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Abstract: Liver diseases, including non-alcoholic fatty liver disease (NAFLD), are a growing global
health issue. Environmental exposure to toxic metals can harm the liver, increasing the risk of
NAFLD. Essential elements are vital for liver health, but imbalances or deficiencies can contribute
to the development of NAFLD. Therefore, understanding the interplay between toxic metals and
essential elements in liver disease is important. This study aims to assess the individual and combined
effects of toxic metals (lead(Pb), cadmium (Cd), mercury (Hg)), and essential elements (manganese
and selenium) on the risk of liver disease. Methods: We assessed the individual and combined
effects of Pb, Cd, Hg, manganese (Mn), and selenium (Se) on liver disease risk using data from
the National Health and Nutrition Examination Survey between 2017 and 2018. We performed
descriptive statistics and linear regression analysis and then utilized Bayesian Kernel Machine
Regression (BKMR) techniques such as univariate, bivariate, and overall effect analysis. BKMR
enabled the assessment of non-linear exposure–response functions and interactions between metals
and essential elements. Posterior Inclusion Probabilities (PIPs) were calculated to determine the
importance of each metal and essential element in contributing to liver disease. Regarding our study
results, the regression analysis of liver injury biomarkers ALT, AST, ALP, GGT, total bilirubin, and
the FLI—an indicator of NAFLD—with toxic metals and essential elements, adjusting for covariates
such as age, sex, BMI, alcohol consumption, ethnicity, income, and smoking status, demonstrated the
differential effects of these contaminants on the markers of interest. Our BKMR analysis provided
further insights. For instance, the PIP results underscored Pb’s consistent importance in contributing
to liver disease (PIP = 1.000), followed by Hg (PIP = 0.9512), Cd (PIP = 0.5796), Se (PIP = 0.5572), and
Mn (PIP = 0.4248). Our univariate analysis showed a positive trend with Pb, while other exposures
were relatively flat. Our analysis of the single-variable effects of toxic metals and essential elements
on NAFLD also revealed that Pb significantly affected the risk of NAFLD. Our bivariate analysis
found a positive (toxic) trend when Pb was combined with other metals and essential elements. For
the overall exposure effect of exposure to all the contaminants together, the estimated risk of NAFLD
showed a steady increase from the 60th to the 75th percentile. In conclusion, our study indicates that
Pb exposure, when combined with other toxic metals and essential elements, plays a significant role
in bringing about adverse liver disease outcomes.

Keywords: toxic metals; essential elements; liver dysfunction; NAFLD; lead exposure; manganese;
selenium; multivariable regression; Bayesian Kernel Machine Regression; environmental health

1. Introduction

Liver diseases are pathological states that impair the hepatic system’s structural
integrity and physiological functionality [1]. The types of liver diseases include viral
hepatitis, non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, cirrhosis,
hepatocellular carcinoma (HCC), cholestatic liver diseases, autoimmune liver diseases,
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and metabolic liver diseases [1]. However, the most prevalent liver diseases include viral
hepatitis (hepatitis B and C), alcoholic liver disease, and NAFLD [1].

Liver diseases represent a significant global public health challenge, impacting mil-
lions of individuals across various populations worldwide [2]. They also place a significant
healthcare and economic burden on societies due to the expensive cost of diagnosis, treat-
ment, and liver transplantation. Globally, liver diseases account for about 2 million deaths
yearly. According to the World Health Organization (WHO) 2024 Global Hepatitis Report,
the mortality attributed to viral hepatitis is on the rise. It ranks as the second most signifi-
cant infectious cause of death worldwide, resulting in 1.3 million deaths annually [2]. A
recent meta-analysis reports a global prevalence of NAFLD at 25.2%, with the highest rates
observed in the Middle East and South America and the lowest in Africa [3]. In the United
States, NAFLD impacts approximately 80–100 million individuals, making it the leading
cause of chronic liver disease [4].

Liver diseases are induced by a multitude of risk factors, encompassing age, alcohol
consumption, tobacco use, environmental exposures, dietary habits, genetic predispositions,
specific infectious agents, and underlying chronic health conditions. Chronic and exces-
sive alcohol intake notably contributes to the pathogenesis of various hepatic disorders,
primarily through the metabolic processes associated with its breakdown [1,5]. Exposure
to environmental pollutants, including persistent organic pollutants (POPs) and heavy
metals, has been associated with a higher likelihood of developing NAFLD [6]. These pol-
lutants have the potential to disturb regular metabolic functions and elicit oxidative stress
and inflammation in the liver [6]. Consumption of diets high in saturates and trans-fat,
added sugar, and refined carbohydrates has been linked to the constant increased risk of
NAFLD [7]. Consumption of these deleterious dietary components can result in weight
gain, obesity, and insulin resistance through increased lipogenesis, impaired fatty acid
oxidation, and the promotion of oxidative stress and inflammation in the liver [7,8]. The
development of obesity also contributes to NAFLD through insulin resistance, increased
oxidative stress and inflammation and altered gut microbiome [8].

The liver is a critical organ involved in the metabolism and homeostasis of essential
elements necessary for proper functioning [9]. The liver, for example, regulates zinc home-
ostasis in the body. Zinc is essential for the function of numerous enzymes, maintaining cell
membrane integrity, and regulating gene expression [10,11]. Imbalances and deficiencies in
the levels of essential elements can affect the liver health negatively. Careful monitoring
and management of these elements are crucial in preventing and treating liver diseases.

Toxic or heavy metals are naturally occurring metallic elements that have been shown
to adversely affect environmental and health systems [12]. Examples of such metals include
Pb, Hg, arsenic (As), Cd, and chromium. Sources of exposure include industrial pollution,
vehicular emissions, occupational activities, agricultural practices, and contamination
of food and water sources. These metals can enter the human body through ingestion,
inhalation, and dermal absorption. The chronic accumulation of these metals can lead to
hepatic toxicity.

The liver is essential for the regulation of essential metal homeostasis and the metabolism
and excretion of toxic metals in the body [9]. Essential elements are crucial cofactors for
numerous liver enzymes, which are vital in maintaining proper liver function [12]. How-
ever, the presence of toxic metals can disrupt this delicate homeostasis by interfering with
the absorption, distribution, and utilization of essential elements [13]. The disturbance of
this homeostasis can contribute to oxidative stress, inflammation, and the onset of various
liver diseases [14,15]. Studies have explored the relationship between toxic metals and
liver health. A cross-sectional cohort study by Cave and colleagues aimed to investigate
the potential association between environmental pollutants and increased serum alanine
aminotransferase (ALT) activity among U.S. adults. The study focused on adult partici-
pants without viral hepatitis, hemochromatosis, or alcoholic liver disease, drawn from the
National Health and Nutrition Examination Survey (NHANES) for the years 2003–2004.
The findings revealed that exposures to polychlorinated biphenyls, Pb, and Hg were linked
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to unexplained elevations in ALT, serving as a proxy marker for NAFLD [16]. In another
study aiming to assess the relationship between creatinine-corrected urinary Cd levels and
various liver-related outcomes in the general U.S. population, data from 12,732 adults who
participated in the Third National Health and Nutrition Examination Survey conducted
during 1988–1994 (NHANES III) were analyzed. They examined the association between
individuals in the highest quartile for urinary Cd levels and hepatic necroinflammation,
non-alcoholic fatty liver disease (NAFLD), and non-alcoholic steatohepatitis (NASH). The
findings revealed that environmental exposure to Cd was linked to hepatic necroinflam-
mation, NAFLD, and NASH among men and hepatic necroinflammation among women.
Moreover, individuals in the highest quartile of creatinine-corrected urinary Cd had more
than a threefold increased risk of liver disease mortality [17].

Existing research has elucidated the relationship between exposure to toxic metals and
the risk of liver diseases. However, the synergistic effects of toxic metals in conjunction
with essential elements have not been comprehensively explored. Understanding the
complex interactions between essential elements and toxic metals in the liver is crucial
for devising new and effective strategies to mitigate liver toxicity and associated diseases.
Therefore, this study aims to fill a significant gap in the literature by assessing the combined
impacts of toxic metals (Pb, Cd, and Hg) and essential elements (Mn, Se) on the risk of liver
disease risk.

Traditional analytical approaches for assessing the environmental impacts of heavy
metals on NAFLD often consider each pollutant individually. However, real-world ex-
posure involves mixtures of the pollutants, necessitating advanced statistical methods to
evaluate their combined health effects. One such prominent method in environmental
health research is BKMR [18]. BKMR is an innovative statistical method that is utilized to
address the challenges of multi-pollutant exposure analysis [19]. It enables the assessment
of the health effects of pollutant mixtures, taking into account potential interactions and
synergistic effects among different pollutants. BKMR is especially beneficial for handling
highly correlated exposures and offers insights into both the combined and individual
effects of each component in the mixture [19,20]. BKMR’s flexibility in modeling non-linear
relationships and varying sensitivities to different exposure levels is essential, given the
complexity of biological responses to toxicants [21]. This approach not only evaluates the
combined effect of these metals on liver disease but also identifies the specific contribution
of each metal, thereby enhancing our understanding of their individual roles in NAFLD.

2. Methodologies
2.1. Study Design

For this study, we utilized data from the National Health and Nutrition Examination
Survey (NHANES) for the years 2017–2018 as the survey contained all the variables needed
for our study and was the most recent edition published. NHANES is a cross-sectional,
multiphase survey designed to assess the nutritional status and overall health of a nationally
representative sample of non-institutionalized individuals in the United States. This dataset
represents a sample of non-institutionalized individuals residing in all 50 U.S. states and
the District of Columbia. Collected by the U.S. Centers for Disease Control and Prevention
(CDC), the data are available in two-year cycles and consist of multi-year, stratified, multi-
stage, and clustered samples. Informed consent was obtained from all participants through
a physical examination and an interview. Blood was drawn from the participants, and the
samples were sent to a laboratory for analysis. The Institutional Review Board approved
the survey protocols at the National Center for Health Statistics (NCHS), part of the Centers
for Disease Control and Prevention (CDC). In addition, demographic factors were collected.
Specifically, variables such as age, sex, and ethnicity were recorded. These variables were
gathered through household interviews conducted using a Computer-Assisted Personal
Interview (CAPI) system, ensuring accurate and reliable data collection. Respondents
provided their demographic information during these interviews, which were administered
in multiple languages to accommodate diverse participants.
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The serum levels of liver enzymes, including AST, ALT, GGT, ALP, and Total Bilirubin,
were quantified using the Roche Cobas 6000 (c501 module) analytical method. These assays
were conducted at the University of Minnesota Advanced Research and Diagnostic Labora-
tory (ARDL) under the auspices of the National Center for Environmental Health (NCEH)
of the CDC’s Division of Laboratory Sciences. Detailed specimen collection, storage, and
analysis protocols are outlined in the NHANES Laboratory Procedures Manual [22–26].

2.2. US-FLI and NAFLD

US-FLI was utilized for NAFLD prediction due to the absence of abdominal ultrasound
results in the dataset. It has been validated as a reliable predictor of NAFLD within the
United States. US-FLI is computed through a logistic regression model, incorporating BMI,
waist circumference, GGT, and triglycerides (TGs), as depicted in the equation below. In
our study, the US-FLI was calculated as follows:

FLI = exp(A)/(1 + exp(A)) × 100

where

A = 0.953 × log (TG) + 0.139 × BMI + 0.718 × log (GGT) + 0.053 × waist circumference − 15.745

Additionally, log(.) is the natural logarithm.

2.3. Variables and Covariates for Model Adjustment

In our study, the liver injury enzymes and US-FLI served as the outcome variable,
while essential elements (Mn and Se) and toxic metals (Pb, Cd, and Hg) acted as predictor
variables (exposures). Covariates utilized for model adjustment encompassed age, sex,
BMI, smoking status, alcohol consumption, ethnicity, and income. Potential covariates
were selected based on prior research investigating the impact of environmental pollutants
like metals on liver disease risk.

2.4. Statistical Analysis
2.4.1. Descriptive Statistics and Regression Analysis

In our study, we employed descriptive statistics to characterize the critical study
variables in the dataset, including sex, age, and ethnicity. Linear regression analysis
was subsequently conducted to examine the relationship between the outcome variables,
predictive variables, and the covariates in the dataset.

2.4.2. Bayesian Kernel Machine Regression (BKMR)

We employed Bayesian Kernel Machine Regression (BKMR) utilizing the Markov
Chain Monte-Carlo (MCMC) sampling approach, as described by Bobb et al. [20]. The
analytical process involved 5000 iterations. Our BKMR investigation produced Posterior
Inclusion Probabilities (PIPs), which are crucial in determining the influence of metals
and essential elements. These PIPs, ranging from 0 to 1, aid in determining the relative
importance of each metal and essential element.

To enhance our comprehension of the interaction among these toxic metals, essential
elements, and the outcome of interest, we computed high-dimensional exposure–response
functions, represented as h(z), at various intervals. This was accomplished while main-
taining the other influencing variables constant at their median values. The graphical
interpretation function of the BKMR model played a significant role in our analysis. This
feature allowed for a comparative examination of the effects of toxic metals and essential
elements, both collectively and individually. It compared the outcome observed at certain
exposure percentiles to those at median exposure levels. Additionally, it highlighted the
unique association between each toxic metal and essential element with NAFLD while
accounting for constant median values of other exposures.
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In this study, the significance level was set at 0.05. Our study’s analysis was conducted
with R (version 4.2.3; R Foundation for Statistical Computing, Vienna, Austria) [27].

3. Results
3.1. Descriptive Analysis of Sex, Ethnicity, and Age

Table 1a displays that the dataset consists of males with an average age of 37 years
and females with an average age of 39 years. As shown in Table 1b, the ethnic composition
of the dataset is composed of participants from diverse racial/ethnic groups ranging
from Mexican American, other Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-
Hispanic Asian, and other Race—including Multi-Racial—with approximately average
ages of 29, 34, 42, 36, 38, and 33 years, respectively. These data indicate that non-Hispanic
whites have the highest average age, suggesting they represent an older demographic
within the dataset. In contrast, Mexican Americans have the lowest average age, indicating
a younger demographic. The 95% confidence intervals provide a measure of reliability for
these estimates, with some groups showing greater variability (e.g., Other Race—Including
Multi-Racial) compared to others.

Table 1. (a). Mean age by sex. (b). Mean age by ethnicity.

(a)

Sex Mean Linearized Std. Error (95% Conf. Interval)

Male 37.427 0.493 36.375 38.478
Female 39.378 0.592 38.116 40.640

(b)

Ethnicity Mean Linearized Std. Error (95% Conf. Interval)

Mexican American 29.319 0.852 27.504 31.134
Other Hispanic 33.685 0.900 31.766 35.604

Non-Hispanic White 41.670 0.785 39.996 43.343
Non-Hispanic Black 35.830 0.540 34.679 36.982
Non-Hispanic Asian 37.926 0.938 35.925 39.927

Other Race—Including
Multi-Racial 33.475 1.822 29.591 37.359

Indeed, in the context of NHANES, the Linearized Standard(std) Error and “95% Con-
fidence Interval” are crucial statistical measures for accurate data interpretation. The lin-
earized std error measures variability or uncertainty in an estimate adjusted for NHANES’
complex survey design. It indicates the precision of an estimate, where smaller errors mean
more precise estimates and larger errors indicate greater variability. The 95% confidence
interval is a range that likely contains the true population parameter with 95% certainty.
This interval reflects the reliability of an estimate, with narrow intervals suggesting precise
estimates and wide intervals indicating more uncertainty. Together, these measures are
vital for assessing the precision and reliability of results.

Correlation between Variables of Interest

Figure 1 explores the correlation between the study variables of interest. It shows that
metals, US-FLI, and essential elements show a varying correlation individually among
themselves with toxic metals generally showing stronger correlations among themselves,
and finally, an inverse relationship between some toxic metals and essential elements.
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3.2. Linear Regression for Association of Combined Toxic Metals and Essential Element on
Liver Dysfunction

Table 2a shows that Mn has a statistically significant positive relationship with ALT,
while Pb, Cd, Hg, and Se have no significant relationship with ALT. In Table 2b, Pb has
a statistically significant positive relationship with AST with p-values of 0.019. However,
Cd, Hg, Mn, and Se have no statistical relationship with the liver biomarker AST. Table 2c
shows that Pb has a positive association with ALP, with p-values of 0.010. However, Hg and
Mn have a negative relationship with ALP. Cd and Mn did not have a strong association
with ALP. In Table 2d, Pb and Mn have a positive association with GGT, but Hg has a
negative association with GGT. Cd and Se do not have a significant association with the
GGT biomarker. For total bilirubin, only Se has a positive relationship with p-values of
0.006, while there was no significant relationship with Pb, Cd, Hg, and Mn (Table 2e).
Table 2f shows that US-FLI has a significant positive relationship with Mn but not with Pb,
Cd, Hg, and Se. The observed significant association between Mn and ALT/US-FLI levels,
as determined through multivariable linear regression, was interesting given Mn’s role as
an essential trace element involved in enzyme activation and antioxidative protection. The
relationship is likely dose-dependent.

The coefficients in the tables represent the relationship between various toxic metals
and essential elements (such as Pb, Cd, Hg, Mn, and Se) and different liver injury indicators
(ALT, AST, ALP, GGT, Total Bilirubin, and US-FLI). These coefficients were calculated using
regression models adjusted for covariates, including age, sex, BMI, alcohol consumption,
ethnicity, income, and smoking status.

The coefficients represent the change in each liver function indicator for a one-unit
increase in the exposure to the respective toxic metal or essential element. A positive
coefficient indicates that as the exposure to the element increases, the level of the liver
function indicator also increases. Conversely, a negative coefficient suggests that increased
exposure to the element is associated with a decrease in the liver function indicator. The
p-values indicate the statistical significance of the coefficients, with values less than 0.05
typically considered significant. The 95% confidence intervals provide a range within which
the true coefficient value is likely to lie, offering insight into the precision of the estimates.
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Table 2. (a). Association between ALT and combined toxic metals and essential elements exposure. (b).
Association between AST and combined toxic metals and essential elements exposure. (c). Association
between ALP and combined toxic metals and essential elements exposure. (d). Association between
GGT and combined toxic metals and essential elements exposure. (e). Association between total
bilirubin and combined toxic metals and essential elements exposure. (f). Association between fatty
liver index and combined toxic metals and essential elements exposure.

(a)

ALT * Coefficient Linearized Std. Error p-Value (95% Conf. Interval)

Pb 0.355 0.433 0.425 −0.568 1.277
Cd 0.101 0.924 0.915 −1.869 2.071
Hg −0.401 0.344 0.262 −1.133 0.332
Mn 0.364 0.120 0.005 0.130 0.598
Se 0.040 0.022 0.086 −0.006 0.086

(b)

AST * Coefficient Linearized Std. Error p-Value (95% Conf. Interval)

Pb 0.908 0.347 0.019 0.169 1.647
Cd 0.577 1.268 0.656 −2.125 3.279
Hg −0.197 0.232 0.409 −0.691 0.297
Mn 0.324 0.153 0.052 −0.003 0.652
Se −0.004 0.016 0.819 −0.039 0.031

(c)

ALP * Coefficient Linearized Std. Error p-Value (95% Conf. Interval)

Pb 2.509 0.853 0.010 0.690 4.327
Cd 0.480 1.592 0.767 −2.914 3.875
Hg −1.258 0.453 0.014 −2.223 −0.292
Mn 0.650 0.304 0.050 0.001 1.299
Se −0.059 0.028 0.048 −0.118 −0.000

(d)

GGT * Coefficient Linearized Std. Error p-Value (95% Conf. Interval)

Pb 3.287 1.067 0.008 1.013 5.561
Cd 4.411 2.861 0.144 −1.686 10.509
Hg −0.890 0.399 0.041 −1.741 −0.041
Mn 1.205 0.361 0.005 0.435 1.976
Se 0.010 0.030 0.738 −0.053 0.074

(e)

Total
Bilirubin * Coefficient Linearized Std. Error p-Value (95% Conf. Interval)

Pb −0.000 0.005 0.987 −0.011 0.011
Cd −0.012 0.008 0.142 −0.028 0.004
Hg 0.005 0.007 0.458 −0.009 0.019
Mn −0.000 0.003 0.896 −0.006 0.005
Se 0.001 0.000 0.006 0.000 0.002

(f)

US-FLI * Coefficient Linearized Std. Error p-Value (95% Conf. Interval)

Pb 0.800 0.768 0.315 −2.435 0.838
Cd 2.380 1.359 0.100 −0.515 5.276
Hg 0.049 0.349 0.890 −0.696 0.794
Mn 0.478 0.211 0.039 0.028 0.929
Se 0.035 0.025 0.179 −0.018 0.087

* Adjusted for covariates age, sex, BMI, alcohol consumption, ethnicity, income, and smoking status.
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3.3. BKMR Results

The need to comprehensively model the interactive and non-linear effects among
the variables in our dataset led to the adoption of Bayesian Kernel Machine Regression.
Unlike traditional linear regression approaches, this method is particularly well suited for
analyzing the potential synergistic and antagonistic interactions within complex environ-
mental exposure data, which may not adequately capture such dynamics. Traditional linear
regression operates under the assumption of linearity and independence between variables,
which often does not hold in complex environmental studies where variables may interact
in non-linear and dependent ways. Additionally, linear regression may not effectively
handle the high dimensionality and collinearity among variables, which are common in
environmental exposure data. BKMR, on the other hand, is designed to address these
limitations by allowing for the exploration of complex exposure–response relationships
and providing a more nuanced understanding of how mixtures of exposures impact health
outcomes. This approach is especially valuable in environmental health research, where
multiple correlated exposures can influence the results in subtle yet significant ways.

Bayesian Kernel Machine Regression (BKMR) stands out in its ability to handle scenar-
ios characterized by complex and non-linear relationships among variables. Through the
use of adaptable kernel functions and Bayesian inference, BKMR is adept at identifying
latent patterns and accommodating interactive effects among variables, effectively captur-
ing intricate dependencies that traditional linear regression models frequently overlook.
This methodological versatility enables BKMR to deliver precise and insightful conclusions,
making it an exceptionally robust analytical tool for studying multifaceted data interactions.
BKMR was employed to elucidate the complex effects of toxic metals and essential elements
on NAFLD.

3.3.1. Analysis of Posterior Inclusion Probabilities (PIPs) for Metals and Essential Elements
in Relation to NAFLD Risk

Table 3 represents the PIPs for each metal and essential element and their relationship
with NAFLD. The result shows that Pb has the highest probable relationship with NAFLD,
followed by Hg, Cd, Se, and Mn, which have the least relationship with NAFLD. The
Posterior Inclusion Probability quantifies the relative importance of each toxic metal and
essential element in explaining variations in NAFLD biomarker levels. Our results indicate
that Pb and Hg, with PIP values of 1.0000 and 0.9512, respectively, are the most significant
contributors to the variability in NAFLD levels, with Pb exhibiting the greatest impact.

Table 3. Posterior Inclusion Probabilities for the influence of toxic metals (Pb and Cd), and essential
elements (Hg, Se, and Mn) on NAFLD.

Variable PIP

Pb 1.0000
Hg 0.9512
Cd 0.5796
Se 0.5572

Mn 0.4248

3.3.2. Univariate Analysis: Examining the Isolated Effects of Pb, Cd, Hg, Se, and Mn
on NAFLD

Figure 2 shows the effect of individual metals and essential elements on NAFLD
when the other variables are fixed at the median and the covariates are held constant. A
steady upward curve for Pb indicates a positive relationship between Pb and NAFLD. The
relatively flat trend observed for the remaining exposures indicates a minimal relationship
between them and NAFLD. Moreover, the single variable analysis, which examined the
effects of toxic metals and essential elements, further revealed that Pb and Mn are associated
with an increased risk of NAFLD. Among these, Pb exhibited the most pronounced effect,
suggesting it substantially impacts the risk of developing this liver condition.
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Figure 2. Univariate exposure–response functions and 95% confidence interval for the association
between single metal and individual essential element exposure with NAFLD when other exposures
are fixed at the median.

3.3.3. Bivariate Exposure–Response Function of Toxic Metals and Essential Elements
with NAFLD

This analysis (Figure 3) investigated the association between individual metals and
essential elements on NAFLD by fixing the second metal or essential element at various
quantiles (25th in red, 50th in green, and 75th in blue) while keeping other metals and
essential elements at their median values. These models were adjusted for relevant co-
variates. The x-axis, denoted as “expos1”, displays the levels of one exposure, while the
y-axis, labeled “est”, represents the estimated effect on NAFLD levels. Each row of plots
corresponds to a different exposure considered as “expos1”.

Cd (as expos1): When interacting with Cd, the effects on NAFLD appear to be relatively
flat at all quantiles of Pb, Mn Hg and Se, suggesting that the impact of Cd on NAFLD levels
is minimal.

Pb (as expos1): The plots for Pb show a robust positive relationship with NAFLD at
all quantiles of Cd, Mn, and Hg and at the 50th and 75th quantiles for Se.

Mn (as expos1): the interaction for Mn plots shows a relatively flat relationship with
NAFLD at different quantiles of Cd, Pb, Hg, and Se.

Hg (as expos1): Hg’s interaction plots show a relatively flat relationship with NAFLD
at different 25th, 50th, and 75th quantiles of Cd, Pb, Mn, and Se.

Se (as expos1): the plots for the interactions for Se reveals a relatively flat relationship
with NAFLD at different quantiles of Cd, Pb, Mn, and Hg.
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Effect of quantiles: Variations in the shapes of the lines across different quantiles of
“expos2” within each plot illustrate how the impact of “expos1” on NAFLD fluctuates with
different levels of “expos2”. For example, in the interaction between Pb and Mn, the curves
for the 25th, 50th, and 75th quantiles of Mn are relatively the same, suggesting consistent
effects at lower to mid-level to higher levels of Mn.
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3.4. Overall Risk Summary of NAFLD Levels in Relation to Exposure Percentiles

Figure 4 quantifies the cumulative effect of all exposures or mixtures. Exposures are
held constant at various percentiles ranging from the 25th to the 75th percentile, increasing
by increments of 5, with the 50th percentile (median) serving as a reference for comparison.
As shown in the plot, the estimation risk of NAFLD for all exposures from the 25th to the
55th percentile was slightly below zero except for the 50th percentile, which was exactly
zero; however, there was a steady increase from the 60th percentile to the 75th percentile.
This trend underscores the importance of monitoring and managing combined exposures to
toxic metals and essential elements to mitigate the risk of NAFLD, particularly as exposure
levels increase beyond the certain thresholds.



Int. J. Environ. Res. Public Health 2024, 21, 762 11 of 18
Int. J. Environ. Res. Public Health 2024, 21, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 4. The overall health effects of the exposures calculated by comparing the value of h when 
all of predictors are at a particular percentile as compared to when all of them are at their 50th 
percentile. 

3.5. Single-Variable Effects of Toxic Metals and Essential Elements on NAFLD 
The examination of single-variable effects aids in comprehending how a single pre-

dictor influences NAFLD levels across various quantiles, allowing for the evaluation of 
their respective contributions to the overall risk of elevated NAFLD. Figure 5 illustrates 
the single-variable effects of toxic metals and essential elements on NAFLD at the 25th 
(red), 50th (green), and 75th (blue) percentiles, indicating that Pb is most associated with 
higher values of the h function, a flexible function that incorporates multiple toxic metals 
and essential elements and integrates them in a manner that captures the intricate and 
potentially non-linear correlation between the toxic metals, essential elements and 
NAFLD. Specifically, the results illustrate that Pb has a significant positive association 
with NAFLD, particularly at the 75th percentile, indicating that higher Pb exposure is as-
sociated with an increased risk of NAFLD at higher levels of the disease. Mn also shows 
a positive association across all percentiles, reinforcing its complex role in liver function 
and potential contribution to NAFLD. Se has a more variable association, with significant 
effects at certain percentiles, suggesting it may have a nuanced role in NAFLD develop-
ment. These findings highlight the importance of considering individual toxic metals and 
essential elements in the risk assessment and management of NAFLD. 

Figure 4. The overall health effects of the exposures calculated by comparing the value of h when all
of predictors are at a particular percentile as compared to when all of them are at their 50th percentile.

3.5. Single-Variable Effects of Toxic Metals and Essential Elements on NAFLD

The examination of single-variable effects aids in comprehending how a single pre-
dictor influences NAFLD levels across various quantiles, allowing for the evaluation of
their respective contributions to the overall risk of elevated NAFLD. Figure 5 illustrates
the single-variable effects of toxic metals and essential elements on NAFLD at the 25th
(red), 50th (green), and 75th (blue) percentiles, indicating that Pb is most associated with
higher values of the h function, a flexible function that incorporates multiple toxic metals
and essential elements and integrates them in a manner that captures the intricate and
potentially non-linear correlation between the toxic metals, essential elements and NAFLD.
Specifically, the results illustrate that Pb has a significant positive association with NAFLD,
particularly at the 75th percentile, indicating that higher Pb exposure is associated with
an increased risk of NAFLD at higher levels of the disease. Mn also shows a positive
association across all percentiles, reinforcing its complex role in liver function and potential
contribution to NAFLD. Se has a more variable association, with significant effects at certain
percentiles, suggesting it may have a nuanced role in NAFLD development. These findings
highlight the importance of considering individual toxic metals and essential elements in
the risk assessment and management of NAFLD.
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4. Discussion

NAFLD is a growing health concern in the United States and worldwide [3]. Exposure
to toxic metals can negatively impact liver health and increase the risk of developing
NAFLD [13]. Conversely, imbalances or deficiencies in essential elements can also con-
tribute to the development of NAFLD [12]. Our study sought to understand the intricate
relationship between exposure to both toxic metals and essential elements on liver dys-
function. Toxic metals interfere with the body’s absorption, excretion, and transport of
essential metals, as well as with their binding to target proteins and their metabolism
and sequestration [28]. For instance, Pb toxicity partly arises from its ability to mimic
essential metals like zinc, binding to and interacting with many of the same enzymes,
thereby disrupting normal enzymatic reactions [29,30]. Similarly, Cd and Pb share chemical
and physical properties with zinc and compete for the binding sites on metal absorptive
proteins and enzymes [31]. In situations of zinc deficiency and heightened exposure to Cd
and Pb, the body may utilize these toxic metals as substitutes for zinc [10].

Our analysis began by exploring this relationship via linear regression. The ob-
served significant association between Mn and ALT levels, as determined through mul-
tivariable linear regression, was interesting given Mn’s role as an essential trace element
involved in enzyme activation and antioxidative protection. The relationship is likely
dose-dependent [32], as Mn is beneficial in trace amounts but may become hepatotoxic at
elevated concentrations. High levels of Mn could disrupt hepatic function by promoting
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oxidative stress, provoking inflammatory responses, or interfering with the metabolic pro-
cesses of other essential minerals and nutrients [33]. This correlation might not signify direct
causality but rather suggests that elevated Mn levels could be an indicator of exposure
or a marker of metabolic dysregulation, potentially linked to hepatic stress or injury [34].
The significant associations identified between Pb and aspartate aminotransferase (AST)
levels through multivariable linear regression warrant careful interpretation and further
investigation. AST is an enzyme localized in the liver and found in the heart, muscles, and
brain, where it plays pivotal roles in amino acid metabolism and the generation of cellular
energy [35]. The presence of AST in multiple organs suggests that elevated blood levels
could indicate damage to the liver and other tissues.

Pb exposure’s link to increased AST levels could imply multi-organ risk, as Pb is
known to disrupt several biological systems [36]. The relationship observed might reflect
Pb’s capacity to induce oxidative stress, disrupt mitochondrial function, or interfere directly
with cellular enzymes, potentially leading to tissue damage and increased enzyme leakage
into the bloodstream [37]. Given AST’s broad tissue distribution, its elevation in response
to Pb exposure might serve as a useful biomarker for systemic toxicity [38]. When analyzed
alongside ALT, AST offers valuable insights into the underlying causes of liver disease [34].

The multivariable linear regression analysis revealing both positive and negative
associations of specific metals/elements with alkaline phosphatase (ALP) levels presents
a complex scenario that necessitates detailed exploration. ALP comprises a group of
isoenzymes localized on the external surface of cell membranes, primarily involved in
catalyzing the hydrolysis of organic phosphate esters in the extracellular space [39]. The
positive associations found between Pb and Mn with ALP levels suggest an upregulation
or increased expression of these isoenzymes, potentially as a response to metal-induced
stress or damage to cellular membranes.

Conversely, the negative association observed with Hg implies a possible inhibitory
effect on ALP activity, which could reflect disruptions in cellular membrane integrity or
enzyme function [39]. These differential impacts highlight each metal’s distinct biolog-
ical interactions with cellular processes, particularly those involving membrane-bound
enzymes. Given ALP’s role in a variety of physiological processes, including bone mineral-
ization and liver function, the implications of altered ALP activity due to metal exposure
are significant [40].

Mn is crucial for various biological functions, including enzyme activation and antiox-
idative processes [41], yet, as observed in this study, it also exhibits a positive correlation
with gamma-glutamyl transferase (GGT) levels, which might suggest a potential dual role
depending on its concentration and physiological context. The beneficial roles of Mn at
optimal levels contrast with its potential for toxicity at higher concentrations [42], which
might induce hepatic stress. This stress could manifest as elevated GGT levels, reflecting
Mn’s impact on the liver when present in excess. Similarly, the study found a positive
association between Pb and GGT levels, indicating that Pb exposure could also be con-
tributing to liver dysfunction, as evidenced by the elevated enzyme levels [43]. In contrast,
Hg showed a negative association with GGT, suggesting a possible inhibitory effect on the
enzyme, which could reflect a different toxicological impact on liver function. Thus, while
Mn and Pb may contribute to increased GGT levels and subsequent liver dysfunction when
in excess, Hg’s interaction appears to suppress GGT activity, each reflecting distinct modes
of hepatic influence by these metals [44].

In the context of this study’s multivariable linear regression analysis, Se displayed a
slight but significant positive association with total bilirubin levels. Bilirubin is a byproduct
of the breakdown of red blood cells and is primarily processed by the liver for excretion
from the body. Normally, bilirubin levels in the blood are kept low through efficient
processing and excretion by the liver [45]. However, elevated levels of total bilirubin
are often indicative of liver dysfunction or impairment, as they suggest a disruption in
the liver’s ability to process and clear bilirubin effectively. The observed association
between Se and bilirubin levels introduces the possibility that Se might influence liver
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function in complex ways despite its essential roles as an antioxidant and in thyroid
hormone metabolism. This slight positive correlation could reflect Se’s involvement in
subtle biochemical pathways in the liver that affect bilirubin metabolism, or it could indicate
that elevated Se levels, potentially above optimal thresholds, impact liver health [46,47].

In the results of the multivariable linear regression analysis conducted in this study,
there was a significant positive association between Se and the fatty liver index, a predictive
score used to estimate the risk of steatosis in the liver. Se, known for its critical roles in
antioxidant defense and immune function, typically benefits health when consumed in
required amounts. However, this association suggests that elevated Se levels may be linked
to an increased risk of fatty liver disease [48,49].

BKMR was employed to elucidate the complex effects of toxic metals and essential ele-
ments on NAFLD. The Posterior Inclusion Probability quantifies the relative importance of
each toxic metal and essential element in explaining variations in NAFLD biomarker levels.
Our results indicate that Pb and Hg, with PIP values of 1.0000 and 0.9512, respectively, are
the most significant contributors to the variability in NAFLD levels, with Pb exhibiting the
greatest impact. Prior work has demonstrated the dominant impact of Pb in a mixture of
PFAS and metals [50]. The univariate analysis within the BKMR framework particularly
highlighted the significant toxic impact of Pb, reaffirming its prominent influence among
the mix of toxic and essential elements. This finding emphasizes Pb’s detrimental role
when considered individually in the environmental mixture, supporting the hypothesis
that Pb exposure is a critical factor in liver disease risk [51,52].

Moreover, the single-variable analysis, which examined the effects of toxic metals and
essential elements, further indicated that Pb and Mn are associated with an increased risk of
NAFLD. Among these, Pb exhibited the most pronounced effect, suggesting it substantially
impacts the risk of developing this liver condition. These results underline the impor-
tance of considering individual metal exposures within a mixture in environmental health
research, as they can distinctly influence the pathogenesis of diseases like NAFLD. This
nuanced understanding helps pinpoint specific public health interventions and regulatory
measures aimed at reducing exposure to hazardous substances like Pb, thereby mitigating
their health impacts.

The bivariate exposure–response functions explored shed additional light on the po-
tential for synergistic interactions between the different toxic metals and essential elements
on NAFLD. Our result showed positive interactions between Pb and Cd, Pb and Mn, Pb and
Hg, and Pb and Se. By examining the exposure–response patterns in a bivariate framework,
we were able to uncover evidence suggesting that the combined presence and interactions
would be expected from the individual metal exposures alone [53]. The more pronounced
effect of combined exposures with Pb once again suggested its dominant role in influencing
the manifestations of mixture exposures involving Pb.

Our analysis of the overall risk summary of NAFLD in relation to exposure percentiles
revealed an increase in the estimated risk of NAFLD for all exposure from the 60th percentile
to the 75th percentile, suggesting that higher exposure levels to the toxic metals and essential
elements within the 60th and 75th percentile range are associated with an increased risk of
developing NAFLD. The trend for the entire graph was upward, providing insight into
how continuous exposure to multiple potential contaminants can adversely affect liver
health [54,55].

Investigating the relationship between toxic metals and essential elements on NAFLD
holds significant implications for comprehending the intricate interaction between envi-
ronmental exposures and liver health. Our findings on the liver biomarkers concerning
toxic metals and essential elements also give insight into the potential mechanisms by
which environmental exposures may contribute to the development and progression of
NAFLD [56]. Furthermore, identifying metal–element interactions and their combined
influence on NAFLD risk can inform the formulation of tailored strategies for managing
liver disease.
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Limitations

This study faces several limitations that merit consideration. First, the temporality
issue inherent in the cross-sectional design prevents the establishment of causality between
exposures and outcomes, as both are assessed simultaneously. This makes it challenging
to ascertain whether exposure to toxic metals and essential elements precedes the onset
of liver conditions such as NAFLD. Second, exposure misclassification is a significant
concern, given that reliance on single-time point measurements may not effectively capture
long-term or chronic exposure levels. Variations in individual exposure over time are not
accounted for, potentially leading to inaccurate estimations of the associations between
metal exposure and liver health outcomes.

Additionally, this study’s findings may suffer from limited generalizability due to the
specific population sample used. The demographic characteristics, geographical location,
and environmental contexts specific to the study cohort may not represent broader non-
United States populations, thereby restricting the applicability of the results to other groups
or settings.

Nevertheless, despite these limitations, this study offers critical insights into the
combined effects of toxic metals and essential elements in liver dysfunction. It highlights
important associations and potential public health implications, providing a valuable
foundation for future research and interventions aimed at mitigating liver health risks
associated with environmental exposures.

5. Conclusions

In conclusion, the complex relationship between exposure to toxic metals and imbal-
ances in essential elements is a critical area of study in liver disease research. While the
harmful effects of toxic metals like Pb, Cd, and Hg on liver health have been well studied,
their interactions with essential elements such as Se and Mn, can significantly influence
disease development and progression. Increasing evidence indicates that exposure to toxic
metals can disturb the balance of essential elements in the body, leading to oxidative stress,
inflammation, and endothelial dysfunction, which are key factors in the development of
liver diseases. Conversely, maintaining optimal levels of essential elements may offer
protective effects by mitigating the adverse impacts of toxic metals through their antioxi-
dant and anti-inflammatory properties. By comprehending these mechanisms, healthcare
practitioners and policymakers can proactively work towards enhancing cardiovascular
well-being and alleviating the global burden of NAFLD.

This study broadens our understanding of the intricate interactions and mechanisms
by which environmental metals can influence the risk of NAFLD and potentially contribute
to the etiology of chronic and malignant diseases. It underscores the utilization of BKMR in
environmental health research. It also reinforces the usefulness of ongoing research into
the effects of combined PFAS and metal exposures on critical health outcomes. Finally,
our study further closes the gap in the literature on multiple environmental pollutants
exposure and health, advocating for a holistic approach to exposure assessment and risk
management to improve and protect public health.
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