0861)

The states with the largest month-to-month change in the transmission import index
over time are shown in Table 2 (largest increment) and Table 3 (largest decrement). For
instance, the row “April~May” in Table 1 represents the state with the biggest increase
in index between the period ending in April and the period ending in May under four
scenarios. As the alpha and gamma parameters change, the emphasis placed on the GDP
and distance parameters also changed, which shifted the travel patterns and the choice of
travel destinations predicted by the gravity model. However, the states with the largest
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increments and decrements in the transmission import index remained relatively stable in
the investigated period. Between these periods, North Carolina experienced the greatest
increase in all scenarios, whereas New York experienced the greatest in all but one scenario.
Over time, the import index both increased and decreased in various states as states were
differentially affected by disease import and local transmission. Those states with the
largest increments would merit the attention of public health agencies, since they were
the most vulnerable and would be easily affected by population mobility. The change in
index reflects relative changes in multiple factors: travel from proximate states, disease
prevalence in proximate states, and disease prevalence within the state. The key factor is
that vulnerability to disease import changed throughout 2020 in the United States.

Table 2. States with the largest increments in the transmission import index.

α = 0.5, γ = 2 α = 1, γ = 2 α = 1.5, γ = 2 α = 2, γ = 2

April–May North Carolina North Carolina North Carolina North Carolina

May–June Oklahoma New York New York New York

June–July Vermont Vermont Oklahoma Florida

July–August New York New York California Massachusetts

August–September New Jersey Connecticut Connecticut Connecticut

Table 3. States with the largest decrements in the transmission import index.

α = 0.5, γ = 2 α = 1, γ = 2 α =1.5, γ = 2 α = 2, γ = 2

April–May New York New York New York Vermont

May–June California California Illinois California

June–July Illinois Illinois Massachusetts Illinois

July–August California North Carolina Illinois Illinois

August–September Massachusetts California North Carolina North Carolina

4.3.2. Varying the Distance Power Parameter

Variation of the power-law parameter for distance may also affect the trip distribution
and the model output. We fixed the power-law parameter for GDP to be 1 while changing
the power parameter for distance from 0.5 to 2 with increments of 0.5. The heat map of the
transmission import index for the three example periods is shown in Figure 10.

When the power-law parameter for distance changes from 0.5 to 2, the marginal effect
of distance increases as distance increases. This can have the effect of trip destinations
being closer to trip origins, resulting in states with a higher number of contiguous states
experiencing a greater influx of travelers. Overall, our results show a relatively steady
pattern in the transmission import index when the distance power-law parameter changes,
representing the model’s robustness as the parameter varies. Table 4 summarizes the mean
value and standard deviation of the transmission import index among all states by time
period as the distance power-law parameter varies. Similar to the situation above, the
standard deviation is large relative to the mean, indicating the variation in impact of human
travel on disease transmission.
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Table 4. Average and standard deviation of transmission import index among all states with
varying gamma.

α = 1, γ = 0.5 α = 1, γ = 1 α = 1, γ = 1.5 α = 1, γ = 2

20 March 2020–
15 April 2020 (0.0835, 0.103) (0.0816, 0.0973) (0.0869, 0.0937) (0.0842, 0.0868)

15 May 2020–
15 June 2020 (0.0359, 0.0618) (0.0378, 0.0678) (0.0396, 0.0655) (0.0457, 0.0688)

15 August 2020–
15 September 2020 (0.0703, 0.0943) (0.0830, 0.108) (0.0880, 0.104) (0.0459, 0.0506)

5. Discussion

Many factors affected the spread of COVID-19 within and between states, including
health policy, environmental factors (such as crowding in dwellings and public spaces),
virus strains, and personal behavior. Those factors posed challenges in accurately predicting
and explaining the disease dynamics with compartmental modelling. Research on the
interaction between population mobilities and the COVID-19 pandemic using compartment
models in other countries, such as China [50,52], Italy [51], and Singapore [53], identified
limitations in capturing disease dynamics with the intervention of public health measures
and personal behavior. During the summer of 2020, large gatherings at festivals and
political gatherings occurred in some states, causing travel and local disease transmission.
State and local policies surrounding work, schools, stores, restaurants, and masking also
varied. The effectiveness of public health interventions on the disease dynamics varied
depending on the timing, duration, and level of enforcement. As shown in Table 2, the states
that experienced the most substantial increments in the transmission import index during
the later spring of 2020 were North Carolina and New York, while during the summer and
the fall, New York and Connecticut experienced the largest increase in the index.

For Table 3, the states with the largest decrements in the transmission import index
during the early spring of 2020 included New York and California. In summer and fall,
the states with most substantial decrements are Illinois, California, and North Carolina.
The change in index could be related to travel associated with large gatherings, which
potentially contributed to the increase in disease risk, as well as disease control policies
related to travel, which may explain the decrement in disease transmission risk. For
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instance, North Carolina relaxed its stay-home order on May 8th, thereby elevating the
disease risk and potentially contributing to the increase in the transmission import index in
May. In the case of New York, festivals held in mid-March could be associated with the
uptick in the transmission import index, as individuals might have traveled into New York
to attend those events. For both New York and Connecticut, the quarantine orders issued
in late June for travelers from states with high coronavirus rates may be linked to the rise
in the transmission import index during that period.

Massachusetts’ reopening in June may also be connected to the change in the trans-
mission import index from May to July. In the case of California, well-enforced disease
control policies may be related to the decreased transmission import index in the summer
and fall of 2020. The quarantine order for 15 states issued in Chicago in July could be a
response to the increasing flow of travelers into Illinois in June and July, as indicated by the
heightened transmission import index during that period. Though individuals were never
prohibited from traveling between states, airlines and other carriers reduced operations, as
fewer people elected to travel. The socioeconomic conditions of a state could also relate to
the willingness of individual travel. These various factors affected both local community
transmission and the spread of disease between regions, as well as their relative risk.

The SARS-CoV-2 strain circulating during the study period also affects disease trans-
mission and severity. For policy makers, it is crucial to understand the effects of those
factors on disease spread to balance the planning of social events and pandemic control.
Events that attract out-of-region visitors might risk new outbreaks, but if the disease is
already prevalent, such events will be more consequential for community spread. Gen-
eral travel restrictions are important when regions do not yet have outbreaks, but once
the disease is prevalent, travel restrictions are less consequential. By analyzing the po-
tential impact of policies and social events on infectious disease transmission, deeper
understanding could be derived to help with future decision-making and to guide public
health policy making.

6. Conclusions

The COVID-19 pandemic has revealed the importance of understanding the risk of
transmission of infectious diseases, particularly in periods when public health policies and
recommendations are evolving. Investigation of disease transmission through spatial inter-
action, particularly region-level travel, provides insights into the complex dynamics that
govern the spread of infectious diseases. By developing a multi-regional dynamic model
with spatial interaction, we have captured the relationship between local transmission of
disease within regions and the spread of disease from one region to another by travel.

The transmission import index, which combines the local disease transmission and the
potential for infectious travelers to spread diseases to new regions, is an important metric
for assessing the risk of disease transmission between regions. By identifying high-risk
areas, appropriate interventions, such as travel restrictions or quarantine measures, can
be enacted to control disease spread and protect public health. During the pandemic,
guidelines and restrictions were frequently modified in response to case and death data, as
well as emerging scientific evidence. The ability to adapt and tailor public health responses
based on the specific transmission dynamics of a disease—comparing local transmission
versus disease import—is crucial for effective mitigation strategies. A wide range of factors,
including public health actions and large public gatherings, may affect not just the local
transmission of disease but its spread to other regions. By examining the interplay between
these factors, we can better inform future decision-making processes and guide public
health policy as to the effectiveness of alternative interventions.

In conclusion, this paper has shed light on the role of spatial interaction via travel in
disease transmission and the importance of understanding these dynamics for effective
control. The methods and findings presented here can serve as a foundation for future
research, policy development, and public health interventions aimed at mitigating the
impact of infectious diseases both within and between regions. While our analysis focused
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on the United States, the same methodology could be applied internationally. Because
nations can directly control travel across their borders, they have greater capacity to reduce
disease export and import, when data demonstrate that such actions are merited.
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