Elucidating Uncertainty in Heat Vulnerability Mapping: Perspectives on Impact Variables and Modeling Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Ethical Approval
2.3. Methodology for Impact Indicator Calculation
2.4. Methodology for Analysis of Relationships between Variables
2.5. Methodology for Generating Heat Vulnerability Maps
3. Results
3.1. Health Outcoms of Heatwave
3.2. Principal Components
3.3. Relationship between PCs and Impacts
3.4. Comparison between HVI-LM and HVI-NLM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Climate Change Service. Record-Breaking Temperatures for June. 2019. Available online: https://climate.copernicus.eu/record-breaking-temperatures-june (accessed on 22 March 2024).
- Bureau of Meteorology, AUS. Climate Change—Trends and Extremes. 2020. Available online: https://www.bom.gov.au/climate/change (accessed on 1 June 2020).
- Korea Meteorological Administration. Korean Climate Change Assessment Report; Korea Meteorological Administration: Daejeon, Republic of Korea, 2020. [Google Scholar]
- UNDRR (UN Office for Disaster Risk Reduction). The Human Cost of Disaster: An Overview of the Last 20 Years (2000–2019); UNDRR: Geneva, Switzerland, 2020. [Google Scholar]
- PHE (Public Health England). PHE Heatwave Mortality Monitoring; PHE: London, UK, 2019; pp. 1–9.
- Korea Meteorological Administration. Abnormal Climate Report 2022; Korea Meteorological Administration: Daejeon, Republic of Korea, 2023. [Google Scholar]
- Lim, Y.-H.; Lee, H.; Hong, Y.-C. Attributable all-cause mortality during heat waves in South Korea, 2006–2018. Public Health Wkly. Rep. 2019, 12, 1435–1441. [Google Scholar]
- Park, J.; Chae, Y. Analysis of heat-related illness and excess mortality by heat waves in South Korea in 2018. J. Korean Geogr. Soc. 2020, 55, 391–408. [Google Scholar] [CrossRef]
- Bai, L.; Woodward, A.; Cirendunzhu, C.; Liu, Q. County-level heat vulnerability of urban and rural residents in Tibet, China. Environ. Health 2016, 15, 3. [Google Scholar] [CrossRef]
- Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect. 2013, 121, 197–204. [Google Scholar] [CrossRef]
- Inostroza, L.; Palme, M.; de la Barrera, F. Heat vulnerability index: Spatial patterns of exposure, sensitivity and adaptive capacity for Santiago, Chile. PLoS ONE 2016, 11, e0162464. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stafanov, W.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef]
- Aubrecht, C.; Özceylan, D. Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerabilities. Environ. Int. 2013, 56, 65–77. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, T.; Lin, H.; Xiao, J.; Luo, Y.; Zeng, W.; Zeng, S.; Wei, Y.; Chu, C.; Baum, S.; et al. Spatial distribution of health vulnerability to heat waves in Guangdong Province, China. Glob. Health Action 2014, 7, 25051. [Google Scholar] [CrossRef]
- Guo, X.; Huang, G.; Jia, P.; Wu, J. Estimating fine-scale heat vulnerability in Beijing through two approaches: Spatial patterns, similarities, and divergence. Remote Sens. 2019, 11, 2358. [Google Scholar] [CrossRef]
- Liu, X.; Yue, W.; Yang, X.; Hu, K.; Zhang, W.; Huang, M. Mapping urban heat vulnerability of extreme heat in Hangzhou via comparing two approaches. Complexity 2020, 2020, 9717658. [Google Scholar] [CrossRef]
- Chae, Y.; Park, J. Analysis of effectiveness of impact based heatwave warning considering severity and likelihood of health impact in Seoul, Korea. Int. J. Environ. Res. Public Health 2021, 18, 2380. [Google Scholar] [CrossRef]
- Kim, J.; Jung, T.Y. Assessing health sector climate vulnerability in 226 local entities of South Korea based on principal component analysis. Urban Clim. 2023, 49, 101521. [Google Scholar] [CrossRef]
- Yardley, J.; Sigal, R.J.; Kenny, G.P. Heat health planning: The importance of social and community factors. Glob. Environ. Chang. 2011, 21, 670–679. [Google Scholar] [CrossRef]
- Park, J.; Chae, Y. Analysis of time-dependent effects of ambient temperatures on health by vulnerable groups in Korea in 1999–2018. Sci. Rep. 2023, 13, 922. [Google Scholar] [CrossRef]
- Kang, Y.; Baek, I.; Park, J. Assessing heatwave effects on disabled persons in South Korea. Sci. Rep. 2024, 14, 3459. [Google Scholar] [CrossRef]
- Flynn, A.; McGreevy, C.; Mulkerrin, E.C. Why do older patients die in a heatwave? QJM 2005, 98, 227–229. [Google Scholar] [CrossRef]
- Takahashi, N.; Nakao, R.; Ueda, K.; Ono, M.; Kondo, M.; Honda, Y.; Hashizume, M. Community trial on heat-related illness prevention behaviors and knowledge for the elderly. Int. J. Environ. Res. Public Health 2015, 12, 3188–3214. [Google Scholar] [CrossRef]
- Park, J.; Chae, Y.; Choi, S.H. Analysis of mortality change rate from temperature in summer by age, occupation, household type, and chronic diseases in 229 Korean municipalities from 2007–2016. Int. J. Environ. Res. Public Health 2019, 16, 1561. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y. Is an aging society a social problem? Aging from a complex perspective. J. Korean Urban Geogr. Soc. 2023, 26, 1–16. [Google Scholar]
- Shim, C.; Kim, O.; Han, J.; Song, S.; Na, G.; Kim, K. A Projected Population Exposed to Future Hot Weather Events Considering the Korean Society with Low Birth Rate and Rapid Aging: For Supporting Regional Policy Measures; Korea Environment Institute: Sejong, Republic of Korea, 2019; pp. 1–192. [Google Scholar]
- Lim, Y.; Kim, O.S.; Park, J. Projection of mortality risk of elderly to high ambient temperature under climate change scenarios in Korea during the 2050s and the 2090s. Landsc. Geogr. 2023, 33, 51–64. [Google Scholar]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jang, D.-H. Application of MK-PRISM for interpolation of wind speed and comparison with co-kriging in South Korea. GIScience Remote Sens. 2016, 53, 421–443. [Google Scholar] [CrossRef]
- Shen, S.S.; Dzikowski, P.; Li, G.; Griffith, D. Interpolation of 1961–97 daily temperature and precipitation data onto Alberta polygons of ecodistrict and soil landscapes of Canada. J. Appl. Meteorol. Climatol. 2001, 40, 2162–2177. [Google Scholar] [CrossRef]
- Hess, J.J.; LM, S.; Knowlton, K.; Saha, S.; Dutta, P.; Ganguly, P.; Tiwari, A.; Jaiswal, A.; Sheffield, P.; Sarkar, J.; et al. Building resilience to climate change: Pilot evaluation of the impact of India’s First Heat Action Plan on All-Cause Mortality. J. Environ. Public Health 2018, 1, 7973519. [Google Scholar] [CrossRef]
- Heo, S.; Nori-Sarma, A.; Lee, K.; Benmarhnia, T.; Dominici, F.; Bell, M.L. The use of a quasi-experimental study on the mortality effect of a heat wave warning system in Korea. Int. J. Environ. Res. Public Health 2019, 16, 2245. [Google Scholar] [CrossRef]
- Royé, D.; Codesido, R.; Tobías, A.; Taracido, M. Heat wave intensity and daily mortality in four of the largest cities of Spain. Environ. Res. 2020, 182, 109027. [Google Scholar] [CrossRef]
- Williams, L.; Erens, B.; Ettelt, S.; Hajat, S.; Manacorda, T.; Mays, N. Evaluation of the Heatwave Plan for the UK: Final Report; Policy Innovation Evaluation Research Unit, London School of Hygiene and Tropical Medicine: London, UK, 2019. [Google Scholar]
- Conlon, K.C.; Mallen, E.; Gronlund, C.J.; Berrocal, V.J.; Larsen, L.; O’Neill, M.S. Mapping human vulnerability to extreme heat: A critical assessment of heat vulnerability indices created using principal components analysis. Environ. Health Perspect. 2020, 128, 097001. [Google Scholar] [CrossRef] [PubMed]
- Klinenberg, E. Heat Wave: A Social Autopsy of Disaster in Chicago; University of Chicago Press: Chicago, IL, USA, 2015. [Google Scholar]
- Ebi, K.L.; Teisberg, T.J.; Kalkstein, L.S.; Robinson, L.; Weiher, R.F. Heat watch/warning systems save lives: Estimated costs and benefits for Philadelphia 1995–98. Bull. Am. Meteorol. Soc. 2004, 85, 1067–1074. [Google Scholar] [CrossRef]
- Fouillet, A.; Rey, G.; Wagner, V.; Laaidi, K.; Empereur-Bissonnet, P.; Le Tertre, A.; Frayssinet, P.; Bessemoulin, P.; Laurent, F.; De Crouy-Chanel, P.; et al. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol. 2008, 37, 309–317. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.; Wang, B.; Zhou, M.; Li, M.; Tong, S.; Meng, B.; Guo, Y.; Liu, Q. Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef]
Type | Variable | Description | Mean | Range | Period |
---|---|---|---|---|---|
Population | pop_65 | Population aged 65 and higher (%) | 19.6 | 7.9–33.5 | 2007–2020 |
agri_65 | Percentage of agricultural workers among the population aged 65 and higher (%) | 41.9 | 0.5–65.4 | 2007–2020 | |
single_65 | Percentage of single-person households among the population aged 65 and higher (%) | 22.8 | 14.7–29.5 | 2010–2020 | |
Economic | lowincome_65 | Percentage of low-income households among the population aged 65 and higher (%) | 7.7 | 4.5–10.6 | 2010–2020 |
financial | Municipal fiscal self-reliance (%) | 25.1 | 10.4–57.9 | 2007–2020 | |
Climate& Environment | t90 | 90th percentile temperature (°C) for each region (2007–2020) | 30.3 | 26.6–32.4 | 2007–2020 |
tmax95 | Number of days with temperatures above the 95th percentile (2007–2020) compared to those with 90th percentile temperature (°C) in summer (JJA) from 1999 to 2020 | 5.8 | 3.6–6.9 | 2007–2020 | |
tavg | Average temperature (°C) in summer | 24.2 | 21.9–25.6 | 2007–2020 | |
rhav80 | Number of days with relative humidity exceeding 80% in summer (JJA) | 38.7 | 16.4–74.8 | 2007–2020 | |
rhav_avg | Average relative humidity (%) in summer (JJA) | 77.0 | 68.7–86.0 | 2007–2020 | |
per_forest | Forest occupies the total area (%) | 60.0 | 25.8–86.0 | 2007–2020 |
Component | Initial Eigenvalues | ||
---|---|---|---|
Total | % of Variance | Cumulative | |
1 | 4.32 | 39.29 | 39.29 |
2 | 2.85 | 25.94 | 65.23 |
3 | 1.63 | 14.81 | 80.04 |
4 | 1.96 | 8.68 | 88.72 |
5 | 0.63 | 5.69 | 94.41 |
6 | 0.25 | 2.24 | 96.65 |
7 | 0.15 | 1.37 | 98.02 |
8 | 0.11 | 0.99 | 99.01 |
9 | 0.05 | 0.50 | 99.51 |
10 | 0.04 | 0.38 | 99.89 |
11 | 0.01 | 0.11 | 100.00 |
Variable | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
pop_65 | 0.906 | 0.238 | 0.160 | −0.191 |
agri_65 | 0.844 | 0.236 | 0.227 | −0.314 |
single_65 | 0.863 | 0.303 | 0.236 | 0.015 |
lowincome_65 | 0.408 | 0.200 | −0.209 | 0.804 |
financial | −0.927 | −0.185 | −0.025 | −0.077 |
t90 | −0.272 | 0.832 | 0.395 | −0.064 |
tmax95 | 0.036 | 0.665 | 0.148 | 0.321 |
tavg | −0.516 | 0.331 | 0.739 | 0.059 |
rhav80 | 0.452 | −0.799 | 0.330 | 0.118 |
rhav_avg | 0.500 | −0.743 | 0.367 | 0.109 |
per_forest | 0.471 | 0.374 | −0.697 | -0.171 |
Model | Outcome | PC1 | PC2 | PC3 | PC4 | Adjusted R2 |
---|---|---|---|---|---|---|
LM | Morbidity | <0.001 | <0.001 | <0.001 | 0.155 | 0.381 |
Mortality | 0.078 | 0.006 | 0.015 | 0.001 | 0.154 | |
NLM | Morbidity | <0.001 | 0.001 | <0.001 | 0.184 | 0.518 |
Mortality | 0.150 | 0.264 | <0.001 | <0.001 | 0.486 |
Method | Impact | Range of Components | Assigned HVI | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |||
HVI-LM | Morbidity | <−2.326 | −4 | 4 | −4 | |
−2.326–−1.645 | −3 | 3 | −3 | |||
−1.645–−1.282 | −2 | 2 | −2 | |||
−1.282–−0.674 | −1 | 1 | −1 | |||
−0.674–0.674 | 0 | 0 | 0 | |||
0.674–1.282 | 1 | −1 | 1 | |||
1.282–1.645 | 2 | −2 | 2 | |||
1.645–2.326 | 3 | −3 | 3 | |||
2.326< | 4 | −4 | 4 | |||
Mortality | <−1.960 | 4 | −4 | 4 | ||
−1.960–−1.645 | 3 | −3 | 3 | |||
−1.645–−1.150 | 2 | −2 | 2 | |||
−1.150–−0.675 | 1 | −1 | 1 | |||
−0.675–0.675 | 0 | 0 | 0 | |||
0.675–1.150 | −1 | 1 | −1 | |||
1.150–1.645 | −2 | 2 | −2 | |||
1.645–1.960 | −3 | 3 | −3 | |||
1.960 < | −4 | 4 | −4 | |||
HVI-NLM | Morbidity | <−1.960 | −3 | 4 | −4 | |
−1.960–−1.645 | −2 | 3 | −3 | |||
−1.645–−1.150 | −1 | 2 | −2 | |||
−1.150–−0.675 | 0 | 1 | −1 | |||
−0.675–0.675 | 0 | 0 | ||||
0.675–1.150 | 0 | −1 | 1 | |||
1.150–1.645 | 2 | −2 | 2 | |||
1.645–1.960 | 3 | −3 | 3 | |||
1.960 < | 4 | −4 | 4 | |||
Mortality | <−1.960 | −4 | 4 | |||
−1.960–−1.645 | −3 | 3 | ||||
−1.645–−1.150 | −2 | 2 | ||||
−1.150–−0.675 | 1 | 1 | ||||
−0.675–0.675 | 0 | 0 | ||||
0.675–1.150 | 1 | |||||
1.150–1.645 | ||||||
1.645–1.960 | ||||||
1.960< |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.; Lim, Y.; Kang, Y.; Yi, C. Elucidating Uncertainty in Heat Vulnerability Mapping: Perspectives on Impact Variables and Modeling Approaches. Int. J. Environ. Res. Public Health 2024, 21, 815. https://doi.org/10.3390/ijerph21070815
Jeong S, Lim Y, Kang Y, Yi C. Elucidating Uncertainty in Heat Vulnerability Mapping: Perspectives on Impact Variables and Modeling Approaches. International Journal of Environmental Research and Public Health. 2024; 21(7):815. https://doi.org/10.3390/ijerph21070815
Chicago/Turabian StyleJeong, Sockho, Yeonyeop Lim, Yeji Kang, and Chaeyeon Yi. 2024. "Elucidating Uncertainty in Heat Vulnerability Mapping: Perspectives on Impact Variables and Modeling Approaches" International Journal of Environmental Research and Public Health 21, no. 7: 815. https://doi.org/10.3390/ijerph21070815
APA StyleJeong, S., Lim, Y., Kang, Y., & Yi, C. (2024). Elucidating Uncertainty in Heat Vulnerability Mapping: Perspectives on Impact Variables and Modeling Approaches. International Journal of Environmental Research and Public Health, 21(7), 815. https://doi.org/10.3390/ijerph21070815